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Harmonic oscillator squeezed states are states of minimum uncertainty, but unlike coherent states, in which the uncertainty in position and
momentum are equal, squeezed states have the uncertainty reduced, either in position or in momentum, while still minimizing the uncertainty
principle. It seems that this property of squeezed states would allow to obtain the position eigenstates as a limiting case, by doing null the
uncertainty in position and infinite in momentum. However, there aredguovalentways to define squeezed states, that lead to different
expressions for the limiting states. In this work, we analyze both definitions and show the advantages and disadvantages of using them in
order to find position eigenstates. With this in mind, but leaving aside the definitions of squeezed states, we find an operator that applied to
the vacuum gives position eigenstates. We also analyze some properties of the squeezed states, based on the new expressions obtained for
the eigenstates of the position.
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1. Introduction duce the uncertainties either of the position or momentum,
while still keeping the uncertainty principle to its minimum.

Quantum states of the harmonic oscillator are very importanBecause of this, they belong to a special class of states named
in the study of the quantum theory of the electromagneticminimum uncertainty states. Once produced, for instance as
field because of the fact that they may be used to describ@lectromagnetic fields in cavities, they may be monitored via
a quantized field [1-3], each harmonic oscillator representtWo level atoms in order to check, or measure, that such states
ing a mode of such electromagnetic field. In fact, this wadhave been indeed generated [10, 11].

the concept that Dirac used to build the first quantum theory ~Based on the above properties, we can think about eigen-
of the electromagnetic field [2]. The easiest to understangtates of position as limiting cases of squeezed states. As
and to manipulate, and the most natural states of the quantufifiueezed states are minimum uncertainty states, we can re-
harmonic oscillator are number states. Number states are duce to zero the uncertainty in the position, while the uncer-
eigenstates of the harmonic oscillator Hamiltonian and, ofainty in the momentum goes to infinity, so that we keep the
course, are also eigenstates of the number opetiatora,  uncertainty principle to its minimum. Of course, there is also
wherea! anda are the well known creation and annihilation the option to reduce to zero the uncertainty in the momen-
operators, respectively. However, for amyno matter how tum, while the position gets completely undefined, obtain-
big, the mean field is zero; i.en|E,|n) = 0, and we know  ing that way the possibility to define momentum eigenstates.
that a classical field changes sinusoidally in time in each point? Secs. 1 and 2, we analyze the possibility of define the

of space; thus, these states can not be associated with clas@@sition eigenstates as the limit of extreme squeezing of the
cal fields [3, 4]. squeezed states. In what follows, we will use a unit system

suchthati =m =w = 1.

There are two equivalent forms to define the squeezed
ates. In the first one, introduced by Yuen [12], squeezed
states are obtained from the vacuum as

In the first years of the sixties of the past century,
Glauber [5] and Sudarshan [6] introduced the coherent states
and it has been shown that these states are the most cl
sical ones. Coherent states are denotedads and one
way to define them is as eigenstates of the annihilation

operator; that is,ila) = aja). An equivalent defini- a7} = S(r)D()]0) = S(r)la), (1)
tion is obtained applying the Glauber displacement operatof ..o

D(a) = exp (aa’ — a*a) to the vacuumia) = D(a)|0); S(r) = 2 2,9 )
we see then coherent states as vacuum displaced states. Co- (r) = exp [(a —a ) r/ } @

herent states also have the very important property that the the so-called squeeze operator. In this view, squeezed states
minimize the uncertainty relation for the two orthogonal field gre created displacing the vacuum, and after, squeezing it.
quadratures with equal uncertainties in each quadrature [3,4}ote that when the squeeze parametisrzero, the squeezed

Since then, other states have been introduced. In partictates reduce to the coherent states. In this work, we will con-
ular, squeezed states [3, 4, 7-9] have attracted a great dealsifler only real squeeze parameters, as that is enough for our
attention over the years because their properties allow to réntentions.
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In the definition introduced by Caves [13], the vacuum isProceeding in exactly the same way for the quadrature oper-
squeezed and the resulting state is then displaced; that meaasorY’, we obtain
that in this approach squeezed states are given as

AY = \/<a;r|§72\a;r> —{a; 7|V |a;7)2 = %. (15)
'y =D (a’) S (1) ]0). 3 . o L
lo5r) (@) S () 0) @) As we already said, we can then think in the position eigen-
Both definitions of the squeezed states agree when thetates and in the momentum eigenstates as limit cases of
squeeze factor is the samé, = r, and when the modified squeezed states. Indeed, when the squeeze paranyzes

amplitudea’ of the Caves approach is given by to infinity, the uncertainty in the position goes to zero, and the
momentum is completely undetermined. Of course, when the
o = po—va”, (4)  squeeze parameter goes to minus infinity, we have the inverse
. situation, and we can think in define that way the momentum
being . ! .
eigenstates. In the two following sections, we use the Yuen
pp = coshr ©) and the Caves definitions of the squeezed states to test this
and hypothesis.
v = sinh r. (6)

To analyze the uncertainties in the position and in the2. A first attempt a la Yuen
momentum of the squeezed states, we introduce, following

Loudon and Knight [7], the quadrature operators From Eq. (14) above, we can see that in the limit: oo the
uncertainty for position vanishes and so a position eigenstate
st at @ (7y  should be obtained (from now on, we considereal),
2 2 . T
SR N
and Jim | 7 ) = |)p. (16)
v a- at (8 We have written a sub indexin the position eigenstate in
2i V2 order to emphasis that fact. Following the Yuen definition

wherez is the position operator aniithe momentum opera- |a;7) = S(T)f)(aﬂw = 3(7“)\04% SO
tor. Note that the quadrature operators are essentially the po- x . - x . z
sition and momentum operators; this definition just provides |\ﬁ? r)=:5(r)D <\@> 0) = S(T)‘ﬁ>~ (17)
us with two operators that have the same dimensions. .
. We now write the squeeze operator as [16]
In order to show that really the squeezed states are min-

imum uncertainty states, we need to calculate the expected S(r) = ie_ﬁ;;? }TA e (18)
values in the squeezed state (1) of the quadrature operators VH e
(7) and (8), and its squares. Using (7) and (1), we get where, as we already said,= cosh r andv = sinh r. So,
; 1, s a+al g oL et za?| T
(ar|Xair) = S(alST(r) 58 ()a). (@) BT e T e g @9

The action of the squeeze operator on the creation antioW. We develop the first operator (from right to left) in

annihilation operators is obtained using the Hadamard'©ower series, we use the_ definition of the coherent states,
lemma [14, 15] ala) = «a|a), and the action of the number operator over

the number statei'a|n) = 7i|n) = n|n)), to obtain

St(ras(r) = pa —val, St(ratsSer) = pat —va, (10)

ATA
T I e (1" Rz \" 1
L= e (1) S (%) o
such that e A 7 7 p ;::0 %) 7o
St(r) S(r)=eT"X. (11) . .
1 g (2 L (1Y (20
Therefore, ag|a) = ala) and(ajal = (ala*, itis easy to VA A Ja\n) "
see that . vE A= \V2/ vl A
(| X|asr) = e to (12) Asr— oo, i = w7 — 0, which means that the only term
2 that survives from the sum is = 0, and then
and that vot2
|z)p oc e 2% |0) (21)

2 2 *2
—2r 1+ 2]a] Za o . (13)  that would give an approximation for how to obtain a po-
sition eigenstate from the vacuum. However, note that the
So, we obtain for the uncertainty in the quadrature operatoapove expression does not depend:and therefore can not
X, be correct. From all this analysis, we must conclude that the
—r Yuen definition of the squeezed states, whatever representa-
(14)  tion used, does not give the correct asymptotic states.

(7| X3 |osr) = e

AX = \/(&;T\X2|a;r) — (o r|X|a;r)2 = ¢
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3. Asecond attempta la Caves We take now the limit whem — oo, or  — 1, so

We now squeeze the vacuum and after we displace it. Thus 2

’ s de .
in this case, |2}y o< exp <—2> exp (—2 + ﬂxa*) [0).  (29)

ooaf T\ 4 We get an expression that gives us the position eigenstates as
=1 = lim D — ] S(r)|0). 22 ) ;
)y = ) | f = Foroo (f) )I0) (22) an operator applied to the vacuum. Unlike the Yuen case, ex-
o pression (21), now we have ardependence and it looks like
We use again expressic(rﬁ(r) = exp (—LdT ) (1)”*5 a better candidate to be the position eigenstate. In fact, in the

2 Z next Section, we will show that this really is an eigenstate of

expSéL&Q for the squeeze operator [12], whereandv  the position.
are defined in (5) and (6), and we write the displacement op-

erator asD(a) = exp (' of )exp(—a*d) exp (ea’) [16], 4. Leaving squeezed states aside

to obtain . . .
We will try now an alternative approach to the eigenstates of

| z > (x2> < z ) ( x AT) the position. We can write a position eigenstate, simply by
—;r)=exp|— |exp| ——=a |exp | —=a SN ;
P P\ P2

V2 4 multiplying it by a proper unit operator
fit3 o0
xexp (—2a*) (L exp [ —a2 ) |0). (23) z)p = In) (nlz), (30)
20 W 2u n=0

As @[0) = 0 andatalo) — A[0) = 0, we cast the previous Therefore the position eigenstats, may be written as [17]

formula as 2} = i bu(@) ) 31)
i) = Lo () e (~2a) "
V2 \F 4 V2 with wn(-x) = \/ﬁ ‘l'Z/QHn(:c); such thatlz), may
X exp ( ) (_a ) 10). (24)  bere-written as

/2 & 1

_ AT"
Inserting twice the identity operator, written as |2)p = i/t 2n/2n!Hn(x)a 10, (32)
I=e (LA>e <fiA),we obtain " . .
AP TR e that may be added via using the generating function for Her-
1 22 _ o4 =g mite polynomials [18]
|ﬁ;r> :\764 e v2leva
K 7t +2tx __
x5 T A v oAt @5 oz g ZHk k“ (33)
xevile valeTm evale  v2®|0). (25)
to give /
. ~ ) —z2/2 ‘2
-z = al .
It is clear,thatexpg /30 |0) = 10), and using the ), = e - 6_?+\/§Iaf|0>. (34)
Hadamard’s lemma [14], it IS easy to prove that T

The above expression allows us to write the position eigen-
exp(—ya)n (') exp(va) =n(a' —v), (26) state as an operator applied to the vacuum. Note that this
expression is the same as the one obtained using the Caves

for any well behaved function (a'); thus definition for the squeezed states, formula (28). We prove
) ) now that indeed (32) is an eigenvector of the positionT oper-
T x x X . H HY . ata
|—:r) = — exp () exp { (dT _ ﬂ ator; for that, we write the position operator as= R
V2 Vit 4 V2 V2 thus
v x 2 e—xz/Q ; 42 3 :
L S . 27 ; =— (a+al)e =tV ), 35
xexp[ 2M<a \@>10) (27) &|x), 1/4\[(a al)e |0) (35)
Insertlng the |dent|ty operator in the above expression as
After some algebra IR,
[ = ez ¢V22a! (—V2aa , we get
| x > 1 o |: 22 (1+ y>:| —x2/2 )
—Tr) = ——exXp |—— — . e _a T _\/3zat
V2 VI 4 0 Elx)p = T e
AP LT (T IPS 28 at? at? )
e { SN ( i u) ! } - @9 xe'= (a+al)e T e o) (36)
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at” at’ ; 12" 127
as e’z (a+al) e~ = 4 — at +at = 4 Itisveryeasytoseethat © 9 |\/2z) =5 |\/22),
at? at? and thatei"™ — |e _thus
ez (d + {IT) e~ = g —af + at = a, andd|0> =0, |Oé> |€ a>
we obtain
__,1;2/2 5 1 1
7 € _al” zal . - 7|:27 2r 2 *27:|
ila), = o —me TR |0) = al),,  (37) lasrla), = 73 exp{2 (2-¢")a?—a" —r
as we wanted to show. x <oz|ﬁe*7“a:> : (44)

We can write (32) in terms of coherent states. We have

612 +]e]* —25%€)

Finally, as(dle) = e 3 ( , we have

eV27'|0) = i% (\/im)k a'"|0)
k=0

1[ (2 e _ 26727‘) 22

<O‘;T|:C>p = 7_‘_1/4 D)

; . exp{
k=0 +ov2ate " — o — |0z\2 - 7“} }7 (45)

thus
e;c2/2 &TZ
|z)p = sy [V2z). (39)  aswe wanted to show.

With the expressions obtained, it is easy to show that the
squeezed states have the form of a Gaussian wave packet. To o )
confirm this, we use the above expression to state that 5. The Husimi Q-function

(a;r]x), = (a]ST(r)|z), We can now find the wave function of a coherent state as a
2 /4 , function of the position [19]. We use equation (32), that ex-
e” 5 _al the eigenstates of the position as an operator acting on
St(r)e="F|Vaz).  (a0) Presstheeig p p g
mi/4 {alST(r) | ) (40) the vacuum, and get that
N dT2 aTz @TQ R dT2
We write ST(r)e="5 ase™ "z e ST (r)e= "3, where we /2 ot? -
just i ident e o~ ook (Bl), = Ble™ = V20
have just msetrted the |dTent|ty operatoe= e~z ¢ 2z , and P wi/4
we use that 2 (a)e~2 = n(a—al), for any well be- _22
haved function;, to obtain _ & 2 VRt )
(810)
Ve
1 2 2
exXp |5 (7 —T _af” ra2_rata _z2 .
<Ot;7"l'>p=[ir1(/4)]<0[|6 2 ez |\/§l‘> (41) _ € 1/24 e—#—@ﬁ‘\/ﬁﬁ*w’ (46)
i

As the coherent statesa) are eigenfunctions of the
annihilation operatora, it is very easy to show that
2 2

as(flat = 5+ (9) and (Bln) = e~ 52

{ale™ =" = (ale™ 7", s0 The HusimiQ-function [20] can be calculated from (45)
simply as
exp [% (x2 —a* - 7‘)}
<O[;’]"|x>p = 71_1/4 1 2 6_$2€_|B|2 ﬁ*Q . 2
po2 s Q(B)=— ‘<ﬁ|$>p’ =——=3p e~ T Ve (47)
x (a)e2® ~ra'e|\/2g). (42) @ T
In the App2endix, we disentangle the opeméﬁtram as thatafter some algebra, can be re-written as
e~ra'ag=—a and we get
1 2 %2 Q(ﬂ):m
exp [5 (a: —« —r)] , ) ,
(;r]z), = 7 X exp [—x — 181> —Re(* )+2\/§Re(6)x} . (48)
—rafa =62 /5
x {ale e [V2z). (43)  In the figures, we plot the Husim®-function for different
values ofz.
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FIGURE 1. The HusimiQ-function forx = —3.

FIGURE 2. The HusimiQ-function forz = 0.

FIGURE 3. The HusimiQ-function forxz = 3

FIGURE 4. The HusimiQ-function forz = 6.

6. Conclusions

We have found an operator that applied to the vacuum gives
us the eigenstates of the position. We did that by two different
ways; first, using the Caves definition of the squeezed states,
we took the limit of extreme squeezing in the position side,
to get the position eigenstate. Second, we used the expansion
of an arbitrary wave function in the base of the harmonic os-
cillator; i.e., we wrote an arbitrary wave function in terms of
Hermite polynomials. The expressions obtained allows us to
show certain properties of squeezed states, and also allow us
to write in a very easy way the Husi@function of the posi-

tion eigenstates. The same procedure can be followed to find
the eigenstates of the momentum, but taken the limit when
the squeeze parameters goes-tw.

We can also conclude that from the point of view of this
work, the Caves approach to define squeezed states is more
adequate, because it gives the correct eigenstates of the posi-
tion; while the Yuen definition, formula (1), gives an expres-
sion that is incorrect. So, we must first squeeze the vacuum,
and after, displace it.

A Appendix

In this appendix, we show how to disentangle the operator
r A2 At .
e~5a%+ra'a e define

F(r) = e 39°trala, (49)
and we suppose that (48) can be rewritten as

F’(r) = exp [f(r)(ﬂd] exp [g(r)&Q] , (50)

where f(r) and g(r) are two unknown well behaved func-
tions; asF(0) = I, being/ the identity operator, these
functions most satisfy the conditiorf§0) = ¢g(0) = 0. At

first sight, one can think that in the proposal (45) should be a

term of the formexp [h(r)&ﬂ ; however, this is not the case
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(02 0)

Equating this equation to the one obtained differentiating the
original formula forF'(r), equation (44), we get the follow-
ing system of first order ordinary differential equations

a _, dg,
dr 7 dr

becausga?,a’a] = 2a*. We differentiate with respect tq
to find

SO
ar
dr

deTA dg
dra at dre

F (54)

dF

dj
_ide

o= dr exp [f&fd} exp [gdg]

+ d—i exp [f&Td] a% exp [9&2] , (51)

d
where for simplicity in the notation, we have droppedrall
dependency; we writé = exp [— fa'a] exp [ fa'a] for the
identity operator in the second term, to obtain

daF  df . dg 4 a7 s
dr dra dr P [fa a] “
x exp [~ fa'a] exp [fa'a) exp [ga?] . (52)

Using the Hadamard’s lemma [14,15], itis very easy to prov
that

1
2f _
=75 (55)

= 2

The solution of the first equation, that satisfies the initial con-
dition f(0) = 0, is the functionf(r) = r. Substituting this
solution in the second equation and solving it with the initial
&onditiong(o) = 0, we obtaing(r) = %. Thus, finally
we write

aexp [f&fd] exp [9&2} +

2f ~2

a2, —sa’+rata _

e 2

exp [ded] a% exp [—f&T&] =e” (53) (56)
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