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Departamento de F́ısica Mateḿatica, Instituto de Ciencias

Universidad Aut́onoma de Puebla, 72570 Puebla, Pue., México.
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We present an elementary derivation of the equation for the infinitesimal generators of variational symmetries of a Lagrangian for a system
with a finite number of degrees of freedom. We also give a simple proof of the existence of an infinite number of Lagrangians for a given
second-order ordinary differential equation.
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Presentamos una derivación elemental de la ecuación para los generadores infinitesimales de simetrı́as variacionales de una lagrangiana
para un sistema con un número finito de grados de libertad. Damos también una prueba simple de la existencia de un número infinito de
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1. Introduction

In classical mechanics, the Lagrangian of a given mechanical
system leads to its equations of motion, and the identification
of the continuous symmetries of the Lagrangian allows one
to find constants of motion (or first integrals). However, the
identification of such symmetries is often based on the exis-
tence of ignorable coordinates, which depends on the coordi-
nates chosen, and the symmetries commonly considered are
restricted to rotations and translations (see,e.g., Refs. [1–3]).

The Lagrangian formalism is also useful in many other ar-
eas. Any second-order ordinary differential equation (ODE)
can be seen as the Euler–Lagrange equation for some La-
grangian (in fact, for an infinite number of Lagrangians) and
many systems of second-order ODEs can be derived from a
Lagrangian.

It turns out that a Lagrangian may possess many non-
trivial continuous symmetries and, what is more relevant, in
many cases, some of them can be readily found by solving
an equation applicable in any coordinate system. The aim of
this paper is to present an elementary derivation of the equa-
tion that determines the so-called variational symmetries of a
Lagrangian, and of the expression for the constants of motion
associated with these symmetries. The results presented here
are applicable to any system of second-order ODEs derivable
from a Lagrangian, and to any second-order ODE, not neces-
sarily related to classical mechanics.

In Sec. 2 we consider systems with one degree of freedom
(or a single second-order ODE), deriving the basic equations
that determine the variational symmetries of a Lagrangian
and the corresponding first integrals. In order to apply these
results to any second-order ODE, we show how to find a La-
grangian for a given second-order ODE. It may be remarked

that even though, at least since the nineteenth century, it is
known that any second-order ODE possesses an infinite num-
ber of Lagrangians, this result is not presented in the standard
textbooks on classical mechanics (see, however, Ref. [4]). In
Sec. 3 the formulas applicable to the case with an arbitrary
number of degrees of freedom are given. Throughout this pa-
per various examples are given, illustrating the concepts and
methods introduced here.

2. Systems with one degree of freedom

In order to present the ideas in a simple way, it is convenient
to consider firstly the case where there is only one degree of
freedom, or we have a single second-order ODE.

2.1. Variational symmetries of a Lagrangian

We shall consider one-parameter families of transformations

x′ = x′(x, t, s), t′ = t′(x, t, s), (1)

wheres is a parameter that takes values in some neighbor-
hood of zero, and we shall assume that the transformation (1)
reduces to the identity fors = 0; that isx′(x, t, 0) = x and
t′(x, t, 0) = t. For a fixed value ofs, Eqs. (1) give a trans-
formation from the plane(x, t) into the plane(x′, t′). Such
transformations are calledpoint transformations(see,e.g.,
Refs. [5–8]; more general transformations are also useful,
see,e.g., Refs. [5, 6, 9]). Some examples of one-parameter
families of point transformations are

x′ = xes − 1
2
gt2(e3s − es), t′ = te3s/2, (2)
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whereg is a constant,

x′ =
x

1− ts
− gt3s

2(1− ts)2
, t′ =

t

1− ts
, (3)

and
x′ = xe−s, t′ = te2s. (4)

It may be noticed that the transformations (2) and (4) are de-
fined for alls ∈ R, but (3) is defined only fors 6= 1/t.

Actually, Eqs. (2)–(4) are examples of local one-
parametergroupsof transformations, which means that, if
we defineϕs(x, t) ≡ (x′, t′), then

ϕs(ϕu(x, t)) = ϕs+u(x, t), (5)

for all values ofs andu such that both sides of the equation
are defined. For instance, in the case of the transforma-
tions (4), ϕs(x, t) = (xe−s, te2s); hence,ϕs(ϕu(x, t)) =
ϕs(xe−u, te2u) = ((xe−u) e−s, (te2u) e2s) =
(xe−s−u, te2s+2u) = ϕs+u(x, t). These one-parameter
groups of transformations arise in a natural way in the solu-
tion of systems of first-order ODEs (see the examples below).

We shall say that the one-parameter family of transfor-
mations (1) is avariational symmetryof a given Lagrangian
L(x, ẋ, t) if

L

(
x′,

dx′

dt′
, t′

)
dt′

dt
= L

(
x,

dx

dt
, t

)
+

d
dt

F (x, t, s), (6)

for all values ofs for which the transformation is defined,
whereF (x, t, s) is some function. Some authors reserve the
name variational symmetry for the point transformations sat-
isfying Eq. (6) without the last term of the right-hand side
(e.g., Refs. [5–8]), and the point transformations satisfying
(6) with dF/dt 6= 0 are sometimes called Noether symme-
tries [5] or divergence symmetries [6]. As we shall show be-
low, each one-parameter family of point transformations sat-
isfying Eq. (6) yields a constant of motion for the ODE given
by the LagrangianL.

More precisely, a transformation satisfying Eq. (6) maps
any solution of the Euler–Lagrange equation corresponding
to L, into another solution, which follows from the fact that
the Euler–Lagrange equation determines the local extrema of
the integral

t1∫

t0

L

(
x,

dx

dt
, t

)
dt,

with fixed endpoints(x0, t0), (x1, t1) [1–3,8]. Condition (6)
amounts to

t′1∫

t′0

L

(
x′,

dx′

dt′
, t′

)
dt′ =

t1∫

t0

L

(
x,

dx

dt
, t

)
dt

+

t1∫

t0

d
dt

F (x, t, s) dt, (7)

wheret′0, t′1 are the values oft′ corresponding to the points
(x0, t0), (x1, t1), respectively, according to the transforma-
tion (1). The last term on the right-hand side of Eq. (7) is
equal to the difference of the values ofF at the endpoints,
and it is therefore a constant when one considers curves with
the same endpoints. Hence, a curve that minimizes (or max-
imizes) the first term on the right-hand side of Eq. (7) is
mapped into a curve that minimizes (or maximizes) the in-
tegral on the left-hand side.

For instance, the family of transformations (2) is a varia-
tional symmetry of the Lagrangian

L(x, ẋ, t) =
1
6
ẋ3 +

1
2
gẋ2t− g2xt, (8)

whereg is a constant [the constant appearing in Eqs. (2)]. In
fact, treating the derivative as a quotient of differentials (or,
equivalently, using the chain rule), from Eqs. (2) we have

dx′

dt′
=

esdx− (e3s − es)gtdt

e3s/2dt
=e−s/2ẋ− (e3s/2 − e−s/2)gt,

hence,

L

(
x′,

dx′

dt′
, t′

)
dt′

dt
=

{
1
6
[
e−s/2ẋ−

(
e3s/2 − e−s/2

)
gt

]3

+
1
2
g
[
e−s/2ẋ−

(
e3s/2 − e−s/2

)
gt

]2
te3s/2

− g2

[
xes − 1

2
gt2

(
e3s − es

) ]
te3s/2

}
e3s/2

= L

(
x,

dx

dt
, t

)
+

d
dt

[
1
2
g2t2x

(
1− e4s

)

+
1
24

g3t4
(
1− 6e4s + 5e6s

) ]
.

(Note thats is a parameter, that does not depend ont.)
On the other hand, the transformations (4) are variational

symmetries for the Lagrangian

L(x, ẋ, t) =
t2

2

(
ẋ2 − x6

3

)
. (9)

Indeed, from Eqs. (4) we have

dx′

dt′
=

e−sdx

e2sdt
= e−3sẋ,

and, therefore,

L

(
x′,

dx′

dt′
, t′

)
dt′

dt
=

(te2s)2

2

[
(e−3sẋ)2 − (xe−s)6

3

]
e2s

=
t2

2

(
ẋ2 − x6

3

)
,

showing that Eq. (6) holds withF = 0.
Finding the variational symmetries of a given Lagrangian,

making use of the definition (6), is not an easy task. How-
ever, as we shall see, this problem is simplified if we start
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looking for theinfinitesimal generatorsof such symmetries.
Indeed, differentiating both sides of Eq. (6) with respect tos,
ats = 0, making use of the chain rule and the definitions

η(x, t) ≡ ∂x′(x, t, s)
∂s

∣∣∣∣
s=0

,

ξ(x, t) ≡ ∂t′(x, t, s)
∂s

∣∣∣∣
s=0

, (10)

we obtain

∂L

∂x
η +

∂L

∂ẋ

(
∂

∂s

dx′

dt′

)

s=0

+
∂L

∂t
ξ

+ L(x, ẋ, t)
(

∂

∂s

dt′

dt

)

s=0

=
(

∂

∂s

dF

dt

)

s=0

. (11)

Treating the derivativedx′/dt′ as a quotient of differen-
tials, using the elementary rules of differentiation and the def-
initions (10), we see that

(
∂

∂s

dx′

dt′

)

s=0

=
(dt′)

∂

∂s
dx′ − (dx′)

∂

∂s
dt′

(dt′)2

∣∣∣∣∣∣∣
s=0

=
(dt′) d

(
∂x′

∂s

)
− (dx′) d

(
∂t′

∂s

)

(dt′)2

∣∣∣∣∣∣∣∣
s=0

=
dη

dt
− ẋ

dξ

dt
.

On the other hand,
(

∂

∂s

dt′

dt

)

s=0

=
∂

∂s

(
∂t′

∂t
+ ẋ

∂t′

∂x

)∣∣∣∣
s=0

=
(

∂

∂s

∂t′

∂t
+ ẋ

∂

∂s

∂t′

∂x

)∣∣∣∣
s=0

=
d
dt

∂t′

∂s

∣∣∣∣
s=0

=
dξ

dt

and, similarly,
(

∂

∂s

dF

dt

)

s=0

=
d
dt

∂F

∂s

∣∣∣∣
s=0

.

Thus, Eq. (11) amounts to

∂L

∂x
η +

∂L

∂ẋ

(
dη

dt
− ẋ

dξ

dt

)
+

∂L

∂t
ξ + L

dξ

dt
=

dG

dt
, (12)

where

G ≡ ∂F

∂s

∣∣∣∣
s=0

is some function of(x, t). (WhenG = const., condition (12)
reduces to Eq. (4.27) of Ref. [7] and Eq. (9.38) of Ref. [8];cf.
also Sec. 13.7 of Ref. [3]. As we shall see below, the condi-
tionG = const. is a very strong restriction on the symmetries
of a given Lagrangian.)

For a given Lagrangian,L(x, ẋ, t), Eq. (12) determines
the infinitesimal generators (represented by the functionsξ
andη) of variational symmetries ofL. For a given function
L(x, ẋ, t), Eq. (12) is a partial differential equation for the

two functionsξ andη, which depend on(x, t) (recall that,
e.g., dη/dt = ∂η/∂t + ẋ ∂η/∂x). The left-hand side of
Eq. (12) is a linear operator acting on the functionsξ and
η and, therefore, any linear combination, with constant co-
efficients, of solutions of Eq. (12) is also a solution of this
equation (see,e.g., Eqs. (22), below).

As pointed out above, the interest in the variational sym-
metries ofL comes from the fact that, each pair of functions
ξ, η, that satisfies Eq. (12) gives rise to aconstant of motion;
that is, to a function with a total derivative with respect to the
time equal to zero, if the Euler–Lagrange equations hold. In
fact, from the Euler–Lagrange equation

d
dt

∂L

∂ẋ
=

∂L

∂x
, (13)

and the chain rule, we have

dL

dt
=

∂L

∂x
ẋ +

∂L

∂ẋ
ẍ +

∂L

∂t

=
d
dt

(
∂L

∂ẋ
ẋ

)
+

∂L

∂t

therefore, Eq. (12) can be written as
(

d
dt

∂L

∂ẋ

)
η +

∂L

∂ẋ

(
dη

dt
− ẋ

dξ

dt

)

+
d
dt

(
L− ∂L

∂ẋ
ẋ

)
ξ + L

dξ

dt
=

dG

dt
,

that is,

d
dt

[
∂L

∂ẋ
η + ξ

(
L− ∂L

∂ẋ
ẋ

)
−G

]
= 0, (14)

thus showing that the expression inside the brackets is a con-
stant of motion (cf. Eq. (10.31) of Ref. [5] and Eq. (10.31)
of Ref. [10]). WhenG = const., Eq. (14) reduces to Eq.
(13.158) of Ref. [3] and Eq. (9.25) of Ref. [8].

2.1.1. Example

As a first example, we shall consider the standard Lagrangian
for a particle of massm in a uniform gravitational field,

L(x, ẋ, t) =
1
2
mẋ2 −mgx. (15)

Substituting this last expression into Eq. (12) we obtain

−mgη + mẋ

(
∂η

∂t
+ ẋ

∂η

∂x
− ẋ

∂ξ

∂t
− ẋ2 ∂ξ

∂x

)

+
(

1
2
mẋ2 −mgx

)(
∂ξ

∂t
+ ẋ

∂ξ

∂x

)
=

∂G

∂t
+ ẋ

∂G

∂x
.

Sinceη, ξ, andG depend on(x, t) only, the only way in
which this last equation can be identically satisfied is that the
coefficient of each power oḟx on each side of the equation
coincides (recall that we are not using the equations of mo-
tion; herex, ẋ and t are independent variables). Thus, by
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equating the coefficients ofẋ3, ẋ2, ẋ, andẋ0 on both sides of
the equation we obtain the four equations

∂ξ

∂x
= 0, (16)

∂η

∂x
− 1

2
∂ξ

∂t
= 0, (17)

m
∂η

∂t
−mgx

∂ξ

∂x
=

∂G

∂x
, (18)

−mgη −mgx
∂ξ

∂t
=

∂G

∂t
. (19)

Equation (16) implies thatξ is some function oft only,

ξ = A(t) (20)

and from Eq. (17) it follows that

η =
1
2
x

dA

dt
+ B(t), (21)

whereB(t) is another function oft only. Using now Eqs. (18)
and (19), the equality of the partial derivatives∂2G/∂t∂x
and∂2G/∂x∂t gives

m
∂2η

∂t2
= −mg

∂η

∂x
−mg

∂ξ

∂t
,

that is,
1
2
x

d3A

dt3
+

d2B

dt2
= −3

2
g
dA

dt
.

SinceA andB are functions oft only, we have

d3A

dt3
= 0, and

d2B

dt2
= −3

2
g
dA

dt
.

These equations imply that

A(t) = c1t
2 + c2t + c3,

wherec1, c2, c3 are arbitrary constants, and

B(t) = −1
2
c1gt3 − 3

4
c2gt2 + c4t + c5,

wherec4 andc5 are two additional arbitrary constants. Sub-
stituting these expressions into the previous results we obtain

ξ = c1t
2 + c2t + c3,

η = c1

(
xt− 1

2
gt3

)
+ c2

(
1
2
x− 3

4
gt2

)
+ c4t + c5 (22)

showing that in this case the solution of Eq. (12) contains
five arbitrary constants. Making use Eqs. (18) and (19) we
find that, up to an irrelevant constant term,

G = c1

(
1
2
mx2 − 3

2
mgt2x +

1
8
mg2t4

)

+ c2

(
−3

2
mgtx +

1
4
mg2t3

)

+ c4

(
mx− 1

2
mgt2

)
+ c5(−mgt). (23)

It may be remarked that, if one assumes thatG is equal to
zero, or a trivial constant, thenc1 = c2 = c4 = c5 = 0,
and, instead of the five-parameter family of symmetries ob-
tained above, one is left with just a one-parameter group of
variational symmetries of the Lagrangian (15), which is the
obvious one (x′ = x, t′ = t + s), which is related to the fact
thatL does not depend explicitly on the time.

The constant of motion associated with the infinitesimal
generator (22) is [see Eq. (14)]

c1m

(
xẋt− 1

2
gẋt3 − 1

2
ẋ2t2 − 1

2
x2 +

1
2
gxt2 − 1

8
g2t4

)

+ c2m

(
1
2
xẋ− 3

4
gẋt2 − 1

2
ẋ2t +

1
2
gxt− 1

4
g2t3

)

+ c3m

(
−1

2
ẋ2 − gx

)
+ c4m

(
ẋt− x +

1
2
gt2

)

+ c5m(ẋ + gt). (24)

Since the constantsc1, . . . , c5 are arbitrary, each of the func-
tions inside the parentheses is a constant of motion, though
they cannot be functionally independent; for a second-order
ODE, there are only two functionally independent first in-
tegrals. In this case, any constant of motion must be some
function of,e.g.,

ϕ1 ≡ ẋ + gt, ϕ2 ≡ x− ẋt− 1
2
gt2. (25)

The values ofϕ1 andϕ2 are the values oḟx andx at t = 0,
respectively. It may be noticed that the constant of motion
multiplying c3 is minus the total energy.

The functionsξ andη can be conveniently combined in
the linear partial differential operator

ξ
∂

∂t
+ η

∂

∂x
. (26)

This combination is invariant under coordinate transforma-
tions and constitutes avector field, in the terminology of the
theory of differentiable manifolds (see,e.g., Refs. [6, 11]).
Substituting Eqs. (22) into Eq. (26) we obtain the vector field

X = c1

[
t2

∂

∂t
+

(
xt− 1

2
gt3

)
∂

∂x

]

+ c2

[
t
∂

∂t
+

(
1
2
x− 3

4
gt2

)
∂

∂x

]

+ c3
∂

∂t
+ c4t

∂

∂x
+ c5

∂

∂x
,

which is a linear combination of the five vector fields

X1 ≡ t2
∂

∂t
+

(
xt− 1

2
gt3

)
∂

∂x
,

X2 ≡ t
∂

∂t
+

(
1
2
x− 3

4
gt2

)
∂

∂x
,

X3 ≡ ∂

∂t
, X4 ≡ t

∂

∂x
, X5 ≡ ∂

∂x
. (27)
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These vector fields form a basis for the infinitesimal genera-
tors of the variational symmetries of the Lagrangian (15) and
also form a basis of a Lie algebra, with the bracket given by
the commutator, but this fact will not be elaborated here.

Once we have obtained the infinitesimal generator of a
variational symmetry of a Lagrangian, we can use it di-
rectly to find a first integral [by means of Eq. (14)], with-
out the need to know a one-parameter family of transfor-
mations corresponding to that infinitesimal generator. How-
ever, it is always possible, in principle, to find a unique local
one-parametergroupof transformations whose infinitesimal
generator is defined by a given pair of functionsη(x, t) and
ξ(x, t). All we have to do is to find the solution of the system
of first-order ODEs

dx′

ds
= η(x′, t′),

dt′

ds
= ξ(x′, t′), (28)

with the initial condition(x, t). Equation (28) follows from
the definition (10) written as

η(x′(x, t, s), t′(x, t, s))
∣∣∣
s=0

=
∂x′(x, t, s)

∂s

∣∣∣∣
s=0

,

ξ(x′(x, t, s), t′(x, t, s))
∣∣∣
s=0

=
∂t′(x, t, s)

∂s

∣∣∣∣
s=0

,

demanding that the equalities hold for all values ofs (not
only for s = 0), treatingx andt as parameters (that specify
the initial conditions). For example, in the case of the vector
fieldX1 [see Eq. (27)], the system of equations (28) takes the
form

dx′

ds
= x′t′ − 1

2
gt′3,

dt′

ds
= t′2. (29)

From the second of these last equations (separating variables)
we obtain

− 1
t′

= s + const.

and the integration constant is determined by the condition
thatt′ = t ats = 0; hence,−1/t′ = s− 1/t, that is

t′ =
t

1− ts
.

Inserting this expression into the first equation in (29) we ob-
tain the linear equation

dx′

ds
− t

1− ts
x′ = −1

2
g

(
t

1− ts

)3

(recall that heret is a parameter determining the initial con-
dition). Thus

(1− ts)x′ = − gt2

2(1− ts)
+ const.

The integration constant has to be chosen in such a way that
x′ = x for s = 0. Hence,

x′ =
x

1− ts
− gt3s

2(1− ts)2
,

which is the local group of point transformations given in
Eqs. (3).

In a similar way, one finds that the one-parameter group
of transformations generated byX4 is that of the Galilean
transformationst′ = t, x′ = x + st; X3 generates the time
displacementst′ = t + s, x′ = x; X5 generates the transla-
tionsx′ = x+s, t′ = t; andX2 is the infinitesimal generator
of the group of point transformations

x′ = xes/2 +
1
2
gt2(es/2 − e2s), t′ = tes.

2.2. The existence of an infinite number of Lagrangians

Given a second-order ODE

ẍ = f(x, ẋ, t), (30)

which may correspond to a mechanical system or may have
some other origin, we want to find some function,L(x, ẋ, t),
such that the Euler–Lagrange equation (13) be equivalent to
Eq. (30). To this end, we note that Eq. (13) amounts to

∂

∂t

∂L

∂ẋ
+ ẋ

∂

∂x

∂L

∂ẋ
+ ẍ

∂

∂ẋ

∂L

∂ẋ
=

∂L

∂x

and therefore we are looking for a functionL(x, ẋ, t) such
that

∂

∂t

∂L

∂ẋ
+ ẋ

∂

∂x

∂L

∂ẋ
+ f(x, ẋ, t)

∂

∂ẋ

∂L

∂ẋ
=

∂L

∂x
(31)

holds for all values ofx, ẋ, andt. Taking the partial deriva-
tive with respect tȯx on both sides of Eq. (31), assuming that
the partial derivatives ofL commute and letting

M ≡ ∂2L

∂ẋ2
, (32)

one obtains

∂M

∂t
+ ẋ

∂M

∂x
+ M

∂f

∂ẋ
+ f(x, ẋ, t)

∂M

∂ẋ
= 0, (33)

which is a first-order linear partial differential equation for
M . Making use of Eq. (30), Eq. (33) can also be written as

dM

dt
= −M

∂f

∂ẋ
. (34)

This last equation shows thatM is defined up to a multi-
plicative constant of motion; that is, ifM1 andM2 are two
solutions of Eq. (34), thend(M1/M2)/dt = 0, which means
that there is an infinite number of Lagrangians for Eq. (30)
sinceM1/M2 can be a trivial constant (i.e., a real number) or
a function ofx, ẋ, antt with a total derivative with respect to
the time equal to zero as a consequence of Eq. (30) (see the
example in Sec. 2.2.3, below).

Once we have a solution of Eq. (34), from Eq. (32) we
can find an expression forL, containing two indeterminate
functions ofx andt. Substituting the expression forL thus
obtained into Eq. (31), the Lagrangian is determined up to
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the total derivative with respect to the time of an arbitrary
function of(x, t).

As pointed out in Ref. [4], Eq. (33) is the equation for the
Jacobi last multiplierof the system of equations

dt =
dx

ẋ
=

dẋ

f(x, ẋ, t)
.

Some recent applications of this relationship can be found in,
e.g., Refs. [12–14], and the references cited therein.

2.2.1. Example. The Emden–Fowler equation

In the case of the Emden–Fowler equation

ẍ +
2
t
ẋ + x5 = 0, (35)

Eq. (34) takes the form

dM

dt
= M

2
t
,

hence, we can chooseM = t2, i.e., ∂2L/∂ẋ2 = t2, and

L =
1
2
t2ẋ2 + g(x, t)ẋ + h(x, t), (36)

whereg andh are some functions of two variables. Substi-
tuting this expression forL andf(x, ẋ, t) = −2ẋ/t−x5 into
Eq. (31) we obtain

∂g

∂t
− x5t2 =

∂h

∂x
,

which can be written as

∂g

∂t
=

∂

∂x

(
h +

x6t2

6

)
.

Thus,

g =
∂Φ(x, t)

∂x
, h +

x6t2

6
=

∂Φ(x, t)
∂t

,

whereΦ(x, t) is anarbitrary function of two variables and,
substituting into Eq. (36), we find the Lagrangian

L =
t2

2

(
ẋ2 − x6

3

)
+

dΦ(x, t)
dt

,

which reduces to Eq. (9) ifΦ = const.
Following the steps presented in Sec. 2.1, we find that all

the variational symmetries of the Lagrangian (9) are given by

ξ = 2ct, η = −cx, (37)

wherec is an arbitrary constant, andG = const., therefore,

−1
6
c(3t2xẋ + t3x6 + 3t3ẋ2) = const. (38)

[see Eq. (14)]. Thus, in place of the second-order ODE (35),
we have the first-order ODE (38), which amounts to

dx

dt
=
−t2x±

√
t4x2 − 4

3 t6x6 + 4kt3

2t3
,

wherek is a constant, or, equivalently,

du

dt
= ±1

t

√
u2 − 4

3
u4 + 4ku,

whereu ≡ x2t. (This new variable arises in a natural manner
from (ξ ∂/∂t+η ∂/∂x)u = 0.) (Cf. also Ref. [15].) The one-
parameter group of transformations generated by (37), with
c = 1 is the one given by Eqs. (4).

2.2.2. Example. A damped harmonic oscillator

Another illustrative example is given by the equation

ẍ + γẋ + ω2x = 0, (39)

which corresponds to a damped harmonic oscillator (hereγ
andω are constants). Equation (34) takes the formdM/dt =
Mγ and we can chooseM = eγt. Hence

L =
1
2
eγtẋ2 + g(x, t)ẋ + h(x, t), (40)

whereg(x, t) andh(x, t) are some functions of two variables.
The Lagrangian (40) reproduces the ODE (39) if and only if

−eγtω2x +
∂g

∂t
=

∂h

∂x
.

Choosingg = 0 andh = −eγtω2x2/2, we obtain the well-
known Lagrangian

L =
1
2
eγt(ẋ2 − ω2x2). (41)

One finds that the infinitesimal generators of the varia-
tional symmetries of this Lagrangian [i.e., the solutions of
Eq. (12)] form a five-dimensional vector space. One of these
is given byξ = 1, η = −γx/2, with G = const. In fact, the
vector field

X =
∂

∂t
− γ

x

2
∂

∂x
generates the one-parameter group of point transformations

t′ = t + s, x′ = xe−γs/2,

which leaves the Lagrangian (41) invariant.

2.2.3. Example. A nonstandard Lagrangian

As a final example, we find a nonstandard Lagrangian for
a particle in a uniform gravitational field. Starting from
the equation of motion̈x = −g, from Eq. (34) we have
dM/dt = 0. Therefore,M must be a trivial constant [as
in the case of the standard Lagrangian (15)], or anarbi-
trary function of the constants of motion (25). Choosing
M = ẋ + gt we find

L =
ẋ3

6
+

gẋ2t

2
+ ẋg(x, t) + h(x, t),

whereg andh are two functions to be determined. Substitut-
ing L into the Euler–Lagrange equation we see that, in order
to reproduce the equation of motion, we can chooseg = 0
andh = −g2xt; in this way we obtain the Lagrangian (8).
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3. Systems with an arbitrary number of de-
grees of freedom

Since the derivations are almost identical to those presented
in Sec. 2, in this section we only give the definitions and main
results applicable to the case of a mechanical system with an
arbitrary number,n, of degrees of freedom or, more gener-
ally, we have a system ofn second-order ODEs derivable
from a LagrangianL(qi, q̇i, t).

The one-parameter family of point transformations

q′i = q′i(q1, . . . , qn, t, s), t′ = t′(q1, . . . , qn, t, s), (42)

i = 1, 2, . . . , n, is a variational symmetry of the Lagrangian
L(qi, q̇i, t) if

L

(
q′i,

dq′i
dt′

, t′
)

dt′

dt
= L

(
qi,

dqi

dt
, t

)

+
d
dt

F (qi, t, s), for all s, (43)

where F is some function. Assuming that
q′i(q1, . . . , qn, t, 0) = qi and t′(q1, . . . , qn, t, 0) = t, with
the aid of the definitions

ηi(qj , t) ≡ ∂q′i(qj , t, s)
∂s

∣∣∣∣
s=0

,

ξ(qi, t) ≡ ∂t′(qi, t, s)
∂s

∣∣∣∣
s=0

, (44)

from Eq. (43) one finds that the functions (44) correspond to
the infinitesimal generator of a variational symmetry ofL if

n∑

i=1

[
∂L

∂qi
ηi +

∂L

∂q̇i

(
dηi

dt
− q̇i

dξ

dt

)]

+
∂L

∂t
ξ + L

dξ

dt
=

dG

dt
, (45)

for some functionG(qi, t).
Making use of the Euler–Lagrange equations

d
dt

∂L

∂q̇i
− ∂L

∂qi
= 0,

from Eq. (45) it follows that

n∑

i=1

∂L

∂q̇i
ηi + ξ

(
L−

n∑

i=1

∂L

∂q̇i
q̇i

)
−G (46)

is a constant of motion.
Equation (45) is a partial differential equation forn + 1

functions ofn + 1 variables, whose solution yields a vector
field

ξ
∂

∂t
+

n∑

i=1

ηi
∂

∂qi
,

which is the infinitesimal generator of a local group of vari-
ational symmetries ofL. This group is determined by the
system of first-order ODEs

dq′i
ds

= ηi(q′j , t
′),

dt′

ds
= ξ(q′j , t

′),

with the initial conditionq′i(0) = qi, t′(0) = t.
By contrast with the case of a single second-order ODE,

considered in Sec. 2.2, not every system of two or more
second-order ODEs can be derived from a Lagrangian (see,
e.g., Ref. [8] and the references cited therein).

3.1. Example

A simple example is given by the Lagrangian

L =
m

2
(ẋ2 + ẏ2)−mgy, (47)

which is the standard Lagrangian for a particle of massm
in a uniform gravitational field. Substituting Eq. (47) into
Eq. (45), equating the coefficients ofẋ3, ẋ2ẏ, ẋẏ2, ẏ3, ẋ2,
ẋẏ, ẏ2, ẋ, ẏ, and the terms that do not containẋ or ẏ, on both
sides of the equation, one finds that the infinitesimal genera-
tor of any variational symmetry of (47) must be a linear com-
bination of the eight vector fields

X1 ≡ ∂

∂x
, X2 ≡ ∂

∂y
, X3 ≡ ∂

∂t
,

X4 ≡ t
∂

∂x
, X5 ≡ t

∂

∂y
, (48)

and

X6 ≡
(

1
2
gt2 + y

)
∂

∂x
− x

∂

∂y
,

X7 ≡ t
∂

∂t
+

x

2
∂

∂x
+

(
y

2
− 3

4
gt2

)
∂

∂y
,

X8 ≡ t2
∂

∂t
+ xt

∂

∂x
+

(
yt− 1

2
gt3

)
∂

∂y
. (49)

The vector fieldsX1, X2, andX3 generate translations along
the x, y, and t axes, respectively;X4 and X5 generate
Galilean transformations; while the other three vector fields
in (49) correspond to symmetries that are not obvious.X6

is especially interesting because in the limitg = 0 it gener-
ates rotations about the origin in thexy plane; the constant
of motion associated with this symmetry ism(yẋ − xẏ) −
mg(tx− t2ẋ/2), which reduces to a component of the angu-
lar momentum wheng = 0.

4. Final remarks

If one looks for all the point transformations [Eqs. (1), or
(42)] that map any solution of an ODE, or of a system of
ODEs, into another solution, one finds that not all of them
are variational symmetries of the Lagrangian leading to that
ODE or system of ODEs. Moreover, different Lagrangians
corresponding to the same ODE or system of ODEs may
have different variational symmetries. For instance, the ODE
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ẍ = −g, whereg is a constant, possesses an eight-parameter
group of point symmetries [7], while the Lagrangians (15)
and (8), which lead to this equation, admit five-parameter
and three-parameter groups of variational symmetries, re-
spectively.

In spite of the fact that, for a given ODE or system of
ODEs, the variational symmetries may not be the more gen-
eral point symmetries of the equation or system of equations,
the variational symmetries are very useful because there ex-
ists a first integral associated with each of them, which can be
readily calculated [Eqs. (14) and (46)], though, as we have
seen, the first integrals obtained in this manner need not be
functionally independent. On the other hand, not all first inte-
grals are associated with variational symmetries. In Ref. [16],
it is shown that it is possible to find first integrals of EDOs or

systems of EDOs, without making use of a Lagrangian, with
the aid of the so-called adoint symmetries of the system of
equations. A similar result is presented in Ref. [17], making
use of Lie group analysis.

The review paper [18] presents various generalizations of
the basic results given here, making use of the language of
differentiable manifolds, vector fields and differential forms.
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