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We present an elementary derivation of the equation for the infinitesimal generators of variational symmetries of a Lagrangian for a system
with a finite number of degrees of freedom. We also give a simple proof of the existence of an infinite number of Lagrangians for a given
second-order ordinary differential equation.
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Presentamos una derivani elemental de la ecudxi para los generadores infinitesimales de sim&tvariacionales de una lagrangiana
para un sistema con urumero finito de grados de libertad. Damos taembiina prueba simple de la existencia de imero infinito de
lagrangianas para una ecuatidiferencial ordinaria de segundo orden dada.

Descriptores: Lagrangianas; simé#s; constantes de movimiento; ecuaciones diferenciales ordinarias.

PACS: 45.20.Jj; 02.30.Hq; 02.20.Sv

1. Introduction that even though, at least since the nineteenth century, it is
known that any second-order ODE possesses an infinite num-

In classical mechanics, the Lagrangian of a given mechanic@er of Lagrangians, this result is not presented in the standard
system leads to its equations of motion, and the identificatiofextbooks on classical mechanics (see, however, Ref. [4]). In
of the continuous symmetries of the Lagrangian allows onesec. 3 the formulas applicable to the case with an arbitrary
to find constants of motion (or first integrals). However, thenumber of degrees of freedom are given. Throughout this pa-
identification of such symmetries is often based on the exisper various examples are given, illustrating the concepts and
tence of ignorable coordinates, which depends on the coordmethods introduced here.
nates chosen, and the symmetries commonly considered are
restricted to rotations and translations (s=g, Refs. [1-3]).

The Lagrangian formalism is also useful in many otherar2. ~ Systems with one degree of freedom
eas. Any second-order ordinary differential equation (ODE) . . ) . .
can be seen as the Euler-Lagrange equation for some LH? order_to present the ideas in a5|mple_way, it is convenient
grangian (in fact, for an infinite number of Lagrangians) andto consider firstly the case where there is only one degree of
many systems of second-order ODESs can be derived from €&dom, or we have a single second-order ODE.
Lagrangian.

It turns out that a Lagrangian may possess many non2.1. Variational symmetries of a Lagrangian
trivial continuous symmetries and, what is more relevant, in
many cases, some of them can be readily found by solvinéfve shall consider one-parameter families of transformations
an equation applicable in any coordinate system. The aim of , , .,
this paper is to present an elementary derivation of the equa- v’ =a'(x,1, ), th=1(zt,s), (1)
tion that determines the so-called variational symmetries of a _ . )
Lagrangian, and of the expression for the constants of motiolfNeres is a parameter that takes values in some neighbor-
associated with these symmetries. The results presented hd#g0d of zero, and we shall assume that/the transformation (1)
are applicable to any system of second-order ODEs derivabl'éaduces to the identity for = 0; thatisz’(z,,0) = = and
from a Lagrangian, and to any second-order ODE, not neced.(%:,0) = ¢. For a fixed value o, Egs. (1) give a trans-
sarily related to classical mechanics. formation fr_om the planéz, t_) into the plang(x’, t'). Such

In Sec. 2 we consider systems with one degree of freedorfja'sformations are callegoint transformationgsee, e.g,
(or a single second-order ODE), deriving the basic equationBefS' [5-8]; more general transformations are also useful,
that determine the variational symmetries of a Lagrangiap¢€:€-9- Refs. [5, 6, 9]). Some examples of one-parameter
and the corresponding first integrals. In order to apply theséMilies of point transformations are
results to any second-order ODE, we show how to find a La-

S 1 S S
grangian for a given second-order ODE. It may be remarked x' = we® — §9t2 (€ —e), =t (2
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whereg is a constant, wherety, t| are the values of corresponding to the points
3 (xo,t0), (z1,t1), respectively, according to the transforma-
oo E gt gt (3) tion (1). The last term on the right-hand side of Eq. (7) is
L—ts  2(1—ts)?’ 1—ts’ equal to the difference of the values Bfat the endpoints,
and and it is therefore a constant when one considers curves with
o = ze, = te25 (4) the same endpoints. Hence, a curve that minimizes (or max-

_ _ imizes) the first term on the right-hand side of Eq. (7) is
It may be noticed that the transformations (2) and (4) are demapped into a curve that minimizes (or maximizes) the in-
fined for alls € R, but (3) is defined only fos # 1/t. tegral on the left-hand side.
Actually, Egs. (2)-(4) are examples of local one-  Forinstance, the family of transformations (2) is a varia-
parametergroups of transformations, which means that, if tjonal symmetry of the Lagrangian
we defineps(z,t) = («/, ), then . .
L(z,&,t) = —i® + = gi*t — g*at, 8
@s(pu(T,t)) = Pstu(, 1), ) ( ) 6 29 g ®
for all values ofs andw such that both sides of the equation whereg is.a constant [th? constant appearing 'in Egs. 2)]. In
are defined. For instance, in the case of the transformd@ct, treating the derivative as a quotient of differentials (or,
tions (4), ¢, (z,t) = (ze%,te?*); hence,p,(py(z,t)) = equivalently, using the chain rule), from Egs. (2) we have
(ps(:ve_“,teju)z - ((ze™v)e?, (te*) ) — da’ e*dx — (e** — e®)gtdt —5/2
(ve™s7u te?sT2) = ., (z,t). These one-parameter —— = . =e T —
: e . de e3s/2dt
groups of transformations arise in a natural way in the solu-
tion of systems of first-order ODESs (see the examples belowhence,

(635/2 _ e—s/2)gt7

We shall say that the one-parameter family of transfor- o av 1
mations (1) is avariational symmetrpf a given Lagrangian L (gc’, d”t/) i { [e=%/24 — (e3s/2 — e—s/Q) gt]3
Lz, i,t) if t £ 6
Lo —s/2; : - 2, 3s/2
da’ dt’ dx d +zgle™/%d — <635/2 —e 5/2) gt] "te®/
Lz, —t') —=L(z,—,t]+—=F(z,t 6 2
(xadt/7 ) dt (37, dt’>+dt (J?, 78)7 ()
2 s~ 42 (.3s s 3s/2 | ,3s/2
for all values ofs for which the transformation is defined, g [me Qgt (e N )}te }e
whereF'(z,t, s) is some function. Some authors reserve the d ar
name variational symmetry for the point transformations sat- =L (x, ﬁ, t) + — {927523; (1 — e48)
isfying Eq. (6) without the last term of the right-hand side d dt |2

(e.g, Refs. [5-8]), and the point transformations satisfying 1 .
i i + —g*t" (1 — 6" + 5¢%)
(6) with dF'/d¢ # 0 are sometimes called Noether symme- 019 :
tries [5] or divergence symmetries [6]. As we shall show be- .
low, each one-parameter family of point transformations sat{Note thats is a parameter, that does not depend.pn
isfying Eq. (6) yields a constant of motion for the ODE given On the other hand, the transformations (4) are variational

by the Lagrangiat.. symmetries for the Lagrangian
More precisely, a transformation satisfying Eq. (6) maps 9 6
. A . . t .9 €T
any solution of the Euler-Lagrange equation corresponding L(z,i,t) = — <x - ) . 9)
to L, into another solution, which follows from the fact that 2 3
the Euler-Lagrange equation determines the local extrema @fjeed. from Egs. (4) we have
the integral
t de de’ e ddx JRE
—_— = = T
/L <$, dtvt) dt? de’ erdt ’
to and, therefore,
with fixed endpointgxo, to), (z1,%1) [1-3,8]. Condition (6) . .
amounts to (a2 da’ t’ dt’ _ (te*)? (e7353)2 — (ze—*)° 028
y Tdr ) dt 2 3
1 t1
dx’ dzx 2 26
r Gy r_ D — 52 _Z
/L(m,dt,,t>dt /L(w,dt,t>dt —2(33 3),
78 to
. showing that Eq. (6) holds with' = 0.
d Finding the variational symmetries of a given Lagrangian,
+ / &F(x’t’ s)dt, ™ making use of the definition (6), is not an easy task. How-

to ever, as we shall see, this problem is simplified if we start
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looking for theinfinitesimal generatorsf such symmetries. two functions¢ andr, which depend orfx, t) (recall that,
Indeed, differentiating both sides of Eq. (6) with respect,to e.g, dn/dt = 9n/dt + ©dn/0x). The left-hand side of
ats = 0, making use of the chain rule and the definitions  Eq. (12) is a linear operator acting on the functignand

n and, therefore, any linear combination, with constant co-

n(z,t) = M , efficients, of solutions of Eq. (12) is also a solution of this
s s=0 equation (sees.g, Egs. (22), below).
ot (z,t,5) As pointed out above, the interest in the variational sym-
gl t) = —5—| (10)  metries ofL comes from the fact that, each pair of functions
s=0 &, n, that satisfies Eq. (12) gives rise te@nstant of motion
we obtain that is, to a function with a total derivative with respect to the
oL . oL [/ & dz' 8L£ ']Eim;e fequalﬂ:o zEerlo, ithhe EuIer—Lag;gnge equations hold. In
22" 97 \ 95 ar o act, from the Euler—Lagrange equation
d oL OL
. o dt’ 0 dF —_—— == (13)
L - =(=— .o P .
+ Lz, 3,1) (83 dt )s—o (85 dt )s—O (11) dt oz Ox
and the chain rule, we have
Treating the derivativélz’ /dt’ as a quotient of differen-
tials, using the elementary rules of differentiation and the def- dL - %x Bix + oL
initions (10), we see that ¢ Oz 9z Ot
P P (8L ) N oL
nY 0 n Y =47 |57 a7
(8dx/) _ (dt") asdx (dz") aSdt dt \ 9z ot
ds dt’ ) _, (dt")? therefore, Eq. (12) can be written as
s=0
d oL L (dy .dg
(280)0+ 3 (2%
/ Dt B ’ i B .
_(dt)d<88> (da:)d(as> —@_idﬁ dt 0z ar \dt
- (dr')? Cdt Tt Ay 0L\, pdE_dG
50 M o) ¢ e dt’
On the other hand, that is,
o dr o (ot ot d [oL ( oL ) }

(as dt)s_o ds <8t ”w)’s_o dt {%n et g
(oot 0ot _d ot _d¢ thus showing that the expression inside the brackets is a con-
“\osar "Tosor )|, T @t os|,_, @ stant of motion ¢f. Eq. (10.31) of Ref. [5] and Eq. (10.31)
o o o of Ref. [10]). WhenG = const., Eq. (14) reduces to Eq.

and, similarly, (13.158) of Ref. [3] and Eq. (9.25) of Ref. [8].

0 dF d OF
- = — — 2.1.1. Example
<Bs dt)s—O dt 9Js |,_, xamp

Thus, Eq. (11) amounts to

As a first example, we shall consider the standard Lagrangian
for a particle of mass: in a uniform gravitational field,

0L oL de L6 _da

oL il . 1 .

5z " 3% (dt dt) 5 Ly s @2 L(x,&,1) = gmi® — mge. (15)
where oF Substituting this last expression into Eq. (12) we obtain

0s |,_,

is some function ofz, t). (WhenG = const., condition (12)
reduces to Eq. (4.27) of Ref. [7] and Eq. (9.38) of Ref. {8]; 1, ¢ 0t G oG
also Sec. 13.7 of Ref. [3]. As we shall see below, the condi- + <2ml‘ - mgl“) (81& +x 895) = "o
tion G = const. is a very strong restriction on the symmetries
of a given Lagrangian.) Sincen, &, andG depend on(z,t) only, the only way in
For a given LagrangianL(z, ¢,t), Eq. (12) determines which this last equation can be identically satisfied is that the
the infinitesimal generators (represented by the functions coefficient of each power of on each side of the equation
andn) of variational symmetries of.. For a given function coincides (recall that we are not using the equations of mo-
L(z,%,t), Eq. (12) is a partial differential equation for the tion; herex, i andt are independent variables). Thus, by

(O om0 506
mg”’”x(aﬁ o “ot %x)
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equating the coefficients af, 22, &, and:® on both sides of It may be remarked that, if one assumes tfiais equal to

the equation we obtain the four equations zero, or a trivial constant, then = co = ¢4 = ¢5 = 0,
o and, instead of the five-parameter family of symmetries ob-
13 X . o
o 0, (16) tained above, one is left with just a one-parameter group of
v variational symmetries of the Lagrangian (15), which is the
on 10¢ — 17) obvious one{’ = xz,t' =t + s), which is related to the fact
dr 20t 7 that L does not depend explicitly on the time.
on o  0G The constant of motion associated with the infinitesimal
Mooy M5 T o (18)  generator (22) is [see Eq. (14)]
0 oG
—mgn — mgxa—f = T (19) cm (;ut — %g:btg’ — %:thQ — %xQ + %gmtz — é92t4>
Equation (16) implies thag is some function of only,
+ cam (133;1'0 — §g:bt2 — 13'32t + 1ga:t — 192153)
¢=At) (20) 27 4 27 T2 4
and from Eq. (17) it follows that s (_;x.z 3 gm> +em (j;t e ;th)
1 dA
n=gvg H B, @D 4 (i + gt). (24)
whereB(t) is another function of only. Using now Egs. (18)  since the constants, . . . , ¢ are arbitrary, each of the func-
and (19), the equality of the partial derivativé3G'/dtdz  tions inside the parentheses is a constant of motion, though
andd*G/9xdt gives they cannot be functionally independent; for a second-order
82n an ¢ ODE, there are only two functionally independent first in-
Moap = ~Mgg — MG g5 tegrals. In this case, any constant of motion must be some
. function of,e.qg,
thats 1 d3A4 d?B 3 dA 1
535@—1—@:—595. Y1 =T+ gt, gogzx—x't—igt2. (25)
SinceA andB are functions of only, we have The values ofp; andy, are the values of andz att = 0,
d3A d2B 3 dA respectively. It may be noticed that the constant of motion
FIE 0, and e - T Yar multiplying c3 is minus the total energy.
) i The functions¢ and»n can be conveniently combined in
These equations imply that the linear partial differential operator
A(t) = e1t? + ot + s,
- ) Ol (26)
wherecy, ¢o, c3 are arbitrary constants, and ’
1 3 This combination is invariant under coordinate transforma-
B(t) = —iclgtg’ - ECQth + cqt + cs, tions and constitutes\aector field in the terminology of the

- _ theory of differentiable manifolds (see,g, Refs. [6, 11]).
wherec, andc; are two additional arbitrary constants. Sub- Substituting Egs. (22) into Eq. (26) we obtain the vector field
stituting these expressions into the previous results we obtain

0 1 2\ 0
_ 27 _ - 43 2
€= c1t? + cot +c3, X=a [t (9t+ <xt 2gt > (Q)x}
1 1 3 0 1 3 0
= t— —gt —x — —gt? t 22 9o (Zr_2a2) 2
n cl<x 59 >+62<2x 19 >+C4 +c5 (22) +62[t8t+(2x 4gt>ax}
showing that in this case the solution of Eq. (12) contains 0 0 0
five arbitrary constants. Making use Egs. (18) and (19) we tesg tato  + o
find that, up to an irrelevant constant term, which is a linear combination of the five vector fields
1 3 1
G=c (mx2 — Smgt’z + mg2t4> X, = t2g t— 1 43 9
2 2 8 = T\ TR ) e
+c2 <—3mgta: + lmthg) X, = tg + lx — §gt2 9
2 4 Tl T \27 4 oz’
+ ¢y | mx — smgt® | + cs(—mgt). (23) Xs=—, Xy=t—, Xs=-—. (27
2 ot Oz
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These vector fields form a basis for the infinitesimal generawhich is the local group of point transformations given in

tors of the variational symmetries of the Lagrangian (15) andegs. (3).

also form a basis of a Lie algebra, with the bracket given by In a similar way, one finds that the one-parameter group

the commutator, but this fact will not be elaborated here.  of transformations generated B, is that of the Galilean
Once we have obtained the infinitesimal generator of dransformations’ = ¢, 2’ = z + st; X3 generates the time

variational symmetry of a Lagrangian, we can use it di-displacement$’ = ¢t + s, ' = x; X5 generates the transla-

rectly to find a first integral [by means of Eq. (14)], with- tionsa’ = x+ s, t’ = t; andX is the infinitesimal generator

out the need to know a one-parameter family of transfor-of the group of point transformations

mations corresponding to that infinitesimal generator. How-

ever, it is always possible, in principle, to find a unique local 2 = xe’/? 4+ lth(es/Q — e25)7 t = tes.

one-parametegroup of transformations whose infinitesimal 2

generator is defined by a given pair of functio(s’,t) and 2.2, The existence of an infinite number of Lagrangians
&(x,t). Allwe have to do is to find the solution of the system

of first-order ODEs Given a second-order ODE
da’ oy " oy = (o, it (30)
E_n(xat% g_g(:rﬂf)v (28) ( e )’

which may correspond to a mechanical system or may have
some other origin, we want to find some functidriz, , t),
such that the Euler—Lagrange equation (13) be equivalent to

with the initial condition(x, t). Equation (28) follows from
the definition (10) written as

(& (.1, 5), 2 (5., ) _ 8:5’(;,16, s) , Eq. (30). To this end, we note that Eq. (13) amounts to
=0 5 le=0 9oL 9 IL .9 IL L
RS B 4 00 | B 5605 oz or ' '030% Oz
s=0 Os s=0 and therefore we are looking for a functidr{z, &,¢) such
demanding that the equalities hold for all valuessofnot  that
only for s = 0), treatingz andt as parameters (that specify 90L 0 0L 9 0L 0L
the initial conditions). For example, in the case of the vector 7, 5= +&5- == + f(x, 2, t)@@ =5 (31)
field X [see Eq. (27)], the system of equations (28) takes the
form holds for all values of, &, andt¢. Taking the partial deriva-
da’ oy Lo dat’ 2 (29) tive with respect ta: on both sides of Eq. (31), assuming that
ds 29" ds the partial derivatives of. commute and letting
From the second of these last equations (separating variables) )
we obtain M= L (32)
1 912’
T = s + const. .
and the integration constant is determined by the conditiorcl) ne obtains
thatt’ = ¢t ats = 0; hence~1/t' = s — 1/t, that is 57M+i87M+M57f+f(x7¢7t)37M207 (33)
/ ' ot or ot ot

t= 1—+ts° which is a first-order linear partial differential equation for

) ) o ] o M. Making use of Eq. (30), Eq. (33) can also be written as
Inserting this expression into the first equation in (29) we ob-

tain the linear equation dMm _ —Mg
dt oz

dz’ t 1 t 3
P — —59 (1 — ) This last equation shows that is defined up to a multi-

5 5 5 plicative constant of motion; that is, ¥/, and M, are two
(recall that here is a parameter determining the initial con- solutions of Eq. (34), thed(M,; /M) /dt = 0, which means

(34)

dition). Thus that there is an infinite number of Lagrangians for Eq. (30)
) sinceM; /M, can be a trivial constant.., a real number) or
(1—ts)a' = — gt 1 const. afunction ofz, &, antt with a total derivative with respect to
2(1 —ts) the time equal to zero as a consequence of Eq. (30) (see the

§E<ample in Sec. 2.2.3, below).
Once we have a solution of Eq. (34), from Eq. (32) we
can find an expression fdt, containing two indeterminate
x gtds functions ofz and¢. Substituting the expression far thus
1 _ts 2(1 — ts)?’ obtained into Eq. (31), the Lagrangian is determined up to

The integration constant has to be chosen in such a way th
2/ =z for s = 0. Hence,

/
T
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VARIATIONAL SYMMETRIES OF LAGRANGIANS 145

the total derivative with respect to the time of an arbitrarywherek is a constant, or, equivalently,

function of (z, t). du ) 1
As pointed out in Ref. [4], Eq. (33) is the equation for the — =4y [u? — —ut + 4k,
Jacobi last multiplierof the system of equations dt t 3
da di whereu = z2t. (This new variable arises in a natural manner
dt = - = i) from (£ 9/0t+nd/dz)u = 0.) (Cf. also Ref. [15].) The one-

parameter group of transformations generated by (37), with
Some recent applications of this relationship can be found ing = 1 is the one given by Egs. (4).

e.g, Refs. [12-14], and the references cited therein.

2.2.2. Example. A damped harmonic oscillator

2.2.1. Example. The Emden—Fowler equation ) ) o )
Another illustrative example is given by the equation

In the case of the Emden—Fowler equation . ) N
T+yt+wx=0, (39)
.2,

z+ 7 +2° =0, (35)  which corresponds to a damped harmonic oscillator (here
andw are constants). Equation (34) takes the farkd/dt =

Eq. (34) takes the form M~ and we can choosk/ = ¢*. Hence

dM 2 1
O ME’ L= 56“’%2 + g(z,t) + h(x,t), (40)
hence, we can choosd = ¢?,i.e, 9°L/0i* = t*, and whereg(z, t) andh(z, t) are some functions of two variables.
1 The Lagrangian (40) reproduces the ODE (39) if and only if
L= —t%i? + g(x,t)3 + h(z,t), (36)
2 —etwir + 99 _ Oh
whereg andh are some functions of two variables. Substi- ot Ox
tuting this expression fat and f(z, &, ¢) = —2i/t —2° into Choosingg = 0 andh = —e'w?22/2, we obtain the well-
Eqg. (31) we obtain known Lagrangian
dg 5,0  Oh L /.o 2, 2
A L= =-e" (1% —wx?). 41
T 9 5¢7( ) (41)
which can be written as One finds that the infinitesimal generators of the varia-
P P 6,2 tional symmetries of this Lagrangiaind., the solutions of
9 _9 (h + z) . Eq. (12)] form a five-dimensional vector space. One of these
ot Oz 6 is given by¢ = 1, n = —yz/2, with G = const. In fact, the
vector field
Thus, . P ‘0
 0D(x, 1) LA (CX) "o 20z
9= oxr + 6 ot generates the one-parameter group of point transformations
where®(z,t) is anarbitrary function of two variables and, t'=t+s, 7' = ze /2,

substituting into Eq. (36), we find the Lagrangian
2 6
I t? (¢2_ x) N d®(z,t)

which leaves the Lagrangian (41) invariant.

2 3 dt 2.2.3. Example. A nonstandard Lagrangian

which reduces to Eg. (9) i = const. . As a final example, we find a nonstandard Lagrangian for
Following the steps presented in Sec. 2.1, we find that alh particle in a uniform gravitational field. Starting from
the variational symmetries of the Lagrangian (9) are given bype equation of motiori = —g, from Eq. (34) we have
37) dM/dt = 0. Therefore,M must be a trivial constant [as
in the case of the standard Lagrangian (15)], oraabi-

wherec is an arbitrary constant, a@ = const., therefore, ~ trary function of the constants of motion (25). Choosing
M = & + gt we find

& = 2ct, n = —czx,

_%6(3152;3:& + 326 + 3¢332) = const. (38) i3 git
L=—+—+ig(zt)+ h(z,t),
[see Eq. (14)]. Thus, in place of the second-order ODE (35), 6 2
we have the first-order ODE (38), which amounts to whereg andh are two functions to be determined. Substitut-
ing L into the Euler—Lagrange equation we see that, in order
de —tz=£ \/t4a:2 — 51626 + 4kt3 to reproduce the equation of motion, we can chogse 0
T 23 ) andh = —g2xt; in this way we obtain the Lagrangian (8).
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3. Systems with an arbitrary number of de-  with the initial conditiong’(0) = ¢;, t'(0) = t.
grees of freedom By contrast with the case of a single second-order ODE,

considered in Sec. 2.2, not every system of two or more

Since the derivations are almost identical to those presentegbcond-order ODEs can be derived from a Lagrangian (see,
in Sec. 2, in this section we only give the definitions and maire g, Ref. [8] and the references cited therein).

results applicable to the case of a mechanical system with an

arbitrary numberpn, of degrees of freedom or, more gener-

ally, we have a system of second-order ODEs derivable 3-1. Example
from a Lagrangiar(g;, ¢;, ).

The one-parameter family of point transformations A simple example is given by the Lagrangian
] 1 gl
qi_qz'(qla"'7QTL7t7S)a t _t(QI7~"7QRat78)7 (42) LZ%(:UQ—i—yQ)—mgy, (47)
i =1,2,...,n, is a variational symmetry of the Lagrangian
L(qi,qi,t) if which is the standard Lagrangian for a particle of mass
dd! av da: in a uniform gravitational field. Substituting Eq. (47) into
L <qi7 q;" ’) g ( s qz7t> Eq. (45), equating the coefficients of, 2%y, 232, 3, 42,
dt dt d &y, ¥, &, ¥, and the terms that do not contairor ¢, on both
d 7 for all 43 sides of the equation, one finds that the infinitesimal genera-
+ gt ), oralls, (43) (o of any variational symmetry of (47) must be a linear com-
where F is some function. Assuming that Pination of the eight vector fields
(g1, qn, t,0) = ¢ andt'(q1,...,qn,t,0) = ¢, with P 5 P
the aid of the definitions X, = —, Xy = —, X3 = —,
, or y ot
o s oo Xy=t—, Xs=t—, (48)
O (gi, t, ) or %
flant) = —52=| COR
from Eq. (43) one finds that the functions (44) correspond to 1, 9 o
the infinitesimal generator of a variational symmetryLof X6 = (29t + ) or LaT,’
—~[0L (dm df)} o xzd [y 3 0
=i X, =t— Z_ Zgt?
;[5% at "t ot " 202 +< 17 >3y
oL d¢  dG 5 0 0 1 .\ 0
—¢+L—==— 45 Xg=t"— +at— t— —gt® | —. 49
Tttt E T @ (45) 8=Vt T\ 29 ) 5y (49)

for some functiorG(qg;, t).

Making use of the Euler—Lagrange equations The vector fieldX;, X5, andX3 generate translations along

the z, y, and t axes, respectivelyX, and X5 generate

doL OL -0 Galilean transformations; while the other three vector fields
dt 9q;  0q; ’ in (49) correspond to symmetries that are not obvioXs.
from Eq. (45) it follows that is especially interesting because in the limit 0 it gener-
ates rotations about the origin in thg plane; the constant
Z m ( Z %) (46) of motion associated with this symmetryns(y: — xy) —
04; dq mg(tx —t%i/2), which reduces to a component of the angu-

. lar momentum wheg = 0.
is a constant of motion.

Equation (45) is a partial differential equation fort- 1
functions ofn + 1 variables, whose solution yields a vector

. 4. Final remarks
field

En + Zniafq, If one looks for all the point transformations [Egs. (1), or

i=1 ! (42)] that map any solution of an ODE, or of a system of

which is the infinitesimal generator of a local group of vari- ODEs, into another solution, one finds that not all of them
ational symmetries of.. This group is determined by the are variational symmetries of the Lagrangian leading to that

system of first-order ODESs ODE or system of ODEs. Moreover, different Lagrangians
dq! o dt’ o corresponding to the same ODE or system of ODEs may
d; = ni(q;, 1), 1 (g, 1), have different variational symmetries. For instance, the ODE
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& = —g, whereg is a constant, possesses an eight-parametesystems of EDOs, without making use of a Lagrangian, with
group of point symmetries [7], while the Lagrangians (15)the aid of the so-called adoint symmetries of the system of
and (8), which lead to this equation, admit five-parameterequations. A similar result is presented in Ref. [17], making
and three-parameter groups of variational symmetries, redse of Lie group analysis.

spectively. The review paper [18] presents various generalizations of

In spite of the fact that, for a given ODE or system of the basic results given here, making use of the language of
ODEs, the variational symmetries may not be the more gendif‘ferentiable manifolds, vector fields and differential forms.
eral point symmetries of the equation or system of equations,
the variational symmetries are very useful because there epacknowledgment
ists a first integral associated with each of them, which can be
readily calculated [Egs. (14) and (46)], though, as we hav@he authors wish to thank the referee for helpful comments.
seen, the first integrals obtained in this manner need not bewo of the authors (C.A.M. and R.1.B.R.) wish to thank
functionally independent. On the other hand, not all first inte-the Vicerrectoita de Investigaéin y Estudios de Posgrado of
grals are associated with variational symmetries. In Ref. [16]the Universidad Audinoma de Puebla for financial support
it is shown that it is possible to find first integrals of EDOs or through the program @enes Investigadores.”
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