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Alan Turing’s seminal 1952 work on morphogenesis [1] is widely known and recognised in the field of mathematical biology. Less known
his work on the problem of phyllotaxis, which was never published at his time but is included in Turing’s collected works [2]. It consists ¢
three parts: the first is a detailed mathematical description of the arrangements of leaves on the stem of plants; the second is an appli
of the reaction-diffusion equation to the problem, and the third part is a solution of these equation for the case of spherical symmetry.
the purpose of this work to present Turing’s results contained in the second part in a comprehensive and detailed way. This is motivate
the fact that these researches have remained obscure and ill-understood. In particular, we focus on the morphogen equations for an as¢
of cells since this discrete case may be useful in many circumstances where the continuum limit is not adequate or applicable.
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1. Introduction

7= lim FJ’;“ = (1 + \/5) /2.
The aim of Turing’s “The Chemical Basis of Morphogene- e
sis” [1] (hereafter referred to as CBM) is to show that, by a
combination of diffusion and chemical reactions, patterns ca
arise in an originally homogeneous tissue. This highly cite
work became a master piece of the mathematical modelin
in biology and the best known model to explain biological

pattern formation [3].

The golden angle is defined as» = 277. There are many
ifferent types of plat organs arrangements, among which
e spiral or helical pattern, as in sunflowers, is the most

yidespread and complex [5]. In this case families of spi-
als, called parastichies, are observed and counting spirals in

each family results in numbers that follow a Fibonacci se-

) S ) quence (for a didactic description see Ref. 3). Evenmore, the
_ Alan Turing was vividly interested in the phenomenon of i ergence angle between two consecutive plant organs in a

Fibonacci phyllotaxis, and his work on this problem is 'eSSspiraI is always approximately. The first formal study of

known since it remained unpublished for many years. Afteligaf arrangement was made by Charles Bonnet (1720-1793),

publishing the CBM, between 1952 and 1954, Turing wroteho was able to distinguish four different phyllotactic pat-

unpublished manuscripts and notes of his later research in hig;s and describe the so called genetic spiral. Phyllotaxis
che_mical theory of morphogepesis. The_se were stud_ied bMegan to be studied in a scientific way in the 1830’s, by

Turing's colleagues N.E. Hoskin and B. Richards [4], pieced, combinations of observations, experiments and theoretical

together, and published under the title “Morphogen Theory o,y otheses. Schimper (1830) [7] was the first one to describe

Phyllotaxis™ (hereafter referred to as MTP) in 1992 Turing’s he phyllotactic spirals and its relation with the Fibonacci se-

collected works book [2]. quence. In 1837 Louis and Auguste Bravais [8] represented

Before describing MTP, we should add some words conthe phyllotactic patterns as point-lattices on a cylinder; this
cerning phyllotaxis. The arrangement of plant organs, alsédea was retaken by Turing in MTP and was useful to state
called phyllotaxis, has fascinated scientists and naturalists faome mathematical features of phyllotactic spirals. Mechani-
centuries. The study of phyllotaxis can be traced back to theal and physiological explanations of this phenomenon began
4th century B.C. in the ancient Greece, so it can be considdntil the 1880’s [9]. Later in 1982 the hypothesis of efficient
ered as the oldest branch of mathematical biology. Ancienpacking in phyllotaxis was developed by Ridley and Airy, ob-
naturalists as Theophrastus (370-285 B.C.) and Pliny (23taining the Fibonacci phyllotaxis [10, 11]. After the works of

79 A.D.) recognized and reported distinct patterns of leafAiry [11] and Hofmeister [12], who established the famous

arrangements and proposed them as a tool for plant clasdiypothesis of inhibition (which states that the youngest incip-

fication. It was by the time of Leonardo Fibonacci of Pisaient leaf primordium forms in the largest available space left

(1175-1240) that the relation between phyllotactic patternsby the previous primordia) the study of phyllotaxis turned its

the Fibonacci sequence, and the golden mean was realized.aitention to the shoot apical meristem, where these primordia

Fibonacci sequencg, 1,2, 3,5,8,13,21,... is obtained by emerge, instead of the organ arrangement on the mature stem.

the ruleF,, .1 = F, + F,,_1, whereFy, = F; = 1 and the Chemical theories about phyllotaxis appeared at the same

golden mean is defined by the limit time and Turing contributions on the basis of his rection-
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diffusion theory of morphogenesis was a pioneering workallows to express the system as three independent sets of two
Meinhardt and Richards [13, 14] also adopted the chemicdinear equations, and a solution of each set is found by classi-
approach, obtaining phyllotactic-like patterns. On the othecal ODE methods. If the assembly consistogells, thenn

hand, some experiments were performed on the basis of phydifferent sets of two equations are obtained by this approach.
ical hypotheses which could explain the emergence of phylin Sec. 2.3., the solutions found in Sec. 2. are refined by
lotactic arrangements. A very illustrative example is founddiscarding the eigenvalues which do not lead to instability.
in the experiments performed by Douady and Couder [15]That is, only terms which grow faster are kept in the solu-
who obtained phyllotactic spirals by adding droplets of a fer-tions found. Finally, in Sec. 2.4. Turing’s nonlinear approach
romagnetic material in a magnetic field at regular time inter{quadratic) is presented.

vals. The discovery of the plant hormone auxin and its in-
fluence on phyllotaxis [16] opened an interdisciplinary way
to approach phyllotaxis by modelling an active and polar.
auxin transport in a growing meristem [17, 18], obtaining
phyllotactic-like patterns on the basis of a more realistic set

of hypothesis that incorporate the main biological facts in- i )
volved in plant morphogenesis. In Part Il of MTP (page 88) entitled “Chemical Theory of

The manuscript MTP is divided into three parts. The ﬁrstMorphogeneSB” » Turing states the morphogen equations for

one deals with geometrical and descriptive phyllotaxis: thedn assembly of cells; first for linear reaction rate functions in

second part presents a chemical theory of morphogenesis aE(?C' 2.1, an;j_ then, going beyrc])nd the Imearhcase n Sec. 2:2.
the third part gives a solution of the morphogenetical equa- ven more, Turing's approach surpasses the restriction to a

tion for systems with spherical symmetry. Here we will be ring of cells worked out in CBM by considering arbitrary ar-

concerned with the second part and, in particular, with théangements of cells._ _ _

discrete approach, that is, the formulation for an assembIY As already mentioned, Turing's formulation of the prob-
of cells. It is worth to mention that in the CBM, in Sec. 6, 1€m very soon becomes cumbersome and hard to follow, so it
Turing studies the discrete case of a ring of cells, but the aplS the purpose of this part to state the equations in a didactic,
proach in the MTP is even more general. In the first case, théasy to follow way. For this, only two morphogensindw
discreteness is introduced via a discretization of the secon@nd three cells with volumes, v, vs are considered. Once
derivative (see, for instance, Ref. 3) but in the MTP, Tur-the procedure is clarified and mathematical details unveiled,
ing considers the general problem of diffusion of reaction ofoh€ can easily go back and reproduce calculations for any
morphogens in an assembly B cells; “the state of the or- number of cells in any configuration.

Morphogen equations for an assembly of
three cells

ganism at any timeé may be described by/ x N numbers Let u,, andw,, n = 1,2, 3, be the concentration of the
Fym(m=1,2,...,M;n=1,2,...,N), wherel',,,,, isthe  morphogens in theth cell. That is,u; is the concentration
concentration of thea:th morphogen in theth cell” [2]. Al- of morphogenu in the cell number one, and so on. Then,

beit Turing eventually considered the limiting case of a con-the flow of the morphogen from cell r to cell s is propor-
tinuous tissue, the discrete case is interesting by itself antional to g,.s (v, — us), whereg,; depends on the geometry
may be useful under many circumstances. For instance, cof the cell wall separation between these cells. For example,
trary to the discrete case in the CTM, besides the diffusiorit is well known that plant tissues are anisotropic by virtue
constant of each morphogen, the rate of flow from one celbf the structure of their cell walls [19]. The anisotropic na-
to another is taken into account. This rate of flow not onlyture of the cell wall is in turn related to the differential flux of
depends on differences of concentration of the morphogenglant morphogens like auxin [20], so the terms might be
implicated but it is thought to be dependent on the geomeused to model this effect or some other geometrical features
try of the cell wall separating the cells. Albeit basic linear that modify the diffusion of substances, such as the surface
algebra is involved, very soon Truing’s calculations becomecurvature [21], or the permeability of the complex plasma-
hard to follow. This is in part due to the notation used andmembrane-cell-wall [17,22].
also because his approach is based on his great intuition of Let y, andu,, be the diffusion coefficients of the mor-
the problem. Itis then the purpose of this work to describe inphogensu andw respectively, and establish the same rela-
detail the discrete case following a didactic point of view.  tions for morphogem, that is, the flow ofw between cells

This work is organized as follows: In Sec. 2, the equa-ands is proportional tog,s (w, — ws). With these assump-
tions that describe morphogens reactions and diffusion in dons and relations in mind we can go to the next section and
discrete set of cells are established and simplified, so that sestablish the equations for morphogen diffusion.
lutions can be found by elementary linear algebra. This is
done by first considering only diffusion of the morphogens
and setting a linear system of equations in terms difia-  2.1. Morphogen diffusion
sion matrix which contains all the information about the cell
assembly, its shape and geometry. Kinetics is then added tbwe consider diffusion only, the equations that describe the
the system, following a linear approximation. This procedureconcentrations of the morphogens in each cell are given by
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ALAN TURING’S CHEMICAL THEORY OF PHYLLOTAXIS 3

du,
U’I”% = Uy Z Irs (ur - us) 5 so that
T B Pz B3 ap 0 0
dw, G=| Bn P22 Pos 0 az O
Ur= = Huw D grs (wp —wy), 1) P31 P32 Ps3 0 0 a3
S#T
ﬂll 621 B31
whereuv,. is the volume of theth cell. (Notice a typo on the x| Bz P22 Bs2
right side of Eq. 11.1.1 in MTPT,.; should bel',,,.). Since (13 P23 Dss
:orTn 1,2,3, what we actually have are six equations of theBy performing the matrix product, the entries of the resulting
matrix can be written as
duq Irs
VI—— = [ly Zgls(ul — Ug), —_— = Zakﬂmﬁsk, (6)
dt gt V/UrUs B
= pto (912 (ug —u2) + 13 (u1 —ug)), (2)  andby using Einstein’s summation conventiome have
g’I”S
and similar expressions forus ,us, w;, ws and TN = g BrkPsk-

wsz. The right hand side of (2) can be rewritten as ) ]
—tta (= (12 + g13) w1 + g12us + g13us) SO, in general we In order to express the system 25) in tergns of a diagonal
> ., 9rs» and write the equations far, and matrix, we define the new variable$” andw'® as follows

SFET s1

defineg,.,, = —

w, as. u§2) w§2) ugl) wgl)
02 gty 0 Y g @) ug) g | =T ) )
T dt =—Hu . GrsUs, r dt =—Hw - JrsWs . U;(;Q) w§2) u:(sl) wél)

. . MO RNE)

Now, let us introduce the new variables Bin P P 11 11

= B2 P22 Ds2 ug ) wé ) )
o = oru, and w) = \/orw,. (@) s Bas P )\ i) wll

that is
ugz) - Zug)grj and w]@) = wa})ﬂw 7

By replacing them into (3), we obtain

dug‘l) Grs (1)
dt = —Hu ; Trvs Ug "

Notice that the old variablezsgl) andwﬁl) can be recov-

dwﬁl) Z grs ) ered by using™, the transpose of:
= —Hw st 3 (5)
dt — /o uM =35, w =Y w5, (®)
or in matrix notation . ’ ) . !
. ) Using the summation convention, all these back and forth
ugl) wgl) g11 g12 913 transformations can be written as
. 5 v1 V1U2 \/U1V3
N I . - uf? =0, wf? =l B, ©
('1) il) 931 932 933
ug wy VU3v1  \/u3vs v3 uq(ql) — ug?)ﬁrj’ UJ,(?) _ w‘g‘l)ﬂrj- (10)
ugl) w§1> _ 0 Sincef; is an orthonormal set, the inner product satisfies
x [ ul? wd ( (/;/u B ) :
:())1) (1) How 67" . ﬂs = Zﬁrkﬁsk = ﬁrkﬁsk = 67‘87 (11)
k

The arrayG = [grs/m} is called thaliffusion matrix ~ Whered, i; the Kronecker dglta. By usi)ng the%Qe) prgperties
and it contains all the spatial information of the cell assemblywe can write the system (5), in termsmf andw;". First
Notice thatG is always symmetric, independently of the way

the cells are arranged, so it is possible to diagonalize it by duf) _ duy! B = —p grs uD B
means of a change of coordinatB&'T ', whereT consists dt e " RV
qf the eigenvectors of. By_ Gram-Schmidt process we €an \yjq also know that-Ze — B B, SO WE Write
find a set of orthonormal eigenvectors, so that = 7. Vrvs

Let aj,as, 3 be the (real) eigenvalues off and du;(f) W
B; = (Bj1, Bje, Bjs) its associated orthonormal eigenvectors, T — oy Ok Bri Bsittg Bri.
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From (9) we have that.,ul"” = u{”, so Using the change of variables (4) and (7), the RD sys-
@ tem (13) can be written as
duy, (2) (2)
= — Uy Ok PrrU r d r
dt puctk O g o Q;t = 7Nu05ruq(az) + f(u,w), and
_ _ 2
- Muakﬂrkﬁrkuk . d (2)
. W — iy w® + g(u, w).
Finally, from (11),8,+83.% = 1, thus dt " ’
@) In what follows we carry out a linear local analysis of (13)
duy, _ (2) around an equilibrium point.*, w*) (thatis, f (v*,w*) =0
P Oy,
dt andg (u*,w*) = 0), by following a standard approach (see
By applying the same proceduremf), the system (5) :‘gr instance [23]). In absence of spatial variation the system
is expressed in terms of” andw*): du® dw®
= f(ua w)a = g(ua U)) (15)
d]; = —uuaku,(f) and d’; _ —uwakw,(f), (12) Define

T

i . ) , ul® = (ug) - ujf) and w® = (w,(?) - w:) , (16)
which corresponds to Equation (11.1.7) in MTP. This changes

of variables will allow us to find a solution for the full system where|u£3)| and\wﬁ3)| are small. Thus, near the equilibrium
of six equations easily, as we will see in the next Section. Irboint the system becomes

matrix form, the previous equation reads:

. . du®® dw'®
LA (3) (3) o (3) (3)
u(1.2) w§2) a0 0 o = ayu,”’ +a,w,” and = by u,” +byw,”’,
u(;) wéQ) =1 0 a O where
NORNC 0 0 as of of
3 3 Ay = 87‘(“*711}*)’ Aoy = 87|(u*,w*)»
@ (@ . v
@ @ —fu 0 by = == |(ur ey, ANA by = == (0 wwe)-
X u%z) w%2) < 0 i > . au‘( w*) (9w|( w*)
w3 By incorporating the diffusion terms into the previous

Since@ is symmetrica;, € R. Moreover, these eigen- equations, we have the linearized RD system (13):

values are positive, since a negative value would mean du® ) ) )

that diferences in morphogen concentration increase in time, a - Hutrty T+ auuy” + AWy, 17)
which has no physical meaning. We will see that the solutions @)

of the morphogen equations dgpend entirely on tr_u_a eigenval- dwr = —pw e w® + byu®  byw®. (18)
uesq,., and these eigenvalues impose some conditions on the dt " " "

morphogen diffusibility. This system can be separated into three independent sets

In the next Section, not only diffusion of the two mor- of two coupled linear equations which can be solved by stan-
phogens between cells will be considered, but also the chengtard methods. Here we have these three sets:
ical reactions between them. That is, the full reaction-

3
diffusion system for plant morphogenesis will be studied. d;i : = (— a1 pta + ) u§3) + awwg?ﬂ’

2.2. Morphogen kinetics. The linear case (3)
pnog dw, — (—anpm + bw)wg?’) n buuf’),

The following discussion concerns the details that lead to dt

solve (11.1.8) in the case of a linear chemical kinetfigs The dul? 3) )
solution for this case is given by Eq. (11.2.6) in MTP. Since o (—agpu + au) uy” + awwy”,

only two morphogens are considered here, flet, w) and 3)
g(u,w) be the rates of change ofandw, respectively. Then dwy = (—Quapin + b )w(3) + b u®
we write the full reaction-diffusion (RD) system as follows dt v v

du and

Urditr = Hu Z grs (Ur — us) + v f (U, w), (13) duég) 3) @)
s#T a (—aspy + ay) uy’ + ayws™,

v%— Z (w, — ws) + vrg (u, w) (14) dw®®
T Hw o Grs Wy s rg (U, . @22 _ (—ag,uw + bw) w§3) + buu:(;)’).
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ALAN TURING’S CHEMICAL THEORY OF PHYLLOTAXIS 5

For an arbitrary number of cells, there will ben sets of The rootsp, andp.. are, explicitly
such equations. These sets can be expressed in matrix form
as , 1
PrsDPr = 5| Qu + bw — Qp (,uu + Nw)
du® 2
( d;, > _ < Qi gy +au Gy >
dw3) - _
. b arp + b £\l G ) = @t bP —ah(an) ), @9
e
X (3) , = ]., Lo, n. (19) where
wy
Or, even in a more compact notation h(ay) = a2yt — r (fubw + flw@y) + Guby — Guwby.
U® = B,U®. (20)

It is at this point that one of the main Turing’s observa-
Note that since the eigenvalues, a» anda; may be all tions arose: he noticed that the terms of major importance
distinct, it is necessary to distinguish each mafsix which N (22) and (23) are those for which Re;) is greatest, be-
defines the system of equations id?) andw§3). Asinthe cause they are the ones which grow faster (this is often called
previous Section, it is possible to find a solution of (20) by €xPonential drift); the rootg,. can be either real or com-
means of a change of coordinatBs that diagonalizes the plex, and there are many different possibilities for the solu-
matrix B,.. Letp, (o) andpl. () be the eigenvalues d, ; tions (22) and (23), but the only case of interest is when

from (19) we have that, andp’. satisfy is real and maximum and,. # 0 is finite. This is described
" ! in Turing’s CTM as thecase of stationary wavd4]. As the
(p+ arpiy — ay) (P + @iy — b)) = ayby. organisms are finite in number of cells and/or volume, there

can only be a finite number of characteristic valugsfor
The solutions of (20) can be expressed in terms ofyhich Re(p,) has its greatest value (See Appendix).
pr andpj.,, and the corresponding eigenvectors /gf. If In the next subsection we refine the solutions (22)
these eigenvectors are written 85 = (Si1,592,1) anld and (23), according to the roogs that are of main interest.
T, = (Sir2, S2ro) then, the coordinates transformatiey We also express these solutions in terms of the original vari-

IS ablesu, andw,, which are the morphogen concentrations in
-1 _ Slrl Slr2
R = ; each cell.
Sor1 Saro
which has the inverse
2.3. Turing instability for morphogen equations of phyl-
R — 1 ( Syo  —Sim lotaxi
= otaxis
qr _527'1 Sl’r'l
whereg, = det (R; ). Concerning phyllotaxis, in page 93 of MTP, Turing states its

Now we are ready to find the solution of (20), which turns Main assumptions, that can be summarised as follows:
out to be:
‘ (a) There is a homogeneous equilibrium in the reaction
ePr 0 . e L
U® (t) = (e ¢ )Re ( "y ) R, (21) system, in absence of diffusion, and small deviations
0 e from this equilibrium satisfy the conditions for station-

- . ary waves [1].
where,c,, = u'” (0) andc,, = w' (0) are initial condi- y waves [1]

tions.

By introducing the components 61 in the last equal- (b) Deviations from equilibrium are small, so that the in-

ity and performing the matrix product we have the solutions flue_nce of quadratic terms can be_ cqn5|dered as pertur-
bations. Nevertheless, these deviations are sufficiently
1 . . o
u@ () = — (cr, Sara — CrySop1) P51 large for the linear approach to be inapplicable
T
4 (erySir1 — €7y Sir2) PGy (22) (c) The significant wavelengths,. are those for which the
T T T T 1y .
? ! real part of the rootg,., p.. is greatest.
w® (t) = L (CrySora — CrySor1) €788 10 In the Appendix we obtain exactly the significant values
qr a,-, wWhich are theoptimum wavelengthdAccording to these
+ (¢ S1r1 — Cry Sir2) €778 S5, (23)  assumptions, we now look for suitable solutions for the mor-
2 1 °

phogen equations. First, we should establish an algebraic re-
These solutions correspond to Egs. (11.1.10a), (11.1.10b) andationship betweem,, p!. anda,., as stated in Egs. (11.1.11)
(1.1.11) in MPT, page 91. and (11.2.2) in MPT, pages 91 and 95.
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6 M.D. RUEDA-CONTRERAS AND J.L. ARAG®N

An eigenvectorS, = (Si,1, S21) of B, must satisfy the  (See Eq. 16). Alsoy'> andu'> were obtained by means of
equality(p,I — B,) S, = (0,0), and the same fqy,., sowe  the orthonormal set of eigenvectgisof the diffusion matrix

have G (See Eq. 7). Therefore,”) andu!" should be obtained
by means of the transpose of the matrix of eigenvectors as
(pr + Qp [y — au) Slrl = awS2r1 and follows:
_ — 1 1
(Pr + @iy — bw) S2r1 = by Sir1. uéli wéli Bi1 Bz Bis
If we perform the same calculations for the second eigen- ”?l) w%l) - 221 222 ng
vector, T, = (S1,2, S2r2), all the relationships between, Uz’ ws 3L 32 /7733
P, anda,. can be known, which turn out to be 3 3
Uy wy u*{ wT
(pr + arﬂu) S1r1 = ayS1r1 + awS2r17 x 7"’53) wég) + ’LL; wik
HONNC uj wj
(p; + O‘rﬂu) Slr2 = CLusl'r’2 + awSQ'er (25) 3 3
1) _ (1)_ .
(Dy + Qrfi) Sort = buSir1 + buSari, Now, Eq. (4) states, ' =,/v,u, andw,’=,/v,w,, SO:
1
(p; + arﬂw) SQTQ = buslr2 + wa2r2- (26) uyp wi NG 0 0
. ) ’LL2 ’LU2 = 0 \/% 0
In matrix notation these are us  ws 0 0 1
Vs
/ S 0 3 @)
(prtarpe prtarm )| "0 o B Bia P u? wf
X | P21 P22 Pos ¥ Wl
_ ( Gy Gy ) ( glrl §1r2 ) . B31 P32 a3 uéS) wéS)
2rl 2r2
: : . uj  wy
Define[S;,;] = W («,), so the previous expression be- | owp ow
come uz w3
(pr+ o PL+ o) < SB” SO ) Then, the relations between variablgd andw'® and vari-
1r2

ablesu, andw,., can be written as follows:

=( ay ayw )W (o), (27) 1
( YW (a) Up — Up, = = Zu@ﬁk,«,
and similarly VU5
1 .
Sipe 0 wp —wip = —— > w® B 30
( Pr + Qefly Py Qpfly ) ( 102 Soro ) g k VUi ; & (30)
=(bu buw )W(ar). (28) From (29) we obtain the solution f@nf’) andw,(f’):
The matrix W («,.) is non-singular provided that. # ( uP @) w® @) ) L ( Xir(t) Xop(t) )W (ay).
pl., SO we write the solution of (20) as ar
Replacing in (30):
(w0« ) 1l
1 U — U, = ﬁzq—(Xlr (t) W11 (Ckr)
= — ( Xlr (t) X27’ (t) ) w (Oér) 5 (29) "
ar + X2r (t) W21 (ar))ﬁk’m

where 1 1
Wy — U}Z = \/TTC XT: qT(XIT (t) Wiz (ar)

Xir (t) = (Crl Sorg — Cry 527«1) ep"'t7
Xor (t) = (crySirt = e, Sira) €. + X (£) Was (00)) Bir,

Notice that at this point we have solved (20), thus solu-WhICh can be rewritien as

tions are expressed in terms of the variahté8 andw® . wp — uf = 1 Z Z iXh« Wi (ar) Brr,  (31)
Since the problem (13) involves the variablgsandw,., we N e
should re-write the solutions in terms of the original vari- 1 1
ables. We defined'” andw® to beu!” andw'”, except wp —wp = —= Y Y — X () Wiz () B (32)
that they refer to differences from the equilibriuth andw VO S
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ALAN TURING’S CHEMICAL THEORY OF PHYLLOTAXIS 7

This is then the solution of the RD system (13) under the =wi9v + Wﬁ)Uk, (34)
linear approximation, and corresponds to Equation (I1.2.4)
in MTP. Note that these solutions depend on the functions wy, — wi = WY Z \ﬁ X9 ) Ber

Xi-(t), which are exponential, and the numbé¥s,; that
come from the eigenvectors of the diffusion matrix.

(1) (1)
Now, from assumption (c) above, the only terms in (31) + Wiy Z (t) Brer (35)
and (32) that should be considered are those which arise from
the largest real parts pf. andp., or the ones containing those =wi9v + WS)Uk. (36)

eigenvaluesy, that are near to zero. Thosg that yield the
greatest Rép,) and Re(p;.) are obtained in the Appendix, by~ Thus, the solutions of (13), under the linear approxima-
means of a dispersion relation [23]. Some remarks apput tion, depend entirely on the possible valuegppf which in
andp!. should be made. turn depend on the values of., i, andp,,, and the values
If p, andp!. are complex, then we have the oscillatory of the stability matrix
case [1], which is not of interest for the morphogenesis phe-
nomenon. Thus, we assume thpatandp!. are real an pos- ( Gy Oy > )
itive. In order to find solutions (29), it is necessary that by bu

- 7 p.., SO from (24): . . ) ,
Pr 7Py (24) Some restrictions for the stability matrix and the diffu-

sion coefficients:,,, ., are also established in the Appendix,

2
[t (s + pra) = (@ + )" — dh(er) > 0. through the analysis of the conditions for Turing instability.

As the square root of a positive number is always positive, w
see thap, is always larger thap!.; thus we can drop all the

terms that includeXs, (¢) and write (31) and (32) simply as: We now consider the case when the reaction rates are
quadratic functions of the morphogen concentrations. The

Up — U = L Z ler (t) W1 (o) Bkr, quadratic approach is necessary for two reasons. First, the
Vv ar linear analysis is not sufficient for pattern formation, be-

e2.4. Morphogen kinetics. The quadratic case

cause it only determines a stable state of the system. Sec-
Wy —wy, = —— Z Xlr ) Wiz (o) Brs ond, if some eigenvalue, is zero, the linear approximation
is not applicable. Thus, it becomes necessary to analyse the
quadratic case.

where we only choose the terms for whi is near . e .
y ch Recall that the full reaction-diffusion system (3) is

to zero or the optlmum (See Appendix). We call these

terms X1, (1)@, W{? and X1, ()", WD, respectively dur i
and write i@ o zg:grsus + f (u,w),
) d r - Mw
Uk — uk = Z Xl Wll (a’l“) ﬁk’l‘ ;1; = K ;grs'ZUs + g (U7 U}) .
+ \/TTC Z ;Xli) W () B Assuming thatf andg are quadratic, the system can then
" be written as
_ _ (0) d
. wk \/7 Z X W12 (ar) ﬂkT u?‘ = Zgrsus + au U ’Uz:) + ay (wr - w:)
\/72 X(l) W1(21) (Oér)ﬂkr + K11 ('I.eru*) + Ko (urfu*) (U)wa*)

+ K22 (ur — u*)2
Finally, we can assume that, in the two main ranges of dwr . .
values ofar (near zero and the optimum), the functidiis.’ - Z IrsWs + bu (ur —u7) + by (wr —wy)
andv" are constant, so we write

+ Ly (uT — u*) + Lo (up — u™) (w, — w™)

1 )
uk_uZ:Wl(lO)Z lr()ﬁkr +L22(UT—U) ?

where K;;, L;; € R. These correspond to Eq. (I1.2.7) in
+ WH) Z \/» ( ) Brr (33) MPT, page 96. We aim to express these equations in terms
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8 M.D. RUEDA-CONTRERAS AND J.L. ARAG®N

of the variablesX;,. (¢). By using (29), we can obtain these up — up = Wl(f) Vi + Wﬁ)Uk,
variables in terms of the inverse f, («) as . ©) )
W — Wy, = W12 Vi + W12 Uy.
(Xl'r(t) X2r(t)) = dqr (U&S) (t) wﬁg)(t)) Wr(a)il-

Thus,duy, /dt, dwy /dt can be written as

Then, X, can be written in terms d#,,,; (o) as follows dditv = _Hu > gratts + au (uy — 1)) + @y (w, — w})
oy

_ B)py-1 B p=1 2
Xir (1) = qr (uO W (0) + 0@ W5 (a,) . (37) + K (WY, £ WD)

o (1) — o (u® Wt 3= .
2r () = a- (uPW5' (o) + 0 W' () (38) + K (WV+ WD) (W, + wiu,)

Notice that the last equalities are expressed in terms of © " 2
the variables:!®, w®, so it is necessary to obtain these in + Koo (le Vi + Wiy Ur) :
terms of the original variables, , w,.. Since J

w
—) Zgrsws + by (ur — uy) + by (wyp —w))

3 3
“ElS; w%gi Bi1 P21 Ba1 dt Ur
uy’  ws = | Pz P22 P32 I ( (0) (1) )2
ués) wég) Bz Baz B3 L (Wi Ve + Wi U
x 0 vz 0 up —uy wp—wy |, 2
0 0 iz )\ us—u ws—w + Lo (WV, + WU, )

we can rewrite (37) as
We now will write the last equations in a more manage-

- o 1 able way, by first writing down the diffusion and linear parts
Xir (1) = gr (Z Vuk (k= ugo) B Wiy () in terms of X;,. andW,,,;. The diffusion terms fotu,, /dt are
¥ —5—: > grsus, Which can be written, using the summation

. 1 convention, a&f)—:gksus, for eachk. Now, from (30), we
+ Z ﬁ(wk - wk)ﬁker (ar) |, see that for each
k
1 1 X *
Xop (8) = ar | D v/ (ux — uf) B W5 () U= g, e B
k

1 1 *

Wy = \/’LTS (quler (ar) 557’) +w. (41)

+ 37 Vo (wi — wf) B Wi () ) ,
k

. . . . Also, from (6), we have
or, using the summation convention, we write for eaeimd ©)

eachr
ks = / Ukvsarﬂkrﬂm’-
Xlr = QT\/'ITkﬁkTWﬂl (ar) (Uk - UZ)
+ o JOR B Wiy () (wy, — w]) | (39) Thus, the diffusion part fodwy, /dt is
Now, by calculating the time derivatives of the last equal- g, ™
ity, we obtain Equation (11.2.8) in MPT, page 96: T Tests = Y Uk Vs Bper Bsr
dX;,
= (qr v r 1 1
dt 4 ﬁﬁk X ( — X Wy (057“) ﬂsr + u:)
1 duk 1 dwk \/175 @
X Wl (Oér) ﬁ + W2l (Oér) W . (40) ]
. o . . = - Hu A Brer Bsr Bsr <XlrW11 (ar) + mﬁ;luz>
This last equation is written for eaeh so there is a dou- VU qr
ble summation, ovek and over. We now substitutdu,, /dt, )
anddwy/dt in (40), in terms of the quadratic approach intro- _ _ v |, 5 (erWz o) + Usﬂkrﬁsru*) .
duced above and using (33) we get VUk qr 1 (@) + Vs s
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By evaluatingdwy, /dt and noticing thaf, s = 0 we Then, by substituting these expressions in (46) and in-
get cluding the quadratic terms one gets
_&gksus = - Hu |:04r6kr1XlrW1l (Oér):| , (42) dX, ’
Vg m qr dt = erlr +erlr + qr Z \/Eﬂkr
k
w w 1
_Migksws = - L |:ar/6erlrW12 (ar):| . (43) 1 (0) (1) 2
Vg Vg qT X Wll (Oé,) K11 (Wll V] + W11 U»,)
Analogously, by virtue of (41), we write the linear terms
for duy, /dt anddwy, /dt as follows + Wfll (o) K12 (Wl(f)VT + Wl(ll)UT)
ay (u — u}) + ay (wy, — wp) < (Wiv, + wiu,)
1 1
= ——X rPkr uW r wW )] 44 — 2
\/@qr l IBk [CL 11 (Oé ) +a 12 (Oé )] ( ) + Wlll (ar) KQQ (Wl(g)‘/r 4 Wl(;)UT)
by (up — uf) + by (Wi — wy) 2
o ' +Wa' (ar) L (WV + Wi, )
= 77Xlrﬁkr [bqul (ar) + waZQ (ar)] . (45)
No + Wit (o) Lz (WY, + WD)
Then, the substitution of the diffusion and linear terms ) )
in (40) yields x (W12 v, + wi Ur)
dX,, _ 2
TR W e s (W w0,
Ko -1 1
x| = Wi (o) | o Brr— X1, Wiy () 0
VU ar By writing down this last equation in terms Q‘fz(r and
) {1 X", one gets Eq. (1.2.9) in MPT, page 96. Finally, by
+ @/ ORBrer | W1, (i) ﬁ;Xlrﬂkf*(aqul(ar) expanding the quadratic expressions and grouping similar
wAr terms, we can write this equations in a more abbreviated way:
Hw -1
+ ay, Wi (ar)) + QT\/@/BIW - —W. (aT) dX,
\/’U»k’ 2 dtl = erlr + p;Xlr + qr Z \/Uik:ﬁkr
k
1 -1
<0‘7'ﬁquTXlTWl2 (a7')) + @ v/ 0k Ber [Wzl (ar) X [Wl_l (cvr) (Fl(l)VT2 + F1(2)VTUT + Fl(g)UTQ)}
1 1 _
X ——— X1, Brr (b Wit () + b Wiz () | +ar > VOrBer [Wgﬁ (ar)
V0 Gr k
By simplification and rearrangement of terms we have
y simplificati g Wi \Y « (F2(1)WQ+F2(2)WUT+F2(3)U3) 7
dXy,

= Xl?"( = Pty + auWI_ll (o) Wi (er)

dt
+ awvvl_l1 (Oz,») Wiz (Oér) ) =+ Xl'r'( = HwOr
+ b, W' () Wi () + b Wia' () Wia () ). (46)

2 2
From (25) we have FY = Ky, (Wff)) + KW OWD 4 Ky (Wf;’)) :

which corresg)onds to (11.2.10) in MPT, page 96. Here, the
values forF"? are

-1
pr = e+ Wi ) Wi ) A = Ku W s (W W WD)

-1
+ awWar (o) Wi (), + 2K22W1(§) Wl(;),
and from (26) (3) 1)\ 2 (V1) (0)”

/ » 7 =Ky (W11 ) + K1oWi ' Wio' + Koo (W12 ) :
Pr = —fwor + by Wiz (o) Way' ()

+ by Waz (ar) Way' (ar). FQ(j) can be similarly defined by replacirg,,; by L..;.
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10 M.D. RUEDA-CONTRERAS AND J.L. ARA®N

3. Conclusions for those interested in modelling pattern formation phenom-
ena from a discrete point of view.

In this work we presented Alan Turing’s mathematical theory
for plant pattern formation in a detailed and didactic way. The
importance of this analysis is evident given the fundamentaﬁ
role that Turing’s published work for (animal) morphogene-\y,e would like to thank Faustino &chez Gardio and
sis has played for understanding a number of morphogeneti§ctavio Miramontes, both from the National Autonomous
phenomena [3], since it constitutes a simple mechanisms thi‘lniversity of Mexico (UNAM), for critical reading of the
can lead to pattern formation in living organisms [24]. Themanuscript. Computational support from Beatriz Killand
results detailed here, unpublished in Turing’s time, CO”Sti'AIejandro ®mez is also gratefully acknowledged. This

tute a discrete formulation for plant morphogenesis and caf,ork was financially supported by CONACYT through
as well give insights and a deeper understanding of biologigramS 167244 and 179616.

cal phenomena, in which the cell-cell interactions are of main
importance. We believe that the discrete theory has not de- .
served enough attention and it is the purpose of this paper oPPendix
alleviate this situation.

Thus, we worked out Turing’s theory of phyllotaxis for a

cknowledgements

In this section we derive the necessary and sufficient condi-
. . . tions for Turing instability of the RD system. That is, we

simple case in wh|ch there are only three cells gnd tWO MOTghtain conditions for the system to be stable in absence of
phogensy andw. This procedure allowed to clarify and fol- spatial perturbations, but unstable when diffusion is present.

low the whole calculations and mathematical manipulationsp,, optimum wavelengths,., for exponential drift, will be
needed to establish the RD system in a solvable way, ang.;-mined " '

t_hu_s_ find its solutions. This s_imple approagh is not, however, In absence of spatial variation the system is
limiting, because the analysis can be easily extended for an
arbitrary number of cells and morphogens. This is clear from du@ dw@
equation (20), whose derivation shows how to separate the o = fww), o = 9w w).
wholen xm system of equations intosets ofmn linear equa- . . S
tions, for the case of cells andn distinct morphogens. Tur- By linearisation about the equilibriu.”, w*), (47) be-
ing’s model for phyllotaxis also allows to establish the equa-Comes
tions for any geometrical configuration of cells, by means of di;(,t-” Gy G ul® u®
the diffusion matrix, which turns out to be a very simple and | 4u® | = ( by  bu > w® =4 w® )
ingenious idea. The diffusion matrix makes up a very useful dt
tool to explore how the solutions are affected by the geometrwhere
of the domain.

A summary of the procedure needed to apply the discrete u?) = (“9) - “:> cwf) = (“’7(’2) - w:) ’
mod_el propo_sed by Turing .iS as f‘.J”OWS' Atter Iin_earising and A is the stability matrix. ~The equilibrium point
and introducing thg approprl_ate vgnables, the solution for th%gs) _ 5’3) — 0 should be stable, so the solutiohsof
morph_ogen equations are given in Sec. 2.2. (Eq. (21))' Thﬁet(A — AI) = 0 should have negative real part. By comput-
behaviour of these solutions depends on the rpptsvhich ing the determinant we have
are the eigenvalues of the full linearised RD system (20).
These eigenvalues depend on the values for the wavelengths det(A — NI) = A2 — Mr(A) + det (A), (48)
a-. By means of the dispersion relation (Eq. (52) in the
Appendix) one can choose only those wavelengths that wilf0

(47)

drive the solutions to the fastest exponential growth. Deriva- A= % <tr (4) + \/tr (A)? — 4det (A)) . (49)
tion of this optimum wavelengths gives a number of restric- _
tions on the diffusion coefficients, and., (Egs. (54) and Thus, Rg\) < 0 requires

(58)) and the components of the stability matix b.,, a.,
b, (50). Thus, the analysis we present in the Appendix gives
all the conditions for Turing instability for a discrete system det (A) = ayby — awby, > 0. (50)
that was not worked out by Turing in MTP nor, as far as we o ) _
know, by anyone else. On the basis of the results obtained by Now considering the full linearised RD system
the linear approach, we finally give the morphogen equations; ;,,» (3)
for the case in which the reaction rates are quadratic func( % ) _ ( —Qrpy + Ay Oy ) ( Uy ) 7
tions ofu andw (Sec. 2.4.). Through the linear case it was o
possible to set the quadratic system in an easy to solve Way,ich can be written as
which depends entirely on the rogts.
The Turing’s results presented here might be very useful U = B.U®. (51)

tr(A)=a, +b, <0 and

by — QU floy + by ’11)7(~3)
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By taking into account the spatial terms, we now lookand it is equal to
for the conditions neccesary to drive the system to instability.

From the determinant
det (pI — B,) =0,

we obtain the eigenvalugs(«,;) = p, as functions of the
wavelengthsy,., as the roots of

=0, (52)

pQ_P[ar (P + pas) — (au+bw)] + h (o) =0,

where
h(ar) = 02 ftupw — r (Bubw + tway) + det (A).

The solutionsp, of (52) must satisfy R& («..)) > 0 for
someq,. # 0. These are

2py

— [Oér (uu + Mu;) - (au + bw>]

/o Gt + ) = (au + b))~ 4h (). (53)

Since t{A) < 0, we have from (53) that R (c.)) > 0
can be achieved only f (a,.) < 0, for somew,. # 0. Since
det (A) should be positive, the only possibility far(«,.) to
be negative is that

(Mubw + Mwau) > 0. (54)

Taking into account (50), we conclude tha # pi.

These are the necessary conditions for instability, but they are P byt oy @

not sufficient; forh («,.) to be negative, its minimum must be
negative too, so by differentiation afwith respect tay,., we
have

(Mubw + Mwa/u) 5
so the minimum of: is attained at

h/(ar) = 200 fhy floy —

(:uu bw + au)
2 b flos

Tm

: (55)

(fubw + pway)?
~————— +det(A).
it (A)

hmin = - (56)
Sincehmin must be negative, the condition fbta,.) < 0
is
(prubw + pvu)®
Aoy ooy

At the onset of instability (bifurcationpmin = 0, SO
det (A) = (ptubw + pwaw)’ /Apiajre. Thus, by defining
W = /e, We can obtain the critical diffusion coefficients
Py s P, @NALe = poy, /1oy, s the appropriate roots of

det(A4) < (57)

(pay + by)? — 4pdet(A)

= p2a? + 2p (ayby — 2det(A)) + b2, (58)
The critical wavelengtl,., is then
u bw w u
ay, = Pucbu ¥ ) (59)

2w,

Then, fory > p. there exists a range,, < a,, < o,
for whichh (o) < 0. Here,a,,, anda,., are the two different
roots ofi(«,.), provided thag > .

()(7.1,2 =

:t\/(uubw+uwau)2 — 4t oy det(A)
24 oy '

(60)

Thus Rep(a;)) > 0 for all o, € (o, 0s,), and
there existsy,, in this same range for which the polynomial
p? —play (y + pw) — (ay + by)]+h (o) has a maximum,
thatis, R€p (o, )) is maximum. We cal,, to theoptimum
wavelength Solutions (33) are then expressed only in terms
of the optimum wavelength and the wavelengths near zero.

i. The summation convention states that the repetition of an in- 4. J. Swinton, inAlan Turing: Life and Legacy of a Great Thinker

dex in a term denotes summation with respect to that index

over its range. For example, the expressigm; = p means
aix1 + a2x2 + ... + anxy, = p.

which is presented in Sec. 2.4..
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