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Bidimensional dynamic maps in optical resonators
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In this article an introduction to the dynamical behavior of a beam within a ring phase-conjugated optical resonator is presented and modeled
using two dimensional iterative maps. Three well known iterative maps are described: Duffing, Tinkerbell and Hénon, and are applied to
the description of optical resonators. It is explicitly shown how the difference equations of these maps can be used to describe the dynamic
behavior of what we call Tinkerbell, Duffing and Hénon beamsi.e. beams that behave according to these maps. The matrix of a map
generating device are found in terms of the specific map parameters, the state variables and the resonator parameters for each of the three
named maps.
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En este artı́culo se presenta una introducción al comportamiento dińamico de un haz dentro de un resonadoróptico de anillo de conjugación
de fase el cual es modelado usando mapas iterativos bidimensionales. Tres bien conocidos mapas iterativos son descritos: Duffing, Tinkerbell
y Hénon, y son utilizados para la descripción de resonadoreśopticos. Se muestra explı́citamente ćomo las ecuaciones de diferencia de los
mapeos anteriores pueden ser utilizados para describir el comportamiento dinámico de lo que llamamos, Haces de Tinkerbell, Duffing y
Hénoni.e. haces que se comportan siguiendo dichos mapas. La matriz de un dispositivo generador del mapeo se encuentra en términos de
los paŕametros especı́ficos del mapa, de las variables de estado y de los parámetros del resonador para cada uno de los tres mapas anteriores.

Descriptores: Resonador; mapeo caótico; resonador de anillo.

PACS: 42.15.-I; 42.60.Da; 42.65.Hw

1. Introduction

Recently, optical phase conjugation (OPC) has been an im-
portant research subject in the field of lasers and nonlin-
ear optics. As it is known, OPC defines a link between
two coherent optical beams propagating in opposite direc-
tions with reversed wave front and identical transverse am-
plitude distributions. The unique characteristic of a pair of
phase-conjugate beams is that the aberration influence im-
posed on the forward beam passed through an inhomoge-
neous or disturbing medium can be automatically removed
for the backward beam passed through the same disturbing
medium. There are three leading approaches that are effi-
ciently able to generate the backward phase-conjugate beam.
The first one is based on the degenerate (or partially de-
generate) four-wave mixing processes (FWM), the second is
based on a variety of backward simulated (e.g. Brillouin,
Raman or Kerr) scattering processes, and the third is based
on one-photon or multi-photon pumped backward stimulated
emission (lasing) processes. Among these different methods,
there is a common physical mechanism in generating a back-
ward phase-conjugate beam, which is the formation of the
induced holographic grating and the subsequent wave-front
restoration via a backward reading beam. In most experi-
mental studies, certain types of resonance enhancements of
induced refractive-index changes are desirable for obtaining
higher grating-refraction efficiency. OPC-associated tech-
niques can be effectively utilized in many different applica-

tion areas: such as high-brightness laser oscillator/amplifier
systems, cavity-less lasing devices, laser target-aiming sys-
tems, aberration correction for coherent-light transmission
and reflection through disturbing media, long distance op-
tical fiber communications with ultra-high bit-rate, optical
phase locking and coupling systems, and novel optical data
storage and processing systems (see Ref. 1 and references
therein). The power performance of a phase conjugated laser
oscillator can be significantly improved introducing intracav-
ity nonlinear elements,e.g. Eichleret al., [2] and O’Connor
et al., [3] showed that a stimulated-Brillouin-scattering (SBS)
phase conjugating cell placed inside the resonator of a solid-
state laser reduces its optical coherence length, because each
axial mode of the phase conjugated oscillator experiences a
frequency shift at every reflection by the SBS cell resulting
in a multi-frequency lasing spectrum, that makes the laser in-
sensitive to changing operating conditions such as pulse rep-
etition frequency, pump energy, etc. This capacity is very
important for many laser applications including ranging and
remote sensing. The intracavity cell is also able to compen-
sate optical aberrations from the resonator and from thermal
effects in the active medium, resulting in near diffraction lim-
ited output [4], and eliminate the need for a conventional
Q-switch as well, because its intensity-dependent reflectiv-
ity acts as a passive Q-switch, typically producing a train of
nanosecond pulses of diffraction limited beam quality. One
more significant use of OPC is a so-called short hologram,
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which does not exhibit in-depth diffraction deformation of
the fine speckle pattern of the recording fields [5]. A thermal
hologram in the output mirror was recorded by two speckle
waves produced as a result of this recording a ring Nd:YAG
laser [6]. Phase conjugation by SBS represents a fundamen-
tally encouraging approach for achieving power scaling of
solid-state lasers [7,8] and optical fibers [9]. There are several
theoretical models to describe OPC in resonators and lasers.
One of them is to use the SBS reflection as one of the cavity
mirrors of a laser resonator to form a so-called linear phase
conjugate resonator [10], however ring-phase conjugate res-
onators are also possible [11]. The theoretical model of an
OPC laser in transient operation [12] considers the temporal
and spatial dynamic of the input field the Stokes field and the
acoustic-wave amplitude in the SBS cell. On the other hand
the spatial mode analysis of a laser may be carried out using
transfer matrices, also know as ABCD matrices, which are a
useful mathematical tool when studying the propagation of
light rays through complex optical systems. They provide a
simple way to obtain the final key characteristics (position
and angle) of the ray. As an important example we could
mention that transfer matrices have been used to study self-
adaptive laser resonators where the laser oscillator is made
out of a plane output coupler and an infinite nonlinear FWM
medium in a self-intersecting loop geometry [13].

In this article we put forward an approach where the in-
tracavity element is presented in the context of an iterative
map (e.g. Tinkerbell, Duffing and H́enon) whose state is de-
termined by its previous state. It is shown that the behavior
of a beam within a ring optical resonator may be well de-
scribed by a particular iterative map and the necessary con-
ditions for its occurrence are discussed. In particular, it is
shown that the introduction of a specific element within a ring
phase-conjugated resonator may produce beams described by
a Duffing, Tinkerbell or H́enon map, which we call “Tinker-
bell, Duffing or H́enon beams”.

The idea of introducing map generating elements in opti-
cal resonators from a mathematical viewpoint was originally
explored in [14-17] and due to its pedagogical purposes this
paper is based on those results.

This article is organized as follows: Sec. 2 provides an in-
troduction to discuss the matrix optics elements on which this
work is based. Section 3 presents some of the basic features
of iterative maps, in particular of the Tinkerbell, Duffing and
Hénon maps, Secs. 4, 5 and 6 shows, each one of them, the
main characteristics of the map generation matrix and Tinker-
bell, Duffing and H́enon Beams, as well as the general case
for each beams in a ring phase conjugated resonator. Finally
Sec. 6 presents the conclusions.

2. ABCD Matrix Optics

As it is known, any optical element may be described by a
2×2 matrix in paraxial optics. Assuming cylindrical symme-
try around the optical axis, and defining at a given positionz
both the perpendicular distance of any ray to the optical axis

and its angle with the same axis asy(z) andθ(z), when the
ray undergoes a transformation as it travels through an optical
system represented by the matrix [A,B, C, D], the resultant
values ofy andθ are given by [18]:

(
yn+1

θn+1

)
=

(
A B
C D

)(
yn

θn

)
. (1)

For any optical system, one may obtain the total
[A,B, C, D] matrix, by carrying out the matrix product of
the matrices describing each one of the optical elements in
the system.

Constant ABCD elements

In passive optical elements, such as lenses, interfaces be-
tween two media, reflections, propagation, and many others,
the elementsA, B, C, Dare constants and the determinant
Det[A,B, C, D] = nn/nn+1, wherenn andnn+1 are the re-
fraction index before and after the optical element described
by the matrix. Since typicallynn andnn+1 are the same, it
holds that Det[A,B, C, D] = 1.

Non constant ABCD elements

Nevertheless, for active or non-linear optical elements theA,
B, C, D matrix elements are not constant but may be func-
tions of various parameters. The following three examples
are worth mentioning.

Curved interface with a Kerr electro-optic material

Due to the electro-optic Kerr effect the refraction index of
an optical median is a function of the electric field strength
E [19]. The change of the refraction index is given by
∆n = λKE2, whereλ is the wavelength andK is the Kerr
constant of the media. For example, the [A,B, C, D] ma-
trix of a curved surface of radius of curvaturer separating
two regions of refractive indexn1 andn2 (taking the center
of the radius of curvature positive to the right in the zone of
refractive indexn2) is given as

(
1 0

− (n2−n1)
r 1

)
. (2)

Having vacuum (n1= 1) on the left of the interface and a
Kerr electro-optic material on the right. The above [ABCD]
matrix becomes

(
1 0

− (n2(E)−1)
r 1

)
. (3)

Clearly the elementsA, B, D are constants but element
C is a function of the electric fieldE.
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Phase conjugate mirror

A second example is a phase conjugate mirror. The process
of phase conjugation has the property of retracing an incom-
ing ray along the same incident path [7]. The idealABCD
phase conjugate matrix is(

1 0
0 −1

)
. (4)

One may notice that the determinant of this particular ma-
trix is not 1 but -1. The ABCD matrix of a realphase con-
jugated mirror must take into account the specific process
to produce the phase conjugation. As already mentioned,
typically phase conjugation is achieved in two ways; Four
Wave Mixing or using a stimulated scattering process such as
Brillouin, i.e. Stimulated Brillouin Scattering (SBS). How-
ever upon reflection on a stimulated SBS phase conjugated
mirror, the reflected wave has its frequencyω downshifted
to ω − δ = ω(1 - δ/ω) whereδ is the characteristic Bril-
louin downshift frequency of the mirror material (typically
δ/ω ¿ 1). In a non-ideal (i.e. real) case one must take the
downshifting frequency into account and the ABCD matrix
reads (

1− δ
ω 0

0 −1

)
. (5)

Furthermore, since in phase conjugation by SBS a light
intensity threshold must be reached in order to have an ex-
ponential amplification of the scattered light, the above ideal
matrix (4) must be modified. The scattered light intensity at
positionz in the medium is given as

IS (z) = IS (0) exp (gBILl) , (6)

whereIS(0) is the initial level of scattering,gB denotes the
characteristic exponential gain coefficient of the scattering
process,IL is the intensity of the incident light beam, andl
is the interaction length over which amplification takes place.
Given the amplificationG = exp(gB(ν)ILl) the threshold
gain factor is commonly taken asG∼ exp(30) ≈ 1013 which
corresponds to a threshold intensity

IL,th =
30
gBl

. (7)

The modeling of a real stimulated Brillouin scattering
phase conjugate mirror usually takes into account a Gaussian
aperture of radiusa at intensity 1/e2 placed before an ideal
phase conjugator. In this way the reflected beam is Gaus-
sian and only the parts of the Gaussian incident beam with
intensity above threshold are phase conjugate reflected. The
matrix of this aperture is given by:

(
1 0

− iλ
πa2 1

)
, (8)

where the aperturea is a function of the incident light in-
tensitya(IL) (IL must reach threshold to initiate the scatter-
ing process). As we can see, depending on the model, the
ABCD matrix elements of a phase conjugated mirror may
depend on several parameters such as the Brillouin down-
shifting frequency, the Gaussian aperture radius and the in-
cident light intensity [20].

Systems with hysteresis

At last, as third example we may consider a system with hys-
teresis. It is well known that such systems exhibit memory.
There are many examples of materials with electric, magnetic
and elastic hysteresis, as well as systems in neuroscience, bi-
ology, electronics, energy and even economics which show
hysteresis. As it is known in a system with no hysteresis,
it is possible to predict the system’s output at an instant in
time given only its input at that instant in time. However in
a system with hysteresis, this is not possible; there is no way
to predict the output without knowing the system’s previous
state and there is no way to know the system’s state with-
out looking at the history of the input. This means that it
is necessary to know the path that the input followed before
it reached its current value [21]. For an optical element with
hysteresis theABCD matrix elements are function of theyn,
yn−1, . . .yn−i andθn, θn−1, . . . , θn−i and its knowledge is
necessary in order to find the stateyn+1, θn+1. In general,
taking into account hysteresis, the [A,B, C, D] matrix of Eq.
(1) may be written as

(
A B
C D

)
=

(
A (yn, yn−1, ...yn−i, θn, θn−1, ...θn−i) B (yn, yn−1, ...yn−i, θn, θn−1, ...θn−i)

C (yn, yn−1, ...yn−i, θn, θn−1, ...θn−i) D (yn, yn−1, ...yn−i, θn, θn−1, ...θn−i)

)
. (9)

3. Dynamic Maps

An extensive list of two-dimensional maps may be found in
Ref. 22. A few examples are Tinkerbell, Duffing and Hénon
maps. As will be shown next they may be written as a matrix
dynamical system such as the one described by Eq. (1) or
equivalently as

yn+1 = Ayn + Bθn, (10a)

θn+1 = Cyn + Dθn. (10b)

Tinkerbell Map

The Tinkerbell map [23,24] is a discrete-time dynamical sys-
tem given by the equations:

yn+1 = y2
n − θ2

n + αyn + βθn, (11a)
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θn+1 = 2ynθn + γ yn + δθn, (11b)

whereyn andθn are the scalar state variables andα, β, γ,
andδ the map parameters. In order to write the Tinkerbell
map as a matrix system such as Eq. (1) the following values
for the coefficientsA, B, C andD must hold

A (yn, α) = yn + α, (12)

B (θn, β) = −θn + β, (13)

C(θn, γ) = 2θn + γ, (14)

D(δ) = δ. (15)

It should be noted that these coefficients are not constants
but depend on the state variablesyn andθn and the Tinker-
bell map parametersα, β, γ, andδ. Therefore as anABCD
matrix system the Tinkerbell map may be written as,

(
yn+1

θn+1

)
=

(
yn + α −θn + β

2θn + γ δ

)(
yn

θn

)
. (16)

Hénon Map

The H́enon map has been widely studied due to its nonlinear
chaotic dynamics. H́enon map is a popular example of a two-
dimensional quadratic mapping which produces a discrete-
time system with chaotic behavior. The Hénon map is de-
scribed by the following two difference equations [25,26]

yn+1 = 1− αy2
n + θn , (17a)

θn+1 = βyn. (17b)

Following similar steps as those of the Tinkerbell map, this
map may be written as a dynamic matrix system

(
yn+1

θn+1

)
=

(
1

yn
− αyn 1

β 0

)(
yn

θn

)
, (18)

whereyn andθn are the scalar state variables which can be
measured as time series andα andβ the map parameters. In
many control systemsα is a control parameter. The Jacobian
β (0 ≤ β ≤ 1) is related to dissipation. The dynamics of the
Hénon map is well studied (see, for instance, Ref. 27) and its
fixed points are given by:

(y1, θ1) =

(
−β − 1 +

√
(β + 1)2 + 4α

2α
,−βy1

)
, (19)

(y2, θ2) =

(
−β − 1−

√
(β + 1)2 + 4α

2α
,−βy2

)
, (20)

and the corresponding eigenvalues are

λ1,2 = −αy ±
√

(αy)2 − β . (21)

Duffing Map

The study of the stability and chaos of the Duffing map has
been the topic of many articles [28-29]. The Duffing map is
a dynamical system which may be written as follows:

yn+1 = θn, (22a)

θn+1 = −βyn + αθn − θ3
n (22b)

whereyn andθn are the scalar state variables andα andβ the
map parameters. In order to write the Duffing map equations
as a matrix system Eq. (1) the following values for the co-
efficientsA, B, C andD must hold. It should be noted that
these coefficients are not constants but depend onθn and the
Duffing map parameters are as follows:

A = 0 (23)

B = 1 (24)

C(β) = −β (25)

D(θn, α) = α− θ2
n. (26)

Therefore as an ABCD matrix system the Duffing map
may be written as

(
yn+1

θn+1

)
=

(
0 1

−β α− θ2
n

)(
yn

θn

)
. (27)

FIGURE 1. Ring phase conjugated laser resonator with chaos gen-
erating element.
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4. Maps in a ring phase-conjugated resonator

In this section an optical resonator with a specific map behav-
ior for the variablesy andθ is presented. Figure 1 shows a
ring phase-conjugated resonator consisting of two ideal mir-
rors, an ideal phase conjugate mirror and a yet unknown op-
tical element described by a matrix [a, b, c, e]. The two per-
fect plain mirrors [M] and the ideal phase conjugated mirror
[PM] are separated by a distanced. The matrices involved

in this resonator are: the identity matrix:

(
1 0
0 1

)
for the

plane mirrors [M],

(
1 0
0 −1

)
for the ideal phase conju-

gated mirror [PM],

(
1 d
0 1

)
for a distanced translation

and, in addition, the unknown map generating device matrix

represented by

(
a b
c e

)
, is located between the plain mir-

rors [M] at distanced/2 from each one.
For this system, the total transformation matrix

[A,B, C, D] for a complete round trip is given by(
A B
C D

)
=

(
1 0
0 −1

)(
1 d
0 1

)(
1 0
0 1

)

×
(

1 d/2
0 1

)(
a b
c e

)(
1 d/2
0 1

)

×
(

1 0
0 1

)(
1 d
0 1

)
. (28)

The above one round trip total transformation matrix is
(

a + 3cd
2 b + 3d

4 (2a + 3cd + 2e)

−c − 3cd
2 − e

)
. (29)

As can be seen, the elements of this matrix depend on
the elements of the map generating matrix device [a, b, c, e].
If one does want a specific map to be reproduced by a ray
in the ring optical resonator, then each round trip a ray de-
scribed by (yn, θn) has to be considered as an iteration of
the desired map. Then, theABCDmatrix of the map system
(16), (18), (27) must be equated to the totalABCDmatrix of
the resonator (29), this in order to generate an specific map
dynamics for (yn, θn).

It should be noticed that the results given by Eqs. (28) and
(29) are only valid forb small (b ≈ 0). This due to the fact
that before and after the matrix element [a, b, c, e] we have a
propagation ofd/2. For a general case, expression (29) has to
be substituted by:

(
A B
C D

)
=

(
1 0
0 −1

)(
1 d
0 1

)(
1 0
0 1

)

×
(

1 d−b
2

0 1

)(
a b
c e

)(
1 d−b

2
0 1

)

×
(

1 0
0 1

)(
1 d
0 1

)
(30)

Therefore the round trip total transformation matrix is:

(
a− c

2 (b− 3d) 1
4

[
b2c− 2b (−2 + a + 3cd + e) + 3d (2a + 3cd + 2e)

]

−c 1
2 (bc− 3cd− 2e)

)
(31)

Matrix (29) describe a simplified ideal case whereas ma-
trix (31) describe a general more complex and realistic case.
These results will be widely used in the next three sections.

5. Tinkerbell Beams

This section presents an optical resonator that produces
beams following the Tinkerbell map dynamics; these beams
will be called “Tinkerbell beams”. Equation (29) is the one
round trip total transformation matrix of the resonator. If one
does want a particular map to be reproduced by a ray in the
optical resonator, each round trip described by (yn, θn), has
to be considered as an iteration of the selected map. In order
to obtain Tinkerbell beams, Eqs. (12) to (15) must be equated
to Eq. (29), that is:

a +
3cd

2
= α + yn, (32)

b +
3d

4
(2a + 3cd + 2e) = β − θn, (33)

c = −γ − 2θn, (34)

e +
3cd

2
= −δ, (35)

Equations (32-35) define a system for the matrix elements
a, b, c, e, that guarantees a Tinkerbell map behaviour for a
given ray (yn, θn). These elements can be written in terms
of the map parameters (α, β, γ andδ), the resonator’s main
parameterd and the ray state variablesyn andθn as:

a = α +
3
2
γd + 3dθn + yn, (36)

b =
1
4
(4β − 6αd + 6δd

− 9γd2 − 4θn − 18d2θn − 6dyn), (37)

c = −2θn − γ, (38)

e = −δ +
3
2
d (γ + 2θn) . (39)

The introduction of the above values for the

(
a b
c e

)

matrix in Eq. (28) enables us to obtain Eq. (16). For any
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FIGURE 2. Computer calculation of the magnitude of matrix ele-
mentb of the Tinkerbell map generating device for a resonator with
d = 1 and Tinkerbell parametersα = 0, β = -0.6,γ = 0 andδ = -1
for the first 100 round trips.

transfer matrix elementsA andD describe the lateral mag-
nification whileC describe the focal length, whereas the de-
vice’s optical thickness is given byB = L/n, whereL is
its length andn its refractive index. From Eqs. (36-39) it
must be noted that the upper elements (a andb) of the de-
vice matrix depend on both state variables (yn andθn) while
the lower elements (c ande) only on the state variableθn.
The study of the stability and chaos of the Tinkerbell map in
terms of its parameters is a well-known topic [22,23]. The
behaviour of elementb is quite interesting; Fig. 2 shows
a computer calculation for the first 100 round trips of ma-
trix elementb of the Tinkerbell map generating device for
a resonator of unitary length (d = 1) and map parameters
α = 0, β = −0.6, γ = 0 andδ = −1, these parameters
were found using brute force calculations and they were se-
lected due to the matrix-elementb behaviour (i.e. we were
looking for behaviour able to be achievable in experiments).
As can be seen, the optical length of the map generating de-
vice varies on each round trip in a periodic form, this would
require that the physical length of the device, its refractive
index -or a combination of both- change in time. The actual
design of a physical Tinkerbell map generating device for a
unitary ring resonator must satisfy Eqs. (36-39), to do so its
elements (a, b, c ande) must vary accordingly.

5.1. Tinkerbell beams: General Case

To obtain the Eqs. (36-39)b, the thickness of the Tinkerbell
generating device, has to be very small (close to zero), so the
translations before and after the device can be over the same
distanced/2. In the previous numeric simulationb takes val-
ues up to 0.2, so the general case where the map generating
elementb does not have to be small must be studied. As pre-
viously explained Eq. (28) must be substituted by Eq. (30).

From Eqs. (16) and (31) we obtain the following system
of equations for the matrix elementsa, b, c ande:

a− c

2
(b− 3d) = α + yn, (40)

1
4
(b2c− 2b(−2 + a + 3cd + e)

+ 3d(2a + 3cd + 2e)) = β − θn, (41)

− c = γ + 2θn, (42)

bc− 3cd− 2e

2
= δ. (43)

The solution to this new system is written as:

a = α +
3
2
γd + 3dθn + yn +

1
2γ + 4θn

×



γ (2− α + δ − 3γd− 12dθn − yn)
+θn (4− 2α + 2δ − 12dθn − 2yn)
− (−γ

2 − θn

) √
P 2 −Q


 , (44)

b =
1

γ + 2θn

×
(
−2+α−δ+3γd+6dθn+yn+

√
P 2−Q

2

)
, (45)

c = −γ − 2θn, (46)

e = δ +
3
2
γd + 3dθn +

1
2γ + 4θn

×




γ (2− α + δ − 3γd− 12dθn − yn)

+θn (4− 2α + 2δ − 12dθn − 2yn)

− (−γ
2 − θn

) √
P 2 −Q


 , (47)

where:

P = 4− 2α + 2δ − 6γd− 12dθn − 2yn

and

Q = (4γ + 8θn)(−4β + 6γd− 6δd

+ 9γd2 + 4θn + 18d2θn + 6dyn).

FIGURE 3. Computer calculation of the magnitude of matrix ele-
mentb of the Tinkerbell map generating device for a resonator with
d = 1 and Tinkerbell parametersα = 0.4 β = −0.4, γ = −0.3
andδ = 0.225 for the first 100 round trips.
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It should be noted that if one takes into account the thick-
ness of the map generating element, the equations complex-
ity is substantially increased. Now onlyc has a simple rela-
tion with θn andγ, on the other handa, b ande are depen-
dent on both state variables, on all Tinkerbell parameters, as
well as on the resonator length. When the calculation is per-
formed for this new matrix with the following map parame-
ters: α = 0.4, β = −0.4, γ = −0.3 andδ = 0.225, Fig. 3
is obtained. The behaviour observed in Fig. 3 for the matrix-
elementb can be obtained for several different parameters’
combinations, as well as other dynamical regimes with a lack
of relevance to our work. One can note that after a few itera-
tions the device’s optical thickness is small and constant, this
should make easier a physical implementation of this device.

6. Duffing Beams

This section presents an optical resonator that produces
beams following the Duffing map dynamics; these beams will
be called “Duffing beams”. Equation (29) is the one round
trip total transformation matrix of the resonator. If one does
want a particular map to be reproduced by a ray in the opti-
cal resonator, each round trip described by (yn, θn), has to
be considered as an iteration of the selected map. In order to
obtain Duffing beams, Eqs. (23) to (26) must be equated to
Eq. (29), that is:

a +
3cd

2
= 0, (48)

b +
3d

4
(2a + 3cd + 2e) = 1, (49)

−c = −β, (50)

−3cd

2
− e = α− θ2

n. (51)

Equations (48-51) define a system for the matrix elements
of a, b, c, e, enabling the generation of a Duffing map for the
yn andθn state variables. Its solution is:

a = −3βd

2
, (52)

b =
1
4

(
4 + 6αd + 9βd2 − 6dθ2

n

)
, (53)

c = β, (54)

e = −α− 3dβ

2
+ θ2

n. (55)

As can be seen these matrix elements depend on the Duff-
ing parametersα andβ as well as on the resonator main pa-
rameterd and on the state variableθn. These are the values
which must be substituted for the [a, b, c, e] matrix in Eq. (28)
for the round trip matrix. As expected, the introduction of
the above [a, b, c, e] matrix elements in Eq. (29) produces the
ABCD matrix of the Duffing Map, Eq. (27). For a general
ABCD transfer matrix, elementsA andD are related to the

FIGURE 4. Computer calculation of the magnitude of matrix ele-
mentb of the Duffing map generating device for a resonator with
d = 1 and Duffing parametersα = 1.04 andβ = -1 for the first 100
round trips.

lateral magnification and elementC to the focal length,
whereas elementB gives the optical length of the device. The
optical thickness of theABCD is; B = L/n, whereL is the
physical length of the device andn its refractive index. From
Eqs. (52-55) we may see that theA andC elements of the ma-
trix [a, b, c, e] are constants depending only on the resonator
parameterd and the Duffing parametersα andβ. However
matrix elementsB andD are dynamic ones and depend on
the state variableθn. Of special interest is elementB of the
map generating matrix [a, b, c, e]. Figure 4 shows a computer
calculation of matrix elementB of the Duffing map generat-
ing device for a resonator withd = 1 and Duffing parameters
α = 1.04 andβ = -1 for the first 100 round trips. As it is
well known, depending on theα andβ map parameters dif-
ferent dynamic states may be obtained including chaos. As
can be seen the optical length of the map generating device
given by theB matrix element varies on each round trip. This
requires that either the physical length of the device or its re-
fractive index, or a combination of both, changes as shown in
Fig. 4. The design of a physical Duffing map generating de-
vice for this resonator must satisfy Eqs. (52-55). A physical
implementation of this device is possible as long as itsABCD
elements vary according to these equations.

6.1. Duffing Beams: General Case

The results given by Eqs. (52-55) are valid only when the
b element of the [a, b, c, e] matrix is small. As can be seen
from Eq. (28), the thickness of the Duffing map generat-
ing element (described by matrix [a, b, c, e]) must be close to
zero. This because in Eq. (28) the matrix before and after the
[a, b, c, e] is a matrix for ad/2 translation which is possible
only if b = 0 or very small. The previous numeric simula-
tion shows that theb element takes the values of up to 0.3.
Therefore one must consider a general case where the map
generating elementb has not the limitation of being asked to
be small. For a general case, Eq. (28) must be substituted by
Eq. (30) and (31). From expressions (27) and (31) we obtain
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the following system of equations for the matrix elementsa, b, c, e;

a− c

2
(b− 3d) = 0, (56)

1
4
(b2c− 2b(−2 + a + 3cd + e) + 3d(2a + 3cd + 2e)) = 1, (57)

−c = −β, (58)

bc− 3cd− 2e

2
= α− θ2

n. (59)

The solution to this system is given by:

a =
2 + α− θ2

n +
√

α2 + 4β(−1 + 3d)− 2α(−2 + θ2
n) + (−2 + θ2

n)2

2
, (60)

b =
2 + α + 3βd− θ2

n +
√

α2 + 4β(−1 + 3d)− 2α(−2 + θ2
n) + (−2 + θ2

n)2

β
, (61)

c = β , (62)

e =
2− α + θ2

n +
√

α2 + 4β(−1 + 3d)− 2α(−2 + θ2
n) + (−2 + θ2

n)2

2
. (63)

FIGURE 5. Computer calculation of the magnitude of matrix ele-
mentb of the Duffing map generating device for a resonator with
d = 1 and Duffing parametersα = 1.04 andβ = −0.6 for the first
100 round trips.

As we may see, taking into account the thickness of
the map generating element device described by matrix
[a, b, c, e] greatly increases its complexity. Now only theC
matrix element is constant, being elementsA,B andD de-
pendent on the state variableθn and on the Duffing param-
etersα andβ as well as on the resonator main parameterd.
Figure 5 shows a computer calculation of the matrix element
B of the Duffing map generating device for a resonator with
d = 1 and Duffing parametersα = 1.04 andβ = −0.6 for
the first 100 round trips. As can be seen, the optical thickness
variation of the map generating device now is rather small,
which means that the length and/or refractive index variation
of the map generating element is also small and favors a phys-
ical realization of this device.

7. Hénon Beams

This section presents an optical resonator that produces
beams following the H́enon map dynamics; these beams will
be called “H́enon beams”. Equation (29) is the one round
trip total transformation matrix of the resonator. If one does
want a particular map to be reproduced by a ray in the opti-
cal resonator, each round trip described by (yn, θn), has to
be considered as an iteration of the selected map. In order to
obtain H́enon beams, the [A, B, C, D] elements of Eq. (18)
must be equated to Eq. (29), that is:

a +
3cd

2
=

1
yn
− αyn, (64)

b +
3d

4
(2a + 3cd + 2e) = 1, (65)

−c = β, (66)

−3cd

2
− e = 0. (67)

The solution for the H́enon chaos matrix elements
[a, b, c, e], able to produce H́enon beams in terms of the
Hénon Map are the following:

a =
3βd

2
+

1
yn
− αyn, (68)

b = 1 +
3
2
d

(
− 1

yn
+ αyn − 3dβ

2

)
, (69)

c = −β, (70)

e =
3dβ

2
. (71)
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As can be seen the matrix elements depend on the Hénon
parametersα andβ as well as on the resonator main param-
eterdand on the state variableyn. However when analyzing
the behavior of element “b” (Eq. (69)) we may see that there
is a problem caused by the term 1/yn. While for the case of
Tinkerbell and Duffing beams we were able to look at the be-
havior of the obtained “b” element for small values ofyn, as
it is shown in figures (2-5), this is not possible for the Henon

case because small values ofyn will produce very large val-
ues for “b”, therefore making very difficult to obtain solutions
with practical value.

7.1. Hénon Beams: General Case

In an analogous way to the two previous cases, using expres-
sion (18) and (31) we obtain for the general Hénon chaos
matrix elements [a, b, c, e]:

a =
−1− 2yn + αy2

n +
√

1− 4yn − 2 (−2 + α− 2β + 6βd) y2
n + 4αy3

n + α2y4
n

2yn
, (72)

b =
1 + (−2 + 3βd) yn − αy2

n +
√

1− 4yn − 2 (−2 + α− 2β + 6βd) y2
n + 4αy3

n + α2y4
n

2yn
, (73)

c = −β, (74)

e =
−1 + 2yn + αy2

n −
√

1− 4yn − 2(−2 + α− 2β + 6βd)y2
n + 4αy3

n + α2y4
n

2yn
. (75)

8. A practical map generating device

As we have seen, in order to generate anABCDmatrix system
such as (11) it is essential to introduce an intra-cavity element
which will be responsible for taking into account the hystere-
sis and non-linearity of the dynamic system. The intra-cavity
map generating device is described by a 2×2 matrix, where
its elements are given by Eqs. 10. The equations describing
the intracavity element are:

youtput = ayinput + bθinput, (76)

θoutput = cyinput + eθinput. (77)

The practical implementation of an intra-cavity element
is technically a complex task due to the fact that the actual
intra-cavity matrix is a dynamic one, its value depends not
only on the map constants but also on the previous round-
trip yn andθn values [30]. In particular it is required for the
intra-cavity element a system able to detect and measure the
position and angle of incidence of the input beam parame-
ters,i.e. yinput andθinput, this information should be optically
or electronically process (according to Eqs. 18-21) in order
to produce and generate the required output beam with new
parametersi.e. youtput andθoutput. A general intra-cavity ele-
ment does not yet exists.

The measurement of the impinging angle of a light beam
can be implemented by several techniques, such as the use
of collimators or interferometers. However, when the spatial
coordinates are also of interest, as in this case, there is not a
straightforward solution. A possible solution is the use of a
matrix of photosensors mounted on a PZT-driven stage. As
shown in Fig. 6, a projected spot results from the projection
of the beam onto the plane of the photosensors. The angle can
be obtained by measuring the spatial coordinates of the spot
for two different positions. To obtain measurement speeds on

the order of milliseconds it is necessary that the PZT stage be
driven at relatively high speeds,e.g. the M-663 stage from
Physik Instruments can reach displacement speeds of up to
400 mm/s (travel range of 19 mm with 100 nm resolution).
A matrix of photosensor such as that offered by Centronic,
i.e., 12×12 elements, each element of 1.4×1.4 mm, can be
used as a first approximation. In this case, by considering the
travel range of the stage, the maximum transverse displace-
ment of the beam spot, at the sensor plane, would be 3 pix,
where one pixel corresponds to one sensor element; for this
computation it was assumed that ray angles are less than 15◦.
This arrangement would yield measurements with low accu-
racy. To increase the accuracy of the measurement, the sepa-
ration between neighboring elements should be decreased.

FIGURE 6. A photosensor array (PS) is translated by a PZT stage
(S) a distance D. This produces a displacement of the beam spot
from P to Q,dx anddy. The incidence angles of the ray are given
by θx = tan−1(dx/D) andθy = tan−1(dx/D). The light beam
is indicated by the red line.
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FIGURE 7. Beam steering by a SLM. The beam impinges on the
SLM from the right.

This can be achieved by using a camera sensor, where
the pitch may be as small as 4µm at the maximum angle,
the distance between the two positions of the beam spot can
be as large as hundreds of pixels. However, in this case the
complexity of the arrangement is increased.

On the other hand beam steering may be done by non-
mechanical array devices, which provide high-speed point-
ing, see Fig. 7. Among these types of devices we can men-
tion those based on liquid-crystal displays (spatial light mod-
ulators, SLM) and those on microelectromechanical systems
(MEMS). In the formers, the phase of each element of the
matrix is changed by application of a low-voltage signal. In
the devices based on MEMS, each element of the array con-
sists of a micromirror, which generates tilt to steer the beam.
Steering time is on the order of milliseconds.

9. Conclusions

This article presents a pedagogical description of the appli-
cation of non-constant ABCD matrix in the description of

ring optical phase conjugated resonators. It is shown how
the introduction of a particular map generating device in a
ring optical phase-conjugated resonator can generate beams
with the behavior of a specific two dimensional map. In this
way beams that behave according to the Tinkerbell, Duffing
or Henon Maps which we call “Tinkerbell, Duffing or Henon
Beams”, are obtained. In particular, this article shows how
Tinkerbell beams can be produced if a particular device is in-
troduced in a ring optical phase-conjugated resonator. The
difference equations of the Tinkerbell map are explicitly in-
troduced in anABCD transfer matrix to control the beams
behaviour. The matrix elementsa, b, c ande of a map gen-
erating device are found in terms of the map parameters (α,
β, γ andδ), the state variables (yn andθn) and the resonator
length. The mathematical characteristics of an optical de-
vice inside an optical resonator capable to produce Tinker-
bell beams are found. In the general case a device with fixed
size was obtained, opening the possibility of a continuance
of this work; that is the actual building of an optical device
with thesea, b, c andd matrix elements according to the de-
scription given and the experimental observation of Tinker-
bell beams. Also, it is explicitly shown how the difference
equations of the Duffing map can be used to describe the dy-
namic behavior of what we call Duffing beamsi.e. beams that
behave according to the Duffing map. The matrix elements
a, b, c, eof a map generating device are found in terms ofα
andβ, the Duffing parameters, the state variableθn and the
resonator parameterd. Finally it is shown that the difference
equations of the H́enon map can be used to describe the dy-
namical behavior of H́enon beams. The matrix elementsa, b,
c, eof a chaos generating device are found in terms ofα and
β the H́enon parameters, andd the resonator parameter.

A challenge for future research is in the practical imple-
mentation of this work since it would be very interesting to
build an actual optical device with the required [a, b, c, e] ma-
trix elements and realize the experimental observation of Tin-
kerbell, Duffing and H́enon Beams.
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