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Bidimensional dynamic maps in optical resonators
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In this article an introduction to the dynamical behavior of a beam within a ring phase-conjugated optical resonator is presented and mod
using two dimensional iterative maps. Three well known iterative maps are described: Duffing, Tinkerbe#ireord Bind are applied to

the description of optical resonators. It is explicitly shown how the difference equations of these maps can be used to describe the dyn
behavior of what we call Tinkerbell, Duffing andédon beams.e. beams that behave according to these maps. The matrix of a map
generating device are found in terms of the specific map parameters, the state variables and the resonator parameters for each of the
named maps.
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En este aftulo se presenta una introduggial comportamiento damico de un haz dentro de un resonabjatico de anillo de conjugaimn

de fase el cual es modelado usando mapas iterativos bidimensionales. Tres bien conocidos mapas iterativos son descritos: Duffing, Tink
y Hénon, y son utilizados para la descriptide resonadordspticos. Se muestra expitamente 6mo las ecuaciones de diferencia de los
mapeos anteriores pueden ser utilizados para describir el comportamiemitiadirde lo que llamamos, Haces de Tinkerbell, Duffing y
Hénoni.e. haces que se comportan siguiendo dichos mapas. La matriz de un dispositivo generador del mapeo se eneumirices ezt

los paBmetros espéficos del mapa, de las variables de estado y de Idapeiros del resonador para cada uno de los tres mapas anteriores

Descriptores: Resonador; mapeo @#co; resonador de anillo.

PACS: 42.15.-; 42.60.Da; 42.65.Hw

1. Introduction tion areas: such as high-brightness laser oscillator/amplifier

systems, cavity-less lasing devices, laser target-aiming sys-
Recently, optical phase conjugation (OPC) has been an imems, aberration correction for coherent-light transmission
portant research subject in the field of lasers and nonlinand reflection through disturbing media, long distance op-
ear optics. As it is known, OPC defines a link betweentical fiber communications with ultra-high bit-rate, optical
two coherent optical beams propagating in opposite direcphase locking and coupling systems, and novel optical data
tions with reversed wave front and identical transverse amstorage and processing systems (see Ref. 1 and references
plitude distributions. The unique characteristic of a pair oftherein). The power performance of a phase conjugated laser
phase-conjugate beams is that the aberration influence ingscillator can be significantly improved introducing intracav-
posed on the forward beam passed through an inhomogéy nonlinear elements.g Eichleret al,, [2] and O’Connor
neous or disturbing medium can be automatically removeet al,, [3] showed that a stimulated-Brillouin-scattering (SBS)
for the backward beam passed through the same disturbinghase conjugating cell placed inside the resonator of a solid-
medium. There are three leading approaches that are effétate laser reduces its optical coherence length, because eacl
ciently able to generate the backward phase-conjugate beagxial mode of the phase conjugated oscillator experiences a
The first one is based on the degenerate (or partially defrequency shift at every reflection by the SBS cell resulting
generate) four-wave mixing processes (FWM), the second it a multi-frequency lasing spectrum, that makes the laser in-
based on a variety of backward simulatedg( Brillouin,  sensitive to changing operating conditions such as pulse rep-
Raman or Kerr) scattering processes, and the third is basedition frequency, pump energy, etc. This capacity is very
on one-photon or multi-photon pumped backward stimulatedmportant for many laser applications including ranging and
emission (lasing) processes. Among these different methodgemote sensing. The intracavity cell is also able to compen-
there is a common physical mechanism in generating a backate optical aberrations from the resonator and from thermal
ward phase-conjugate beam, which is the formation of theffects in the active medium, resulting in near diffraction lim-
induced holographic grating and the subsequent wave-fronted output [4], and eliminate the need for a conventional
restoration via a backward reading beam. In most experiQ-switch as well, because its intensity-dependent reflectiv-
mental studies, certain types of resonance enhancementsgf acts as a passive Q-switch, typically producing a train of
induced refractive-index changes are desirable for obtainingianosecond pulses of diffraction limited beam quality. One
higher grating-refraction efficiency. OPC-associated techmore significant use of OPC is a so-called short hologram,
nigues can be effectively utilized in many different applica-
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which does not exhibit in-depth diffraction deformation of and its angle with the same axis g&) andf(z), when the

the fine speckle pattern of the recording fields [5]. A thermalray undergoes a transformation as it travels through an optical
hologram in the output mirror was recorded by two specklesystem represented by the matrix, [B, C, D], the resultant
waves produced as a result of this recording a ring Nd:YAGvalues ofy andd are given by [18]:

laser [6]. Phase conjugation by SBS represents a fundamen-

tally encouraging approach for achieving power scaling of ( Ynil ) B ( A B ) ( Yn ) )
solid-state lasers [7,8] and optical fibers [9]. There are several Ont1 C D 0, )

theoretical models to describe OPC in resonators and lasers.

One of them is to use the SBS reflection as one of the cavity For any optical system, one may obtain the total
mirrors of a laser resonator to form a so-called linear phasgA, B, C, D] matrix, by carrying out the matrix product of
conjugate resonator [10], however ring-phase conjugate reshe matrices describing each one of the optical elements in
onators are also possible [11]. The theoretical model of athe system.

OPC laser in transient operation [12] considers the temporal

and spatial dynamic of the input field the Stokes field and the

acoustic-wave amplitude in the SBS cell. On the other han&Onstant ABCD elements

the spatial mode analysis of a laser may be carried out usin ) ) )

transfer matrices, also know as ABCD matrices, which are &' Passive optical elements, such as lenses, interfaces be-
useful mathematical tool when studying the propagation ofV€€n two media, reflections, propagation, and many others,
light rays through complex optical systems. They provide 4dhe elements\, B, C, Dare constants and the determinant
simple way to obtain the final key characteristics (positionP€t4; B, C, DI = nnlny,41, wheren,, andn,,+, are the re-
and angle) of the ray. As an important example we couldraction mdt_ax be_fore anc_i after the optical element descr_lbed
mention that transfer matrices have been used to study sefy the matrix. Since typically, andn,,+, are the same, it
adaptive laser resonators where the laser oscillator is mad¥@!ds that Ded, B, €', D] = 1.

out of a plane output coupler and an infinite nonlinear FWM

medium in a self-intersecting loop geometry [13]. Non constant ABCD elements
In this article we put forward an approach where the in-

tracavity eI.ement is pre;ented in,the context of an i.teratiVEF\levertheless, for active or non-linear optical elementsthe
map €.g Tinkerbell, Duffing and non) whose state is de- p ¢ p matrix elements are not constant but may be func-

termined by its previous state. It is shown that the behaviofjsns of various parameters. The following three examples
of a beam within a ring optical resonator may be well de-5.e worth mentioning.

scribed by a particular iterative map and the necessary con-

ditions for its occurrence are discussed. In particular, it is

shown that the introduction of a specific element within a ringCurved interface with a Kerr electro-optic material

phase-conjugated resonator may produce beams described by

a Duffing, Tinkerbell or Htnon map, which we call “Tinker- Due to the electro-optic Kerr effect the refraction index of

bell, Duffing or HEnon beams”. an optical media: is a function of the electric field strength
The idea of introducing map generating elements in opti- [19]. The change of the refraction index is given by

cal resonators from a mathematical viewpoint was originallyAn = MK E?, where) is the wavelength and is the Kerr

explored in [14-17] and due to its pedagogical purposes thisonstant of the media. For example, thg B, C, D] ma-

paper is based on those results. trix of a curved surface of radius of curvatureseparating
This article is organized as follows: Sec. 2 provides an intwo regions of refractive index; andn; (taking the center

troduction to discuss the matrix optics elements on which thi®f the radius of curvature positive to the right in the zone of

work is based. Section 3 presents some of the basic featuregfractive indexn.) is given as

of iterative maps, in particular of the Tinkerbell, Duffing and

Hénon maps, Secs. 4, 5 and 6 shows, each one of them, the 1 0

main characteristics of the map generation matrix and Tinker- < 7M 1 >

bell, Duffing and Htnon Beams, as well as the general case

for each beams in a ring phase conjugated resonator. Finally Having vacuumi;= 1) on the left of the interface and a

Sec. 6 presents the conclusions. Kerr electro-optic material on the right. The aboveHC D]

matrix becomes

)

2. ABCD Matrix Optics

< 1 0 ) 3)
As it is known, any optical element may be described by a —w 1)

2x2 matrix in paraxial optics. Assuming cylindrical symme-
try around the optical axis, and defining at a given position Clearly the elementsl, B, D are constants but element
both the perpendicular distance of any ray to the optical axi€” is a function of the electric field.

Rev. Mex. Fis60(2014) 13-23
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Phase conjugate mirror The modeling of a real stimulated Brillouin scattering
phase conjugate mirror usually takes into account a Gaussian

A second example is a phase conjugate mirror. The proceggerture of radius at intensity 142 placed before an ideal

of phase conjugation has the property of retracing an incomphase conjugator. In this way the reflected beam is Gaus-

ing ray along the same incident path [7]. The idé&8C'D  sjan and only the parts of the Gaussian incident beam with

phase conjugate matrix is intensity above threshold are phase conjugate reflected. The
1 0 matrix of this aperture is given by:
R 4
One may notice that the determinant of this particular ma- ( 1,A 0 ) @8)
trix is not 1 but -1. The ABCD matrix of a reghase con- -2 1)

jugated mirror must take into account the specific process
to produce the phase conjugation. As already mentionedyhere the aperture is a function of the incident light in-
typically phase conjugation is achieved in two ways; Fourtensitya (/1) (I, must reach threshold to initiate the scatter-
Wave Mixing or using a stimulated scattering process such ag process). As we can see, depending on the model, the
Brillouin, i.e. Stimulated Brillouin Scattering (SBS). How- ABCD matrix elements of a phase conjugated mirror may
ever upon reflection on a stimulated SBS phase conjugatedepend on several parameters such as the Brillouin down-
mirror, the reflected wave has its frequengydownshifted  shifting frequency, the Gaussian aperture radius and the in-
tow — J = w(l - §/w) whered is the characteristic Bril- cident light intensity [20].
louin downshift frequency of the mirror material (typically
d/w < 1). In a non-ideali(e. real) case one must take the
downshifting frequency into account and the ABCD matrix Systems with hysteresis
reads s
( 1-5 0 ) ] (5) Atlast, as third example we may consider a system with hys-
0 -1 teresis. It is well known that such systems exhibit memory.
Furthermore, since in phase conjugation by SBS a lightrhere are many examples of materials with electric, magnetic
intensity threshold must be reached in order to have an exgng elastic hysteresis, as well as systems in neuroscience, bi-
ponential amplification of the scattered light, the above ideab|ogy' electronics, energy and even economics which show
matrix (4) must be modified. The scattered light intensity athysteresis. As it is known in a system with no hysteresis,
positionz in the medium is given as it is possible to predict the system’s output at an instant in
Is(z) = I (0)exp (gplLl), (6) time given only its input at that instant in time. However in
. _— . a system with hysteresis, this is not possible; there is no way
WhereIS(Q) IS the |n|t|alllevel _Of scattgrllnggB denotes the. to predict the output without knowing the system’s previous
charactensyc exponenqal gain c.oe.fflaent. of the scattering.« and there is no way to know the system’s state with-
proce;s,lL IS 'the intensity of th? |nC|den.t.I|ght beam, ahd out looking at the history of the input. This means that it
|s_the mteractlon _Iength over which amplification takes placeis necessary to know the path that the input followed before
Given the amplificatior = exp(gs(v)I1l) the threshold i o4 heq its current value [21]. For an optical element with

. . ~ 13 i
gain factor is commonly taken &~ exp(30) ~ 10" which . terecis thel BC' D matrix elements are function of the,
corresponds to a threshold intensity

Yn—1, - - -Yn—s; @andb,, 0,1, ..., 0,_; and its knowledge is
Iy = 30 (7)  hecessary in order to find the statg. 1, 6,,+1. In general,
' 9Bl taking into account hysteresis, thé,[B, C, D] matrix of Eq.

| (1) may be written as

( A B ) ( A (yna Yn—1,---Yn—i, ena 9’”—1’ -~-0n—i) B (yna Yn—1,---Yn—i, 9", 971—1’ -~-9n—i) > (9)
¢ D C(yn7yn—17~-~yn—1',50n79n—17 ---en—i) D (ynayn—lv---yn—ivenaon—la -~-9n—i) .

3. Dynamic Maps |

An extensive list of two-dimensional maps may be found in 0,1 = Cyn + DO,. (10b)

Ref. 22. A few examples are Tinkerbell, Duffing anéndn

maps. As will be shown next they may be written as a matrixp; 1 erbell Map

dynamical system such as the one described by Eq. (1) or

equivalently as The Tinkerbell map [23,24] is a discrete-time dynamical sys-
tem given by the equations:

Yn+1 = Ayn + Bena (103) Yn+1 = y'r21 - 0721 + AYn + ﬁen? (11a)

Rev. Mex. Fis60(2014) 13-23
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Duffing Map

Ot = 2ynln &y Yo+ 000, (11b) The study of the stability and chaos of the Duffing map has

wherey,, andé,, are the scalar state variables ands3, -, been the topic of many articles [28-29]. The Duffing map is

andd the map parameters. In order to write the Tinkerbel/@ dynamical system which may be written as follows:
map as a matrix system such as Eq. (1) the following values

for the coefficients4, B, C andD must hold Yn+1 = On, (22a)
_ _p3
Ayn,0) =yn +a, (12) Ot = =By + 0bn = On (225)
B(0,,8) = —0, + 8, (13)  wherey, andd,, are the scalar state variables andndg the
map parameters. In order to write the Duffing map equations
C(On:7) = 200+, (14)  as a matrix system Eq. (1) the following values for the co-
D(8) = 6. (15) efficientsA, B, C'and D must hold. It should be noted that

these coefficients are not constants but depent},aand the
It should be noted that these coefficients are not constanfguffing map parameters are as follows:
but depend on the state variablgsandd,, and the Tinker-
bell map parameters, 3, v, andd. Therefore as ad BC D A=0 (23)
matrix system the Tinkerbell map may be written as,

B=1 (24)
( Z”H ) _ ( Yn+a —0,+ 0 ) < Yn ) . ue) CB)=-p (25)
n+1 20n —+ vy ) 971 D(en; a) = o — 9721 (26)

Hénon Map . i
Therefore as an ABCD matrix system the Duffing map

The Henon map has been widely studied due to its nonlineafay be written as

chaotic dynamics. Bnon map is a popular example of a two-

dimensional quadratic mapping which produces a discrete- Yn41 0 1 Yn
time system with chaotic behavior. Theehbn map is de- - B a—062 ’
scribed by the following two difference equations [25,26]

(27)
9n+1

Yn+1 = 1- O‘yi + en ’ (173)
s = By (17b) a b
. . . . . C e
Following similar steps as those of the Tinkerbell map, this

map may be written as a dynamic matrix system

(yn+1>:<y1nayn 1><yn>7 (18) M
9n+1 ﬁ 0 971

wherey,, andf,, are the scalar state variables which can be
measured as time series améndj the map parameters. In
many control systems is a control parameter. The Jacobian
B (0 < 8 < 1)is related to dissipation. The dynamics of the
Hénon map is well studied (see, for instance, Ref. 27) and its
fixed points are given by:

_ A _ / 2
(y1,91)2< Fol+ 2(§+1) +4a7—ﬁy1>, (19)

—6-1—+/(B+1)2?+4a
(y2,02) = ( 5 ,=PBy2 |, (20)
«
and the corresponding eigenvalues are
FIGURE 1. Ring phase conjugated laser resonator with chaos gen-
A2 = —ay+/(ay)? - 3. (21)  erating element.

Rev. Mex. Fis60(2014) 13-23
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4. Maps in aring phase-conjugated resonator

In this section an optical resonator with a specific map behav-

ior for the variablegy andd is presented. Figure 1 shows a

ring phase-conjugated resonator consisting of two ideal mir-
rors, an ideal phase conjugate mirror and a yet unknown op-

tical element described by a matrix, p, ¢, ¢]. The two per-

IN OPTICAL RESONATORS 17

The above one round trip total transformation matrix is

a+ 32 b+ 320+ 3ed + 2¢)
sed . (29)

—c —= —e
As can be seen, the elements of this matrix depend on

the elements of the map generating matrix deviceé,[c, ¢].

fect plain mirrors [M] and the ideal phase conjugated mirrorlf one does want a specific map to be reproduced by a ray

[PM] are separated by a distanée The matrices involved

in this resonator are: the identity matri{: é ? ) for the
1 0

0 —1 for the ideal phase conju-

1 d

plane mirrors [M],<
gated mirror [PM],( 0 1

for a distanced translation

and, in addition, the unknown map generating device matrix

represented b C(f , is located between the plain mir-

rors [M] at distanéellz 2om each one.
For this system, the total transformation matrix
[A, B, C, D] for a complete round trip is given by

(&5)=(o 50 )0 1)

in the ring optical resonator, then each round trip a ray de-
scribed by ¢,,, 6,) has to be considered as an iteration of
the desired map. Then, tABCD matrix of the map system
(16), (18), (27) must be equated to the taA&ACD matrix of

the resonator (29), this in order to generate an specific map
dynamics for ¢,,, 6,,).

It should be noticed that the results given by Egs. (28) and
(29) are only valid forb small ¢ ~ 0). This due to the fact
that before and after the matrix elemeat, c, ¢] we have a
propagation ofl/2. For a general case, expression (29) has to

be substituted by:
A B 1 0 1 0
C D 0 —1 0 1

1 d
01

0 1
d-b d—b
AN AYERAYEN x(é §>(‘;2>(é f)
0 1 c e 0 1
1 0 1 d
10 1 d X ( ) ( ) (30)
><<01>(01>. (28) 0 1 0 1
| Therefore the round trip total transformation matrix is:
( a—%(b—3d) 1[b?c—2b(—2+a+3cd+e)+ 3d(2a+ 3cd + 2e)] )
(31)
—c 3 (bc — 3cd — 2e)
Matrix (29) describe a simplified ideal case whereas ma-
trix (31) describe a general more complex and realistic case. 3cd
These results will be widely used in the next three sections. et 5 = -9, (35)

5. Tinkerbell Beams

Equations (32-35) define a system for the matrix elements
a, b, ¢, e that guarantees a Tinkerbell map behaviour for a
given ray {,, 6,). These elements can be written in terms

This section presents an optical resonator that producesf the map parameters/( 3, v andd), the resonator’s main
beams following the Tinkerbell map dynamics; these beamparametet! and the ray state variablgs andé,, as:

will be called “Tinkerbell beams”. Equation (29) is the one

. . - 3
round trip total transformation matrix of the resonator. If one a=a-+ iyd + 3d0,, + yn, (36)
does want a particular map to be reproduced by a ray in the
optical resonator, each round trip described @y, €,,), has = 1(45 — 6ad + 66d
to be considered as an iteration of the selected map. In order 4
to obtain Tinkerbell beams, Eqgs. (12) to (15) must be equated — 9yd? — 46,, — 18d*0,, — 6dys,), (37)
to Eq. (29), that is:
c=—-20, —~, (38)
3cd
at = =aty, (32) 3
2 e=—0+ 5d(wrztﬂ)n). (39)
3d
b+ — (2a + 3cd + 2¢) = 3 — 0, (33) a b
4 The introduction of the above values for t)(eC
€= =7 =20n, (34 matrixin Eg. (28) enables us to obtain Eq. (16). For any
Rev. Mex. Fis60(2014) 13-23
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Matrix-element b
T

IRYANOV AND M. WILSON

| L2
HRINR AN e
WW’\ \/\/ /”\W/W\ \/ | \“\\W\//‘/\’”\/" \/‘H\ | /” e R =
LA —
IR e, &
| bcf3cd72626' (43)
0.05 2
The solution to this new system is written as:
' a:a+§7d+3d9n+yn+7
FIGURE 2. Computer calculation of the magnitude of matrix ele- 2 2y + 40,
mentb of the Tinkerbell map generating device for a resonator with Y(2—a+8—3yd—12d6,, — y,)
d=1 apd Tinkerbell parametecs: 0,8=-0.6,y=0andj =-1 % 10, (4 — 20 + 26 — 12d6,, — 2y,,) (44)
for the first 100 round trips. N (_1 iy ) =0 )
2 n
transfer matrix elementd and D describe the lateral mag-
nification whileC' describe the focal length, whereas the de- h— 1
vice'’s optical thickness is given b = L/n, whereL is v+ 20,
its length andn its refractive index. From Egs. (36-39) it fzZg)
must be noted that the upper elemenis(db) of the de- X (—2+a—5+37d+6d9n+yn+> , (45)
vice matrix depend on both state variablgs &ndé,,) while 2
the lower elementsc(ande) only on the state variablé,. ¢=—n— 20, (46)
The study of the stability and chaos of the Tinkerbell map in
terms of its parameters is a well-known topic [22,23]. The , _ 4, §,yd 4 3d0, + 1
behaviour of element is quite interesting; Fig. 2 shows 2 2y + 40,
a computer calculation for the first 100 round trips of ma- V(2= a+6—3yd — 12d6, — yy)
trix elementd of the Tinkerbell map generating device for
a resonator of unitary lengthi (= 1) and map parameters x | 40, (4 —2a+25 —12d0, — 2y,) |, 47)

a=0,8=-06,v=0andé = —1, these parameters
were found using brute force calculations and they were se-
lected due to the matrix-elemehtbehaviour ((e. we were
looking for behaviour able to be achievable in experiments).
As can be seen, the optical length of the map generating de-
vice varies on each round trip in a periodic form, this would

—0,) /P2 —Q

-3

here:

P =4—2a+25 —6yd — 12d6,, — 2y,

require that the physical length of the device, its refractive?nd

index -or a combination of both- change in time. The actual
design of a physical Tinkerbell map generating device for a
unitary ring resonator must satisfy Eqs. (36-39), to do so its
elementsd, b, c ande) must vary accordingly.

5.1. Tinkerbell beams: General Case

To obtain the Eqgs. (36-39) the thickness of the Tinkerbell
generating device, has to be very small (close to zero), so the_
translations before and after the device can be over the sam#
distanced/2. In the previous numeric simulatidrtakes val-

ues up to 0.2, so the general case where the map generatin
element does not have to be small must be studied. As pre-
viously explained Eq. (28) must be substituted by Eq. (30).

From Egs. (16) and (31) we obtain the following system

Q = (4 + 80,,)(—48 + 6yd — 65d
+ 9yd? + 46,, + 18d%0,, + 6dy,,).

Matrix-slement b
T

0421

01

008]

006]

004

002

100

FIGURE 3. Computer calculation of the magnitude of matrix ele-
mentb of the Tinkerbell map generating device for a resonator with
d = 1 and Tinkerbell parameters = 0.4 3 = —0.4,v = —0.3
andé = 0.225 for the first 100 round trips.

of equations for the matrix elementsb, ¢ ande:

a—5(b=3d) = a+y., (40)

Rev. Mex. Fis60(2014) 13-23
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It should be noted that if one takes into account the thick- *
ness of the map generating element, the equations complex |
ity is substantially increased. Now oniyhas a simple rela- \/\J\ /\ /\
tion with 6,, and~, on the other hand, b ande are depen- o=
dent on both state variables, on all Tinkerbell parameters, as J /
well as on the resonator length. When the calculation is per- ®r L ]
formed for this new matrix with the following map parame- L
ters:a = 04, 8 = —04, v = —0.3 andé = 0.225, Fig. 3 "7
is obtained. The behaviour observed in Fig. 3 for the matrix- \/
elementb can be obtained for several different parameters’
combinations, as well as other dynamical regimes with a lack _
of relevance to our work. One can note that after a few itera-
tions the device’s optical thickness is small and constant, this ! = L = L L o
should make easier a physical implementation of this deVICeFIGURE 4. Computer calculation of the magnitude of matrix ele-

mentb of the Duffing map generating device for a resonator with
6. Duffing Beams d = 1 and Duffing parameters = 1.04 and3 = -1 for the first 100
round trips.

This section presents an optical resonator that produces
beams following the Duffing map dynamics; these beams willateral magnification and elemeidt to the focal length,
be called “Duffing beams”. Equation (29) is the one roundwhereas elemerit gives the optical length of the device. The
trip total transformation matrix of the resonator. If one doesoptical thickness of thdBCDis; B = L/n, whereL is the
want a particular map to be reproduced by a ray in the 0ptiphysical length of the device andits refractive index. From
cal resonator, each round trip described by, ¢,,), has to ~ EGs. (52-55) we may see that tHeand'' elements of the ma-
be considered as an iteration of the selected map. In order #X [a, b, ¢, e] are constants depending only on the resonator

obtain Duffing beams, Egs. (23) to (26) must be equated tharameter/ and the Duffing parameters and 3. However
Eq. (29), that is: matrix elementsB and D are dynamic ones and depend on

the state variablé,,. Of special interest is eleme#t of the
at 3cd —0 (48) map generating matrixi| b, ¢, e]. Figure 4 shows a computer
’ calculation of matrix elemen® of the Duffing map generat-
3d ing device for a resonator witthi= 1 and Duffing parameters
b+ (2a+3cd+2e) =1, (49) 4 =1.04 and3 = -1 for the first 100 round trips. As it is
well known, depending on the and 5 map parameters dif-
—c=-6 (50 ferent dynamic states may be obtained including chaos. As
can be seen the optical length of the map generating device
given by theB matrix element varies on each round trip. This
requires that either the physical length of the device or its re-
Tractive index, or a combination of both, changes as shown in
Fig. 4. The design of a physical Duffing map generating de-
vice for this resonator must satisfy Eqgs. (52-55). A physical

d
L3 a2 (51)
2
Equations (48-51) define a system for the matrix element
of a, b, ¢, e, enabling the generation of a Duffing map for the
y, andé,, state variables. Its solution is:

34d implementation of this device is possible as long a8 BED
G==5 (52)  elements vary according to these equations.
1
b= 1 (4+ 6ad + 9Bd> — 6d67) (53) 6.1. Duffing Beams: General Case
c=p0, (54)  The results given by Eqgs. (52-55) are valid only when the
343 b element of thed, b, ¢, e] matrix is small. As can be seen
e=—0——— + 602, (655) from Eq. (28), the thickness of the Duffing map generat-

ing element (described by matrix,[b, ¢, ¢]) must be close to

As can be seen these matrix elements depend on the Duffero. This because in Eq. (28) the matrix before and after the
ing parameters: and 3 as well as on the resonator main pa- [a, b, ¢, €] is a matrix for ad/2 translation which is possible
rameterd and on the state variablg,. These are the values only if b = 0 or very small. The previous numeric simula-
which must be substituted for the, b, ¢, e] matrix in Eq. (28)  tion shows that thé element takes the values of up to 0.3.
for the round trip matrix. As expected, the introduction of Therefore one must consider a general case where the map
the aboved, b, ¢, e] matrix elements in Eq. (29) produces the generating elemertthas not the limitation of being asked to
ABCD matrix of the Duffing Map, Eq. (27). For a general be small. For a general case, Eq. (28) must be substituted by
ABCD transfer matrix, elementd and D are related to the Eg. (30) and (31). From expressions (27) and (31) we obtain
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the following system of equations for the matrix elememtb, c, €

a— g(b —3d) =0, (56)

i(b%f 2b(—2+ a + 3cd + €) + 3d(2a + 3cd + 2¢)) = 1, (57)
—c=—p, (58)

bC—3;d—26 _ _0721. (59)

The solution to this system is given by:

2+a—02 + /a2 +4B8(—1+3d) — 2a(—2 + 62) + (-2 + 62)2
a =

60
5 ; (60)
p_ 2+a+30d- 02 + /a2 +43(—1+3d) — 2a(—2 + 62) + (-2 + 62)?2 (61)
/8 b
c=p, (62)
C2—a+ 02+ /a2 +48(—1+3d) — 20(—2+ 02) + (—2 + 62)? (63)
= 5 i
007 A - |
/ ’\ ﬂ “ 7. Heénon Beams
o0s J H / / r/ [J i ) [J . ,\ ] This section presents an optical resonator that produces
J J J V beams following the Enon map dynamics; these beams will
oost- . be called “Henon beams”. Equation (29) is the one round

trip total transformation matrix of the resonator. If one does
want a particular map to be reproduced by a ray in the opti-
0w . cal resonator, each round trip described by, @,.), has to

be considered as an iteration of the selected map. In order to
obtain Henon beams, theA] B, C, [0 elements of Eq. (18)
must be equated to Eq. (29), that is:

Sed _ 1

I
0 20 40 60 a0 100 120

a+ 2 — — QYn, (64)
Yn
FIGURE 5. Computer calculation of the magnitude of matrix ele- 3d
mentb of the Duffing map generating device for a resonator with b+ — (2a + 3ed +2e) =1, (65)
d = 1 and Duffing parameteks = 1.04 andg = —0.6 for the first 4
100 round trips. —c=p, (66)
3cd
As we may see, taking into account the thickness of Ty T 0. (67)

the map generating element device described by matrix
[a,b, c, e] greatly increases its complexity. Now only tiié
matrix element is constant, being elementsB and D de-
pendent on the state variallg and on the Duffing param-

The solution for the I@non chaos matrix elements
[a,b,c, €], able to produce Bnon beams in terms of the
Hénon Map are the following:

etersa and 3 as well as on the resonator main parameter 384 1

Figure 5 shows a computer calculation of the matrix element a=—5 + " — QYn, (68)
B of the Duffing map generating device for a resonator with "

d = 1 and Duffing parameters = 1.04 andj = —0.6 for b—14 34 (_1 + oy, — 3d5) 7 (69)
the first 100 round trips. As can be seen, the optical thickness 2 Yn 2

variation of the map generating device now is rather small, c=—-8 (70)
which means that the length and/or refractive index variation ’

of the map generating element is also small and favors a phys- o — 3dB (71)
ical realization of this device. 2
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As can be seen the matrix elements depend on R  case because small valuesygfwill produce very large val-
parametersr and/ as well as on the resonator main param-ues for ‘b”, therefore making very difficult to obtain solutions
eterdand on the state variablg,. However when analyzing with practical value.
the behavior of elemend” (Eq. (69)) we may see that there
is a problem caused by the termyl/ While for the case of 7.1. Hénon Beams: General Case
Tinkerbell and Duffing beams we were able to look at the be-
havior of the obtaineds” element for small values af,, as  In an analogous way to the two previous cases, using expres-

it is shown in figures (2-5), this is not possible for the Henonsion (18) and (31) we obtain for the generaén®n chaos
|  matrix elementsd, b, ¢, ]:

Sl =2y oyl + /1 — Ay, —2(=2+ a— 28+ 68d) y2 + dayd + oyl

a 2yn 7 .
p— L (224 30d)yn —oyp /1~ dyn —2(2+ o~ 26+ 66d)y + dayi + a®yy. (73)
2yn,
c= g, (74)
o L2y ton — V1 — Ay, — 2(;2 +a =26 +608d)y; + dayn +a?y, (75)
Yn

8. A practical map generating device

. _ Ithe order of milliseconds it is necessary that the PZT stage be
As we have seen, in order to generaté&@CDmatrix system  yiiven at relatively high speeds,g the M-663 stage from

such as (11) itis essential to introduce an intra-cavity elemerghysik Instruments can reach displacement speeds of up to
which will be responsible for taking into account the hystere-444 mm/s (travel range of 19 mm with 100 nm resolution).

sis and non-linearity of the dynamic system. The intra-cavityy matrix of photosensor such as that offered by Centronic,
map generating device is described by>22matrix, where i.e. 12x12 elements, each element of %4 mm, can be

its elements are given by Egs. 10. The equations describingse as a first approximation. In this case, by considering the
the intracavity element are: travel range of the stage, the maximum transverse displace-

(76) ment of the beam spot, at the sensor plane, would be 3 pix,
where one pixel corresponds to one sensor element; for this
Boutput = CYinput + €input- (77) computation it was assumed that ray angles are less tifan 15

The practical implementation of an intra-cavity element ! i @rrangement would yield measurements with low accu-
is technically a complex task due to the fact that the actuaf@cy: To increase t_he accuracy of the measurement, the sepa-
intra-cavity matrix is a dynamic one, its value depends nofation between neighboring elements should be decreased.

only on the map constants but also on the previous round-
trip v, andé,, values [30]. In particular it is required for the
intra-cavity element a system able to detect and measure the
position and angle of incidence of the input beam parame-
ters,i.e. yinput anNdbinpus, this information should be optically

or electronically process (according to Eqs. 18-21) in order
to produce and generate the required output beam with new
parameterse. youtput aNdoupue A general intra-cavity ele-
ment does not yet exists.

The measurement of the impinging angle of a light beam
can be implemented by several techniques, such as the us
of collimators or interferometers. However, when the spatial
coordinates are also of interest, as in this case, there is not
straightforward solution. A possible solution is the use of a
matrix of photosensors mounted on a PZT-driven stage. As

shown in Fig. 6, a projected spot results from the projeCtionFlGURE 6. A photosensor array (PS) is translated by a PZT stage
of the beam onto the plane of the photosensors. The angle g8 3 distance D. This produces a displacement of the beam spot

be obtained by measuring the spatial coordinates of the sp@om P to Q,dx anddy. The incidence angles of the ray are given
for two different positions. To obtain measurement speeds 0By 6, = tan~'(dz/D) andf, = tan~'(dz/D). The light beam
is indicated by the red line.

Youtput = Yinput + bainputa
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ring optical phase conjugated resonators. It is shown how
the introduction of a particular map generating device in a
ring optical phase-conjugated resonator can generate beams
with the behavior of a specific two dimensional map. In this
way beams that behave according to the Tinkerbell, Duffing
or Henon Maps which we call “Tinkerbell, Duffing or Henon
Beams”, are obtained. In particular, this article shows how
Tinkerbell beams can be produced if a particular device is in-
troduced in a ring optical phase-conjugated resonator. The
difference equations of the Tinkerbell map are explicitly in-
troduced in anABCD transfer matrix to control the beams
behaviour. The matrix elemends b, ¢ ande of a map gen-
erating device are found in terms of the map parameters (
B, v andd), the state variableg{ andé,,) and the resonator
length. The mathematical characteristics of an optical de-
FIGURE 7. Beam steering by a SLM. The beam impinges on the yjce inside an optical resonator capable to produce Tinker-
SLM from the right. bell beams are found. In the general case a device with fixed

size was obtained, opening the possibility of a continuance

Th's can be achieved by using a camera sensor, wher& this work; that is the actual building of an optical device
the pitch may be as small as;4n at the maximum angle,

) o with theseu, b, c andd matrix elements according to the de-
the distance between the two positions of the beam spot ¢

b | hundreds of pixels. H in thi i ription given and the experimental observation of Tinker-
€ as large as hundreds ot pIXels. HOwever, in this case t\’?ell beams. Also, it is explicitly shown how the difference
complexity of the arrangement is increased.

On the other hand beam steering may be done by no equations of the Duffing map can be used to describe the dy-

"hamic behavior of what we call Duffing beairs beams that

mechanical array devices, which provide high-speed pOIntE)ehave according to the Duffing map. The matrix elements

ing, see Fig. 7. Among these types of devices we can mers, b, c, eof a map generating device are found in terms.of

tion those based on liquid-crystal displays (spatial light mOd'andﬁ, the Duffing parameters, the state variaijeand the

ulators, SLM) and those on microelectromechanical Systemt‘s‘esonator parametdr Finally it is shown that the difference

(MEMS.)' In the formers, t_he _phase of each eleme_nt of theequations of the Bnon map can be used to describe the dy-
matrix is changed by application of a low-voltage signal. In

) namical behavior of Enon beams. The matrix elemeatd,
the devices based on MEMS, each element of the array cor&—' eof a chaos generating device are found in terms afd

sists c_)f a micromirror, which gengrgtes tilt to steer the beamﬁ the Henon parameters, anithe resonator parameter.
Steering time is on the order of milliseconds.

A challenge for future research is in the practical imple-
mentation of this work since it would be very interesting to
build an actual optical device with the required§, c, e] ma-
This article presents a pedagogical description of the applitrix elements and realize the experimental observation of Tin-
cation of non-constant ABCD matrix in the description of kerbell, Duffing and lnon Beams.
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1. G.S. HeProg. in Quantum Electronic26 (2002) 131-191 7. M.J. Damzen, V.I. Vlad, V. Babin, and A. Mocofanes&tim-

2. H.-J. Eichler, R. Menzel, and D. Schumankppl. Opt, 31 ulat_ed Bri][IOL:]in _Scatte_ringl: Fundamentals and Applicatipns
(1992) 5038-5043 Institute of Physics, Bristol (2003)

3. M. O’Connor, V. Devrelis, and J. Munch, Proc. Int. Conf. on 8. D. A. Rockwell, IEEE Journal of Quantum Electronic4
Lasers'95(1995) 500-504 (1988) 1124-1140

4. M. Ostermeyer, A. Heuer, V. Watermann, and R. Menzéhtn 9. Dﬁmmigl, M.,_Zinner, G., Mitschke, F., Welling, H. Stimulated,
Quantum Electronics Con©SA Technical Digest Series (Op- Physical Review A8 (1993) 3301-3309
tical Society of America, Washington, DC, 1996), 259 10. P.J. Soan, M.J. Damzen, V. Aboites and M.H.R. Hutchinson,

5. .M. Beldyugin, M.G. Galushkin, and E.M. Zemskd¥van- Opt. Lett.19(1994) 783
tovaya Elektron 11 (1984) 887 Hov. J. Quantum Electron 11. A.D. Case, P.J. Soan, M.J. Damzen and M.H.R. Hutchinion,

14 (1984) 602; Bespalov V.I. and Betin A.Azv. Akad. Nauk Opt. Soc. Am. B (1992) 374

SSSR,, Ser. Fi53(1989) 1496. 12. B. Barrientos, V. Aboites, and M. Damzen, Temporal dynamics
6. V.V. Yarovoi, A.V. Kirsanov, Quantum Electronic82 (2002) of aring dye laser with a stimulated Brillouin scattering mirror,

697-702. Applied Optics35(1996) 5386-5391

Rev. Mex. Fis60(2014) 13-23



13.

14.

15.

16.

17.

18.

19.

20.

21.

BIDIMENSIONAL DYNAMIC MAPS IN OPTICAL RESONATORS

E. Rosas, V. Aboites, M.J. Damze®ptics Communications  22.

174(2000) 243-247

V. Aboites,Int. J. of Pure and Applied Mathematic36 (2007)
345-352.

V. Aboites and M. WilsonJnt. J. of Pure and Applied Mathe-
matics54 (2009) 429-435.

V. Aboites, A.N. Pisarchik, A. Kiryanov, X. Gomez-Mor@dpt.
Comm.283(2010) 3328-3333

V. Aboites, Y. Barmenkov, A. Kir'yanov, M. WilsonQptical
DevicesChapter XX, Optical Resonators and Dynamic Maps,
Ed. Intech, (In Press)

A. Gerrard and J.M. BurcHntroduction to Matrix Methods in
Optics(Dover Publications Inc., New York 1994).

Y. Hisakado, H. Kikuchi, T. Nagamura, and T. Kajiyanfed-
vanced Materiald7 (2005) 96-97

A.V. Kir'yanov, V. Aboites and N.N. llichevwJOSA B17 (2000)
11-17

I.D. Mayergoyz and G. BertottiThe Science of Hysteresis 30.

(Academic Press, New York 2005).

23

http://en.wikipedia.org/wiki/Lisof_chaoticmaps

24.

25.

26.
27.

28.

29.

23. R.L. Davidchack, Y.C. Lai, A.Klebanoff, E.M. BolltPhysics

Letters A287(2001) 99-104

P.E. McSharry, P.R.C. Ruffindynamical System$8 (2003)
191-200

E. Eschenazi, H.G. Solari, and R. Gilmofehys. Rev. /39
(1989) 2609.

M. Hénon,Commun. Math. Phy$0 (1976) 69.

R.L. DevaneyAn Introduction to Chaotic Dynamical Systems
(Addison-Wesley, Redwood City 1989).

L.M. Saha and R. Tehrilnt. J. of Appl. Math and Mech6
(2010) 86-93

C. Murakami, W. Murakami, K. Hirose and W.H. Ichikawa,
Chaos, Solitons & Fractal$6 (2003) 233-244

V. Aboites, Y. Barmenkov, A. Kiryanov, M. WilsorResults in
Physics2 (2012) 216-220.

Rev. Mex. Fis60(2014) 13-23



