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A model of oscillator with variable mass
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We discuss the general form of Newton’s second law for variable mass systems. We then derive the equation of motion of one-dimensional
oscillator with time-varying mass. The obtained equation of motion is then analytically solved and the solutions are represented by means of
Hypergeometric functions. The work is addressed to physics class at undergraduate level.
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1. Introduction

In mechanics, variable-mass systems are systems which have
mass that does not remain constant with respect to time. In
such systems, Newton’s second law of motion cannot di-
rectly be applied because it is valid for constant mass systems
only [1]. Instead, a body whose massm varies with time can
be described by rearranging Newton’s second law and adding
a term to account for the momentum carried by mass entering
or leaving the system [1,2,7].

Due to the intrinsic difficulty of the involved concepts
and the necessary analytical methods, usually this topic is
not addressed thoroughly in basic physics courses. Thus, it
may be interesting to propose new approaches to the topic
for students of science and engineering at the undergradu-
ate/graduate level.

In this work, we derive the correct form of Newton’s sec-
ond law applied to variable-mass systems. Then, we discuss
a simple model for describing the dynamics of an oscilla-
tor with a time-varying mass, where the mass is given by an
explicit function of the square of time. Thus, the obtained
equation of motion is solved in closed form in terms of Hy-
pergeometric functions.

The work is addressed to undergraduate students and
teachers. The study of this topic requires acquaintance with
basic concepts of calculus and physics at intermediate level.

2. Variable-mass systems and Newton’s sec-
ond law

Consider a particle of massm which is moving with velocity
v at timet. Under the action of the forceF between the time
instantst andt + dt, its velocity changes fromv to v + dv.
According to Newton’s second law, the change of the linear
momentum,dp, is given by

dp = Fdt, (1)

wherep = mv. For constant mass, Eq. (1) entails

m
dv

dt
= F. (2)

Equation (2) represents Newton’s second law as it is of-
ten presented in textbooks. This form is particularly useful
in obtaining the equation of motion of a particle of constant
mass. Equation (1) leads to an alternative form of Newton’s
second law, however:

F =
dp

dt
, (3)

and further
F =

d

dt
(mv). (4)

When applied to describe the dynamics of a constant
mass particle, Eqs. (2) and (4) provide equivalent expres-
sions of Newton’s second law. Furthermore, those equations
are invariant under the Galilean transformations, defined by

x′ = x− ut; v′ = v − u, (5)

whereu is the velocity of the primed frame of reference rela-
tive to the unprimed frame. Applying the transformations (5)
to Eqs. (2) and (4), we getF ′ = F .

The description of a variable-mass particle is a bit more
difficult. In order to explore this point, let us apply the
Galilean transformations (5) to the equation of motion (4).
The invariance of Newton’s second law enforces that the
equation of motion in the primed frame of reference must
retain the same form of Eq. (4):

F ′ =
d

dt
(mv′). (6)

The derivative yields

F ′ = m
dv

dt
+

dm

dt
(v − u) , (7)



32 H. RODRIGUES, N. PANZA, D. PORTES JR AND A. SOARES

and so,

F ′ =
d

dt
(mv)− dm

dt
u 6= F. (8)

So, the equation of motion (4) is not Galilean invariant
when the mass depends on the time. In order to correctly ob-
tain the equation of motion, we have to apply the principle
of conservation of linear momentum for the entire system,
which is the basic principle behind the Newton’s second law.
Thus, consider a single-degree of freedom system of initial
massm, as illustrated in Fig. 1. The center of mass of the
system (body 1 in the figure) moves with velocityv at the in-
stantt. The particle of mass∆m (body 2) and mean velocity
w is imparted to the system during a time interval∆t. As-
suming that the mass of the entire system is conserved during
the process, the new mass of the system and the velocity of
its center of mass increase tom+∆m and tov+∆v, respec-
tively. The linear momentum of the entire system at the time
t is thus given by

p(t) = mv + (∆m)w, (9)

while the new linear momentum of the whole system at the
time t + ∆t reads

p(t + ∆t) = (m + ∆m)(v + ∆v). (10)

Hence, the change in the total linear momentum of the
system is

∆p = m∆v + ∆m∆v −∆m (w − v) . (11)

FIGURE 1. (Color online) - The particle of mass∆m and velocity
w collides with a particle of massm and gets stuck in it. After the
process, the new particle of massm + ∆m moves with velocity
v + ∆v.

It follows from Eq. (11) that

∆p

∆t
= m

∆v

∆t
+

∆m

∆t
∆v − ∆m

∆t
(w − v) . (12)

Taking the limits∆t → 0, ∆m → 0, and∆v → 0 in the
Eq. (12), and in addition recalling the Newton’s second law,
F = dp

dt , whereF is the external force acting on the system,
one obtains

F = m
dv

dt
− dm

dt
q, (13)

whereq = w − v is the relative velocity of incident (or es-
caping) mass with respect to the center of mass of the body.
Equation (13) can also be placed in the form [6]

m
dv

dt
= F +

dm

dt
q. (14)

Analogously, for dm
dt < 0 (system losing mass) we would

obtain

m
dv

dt
= F − dm

dt
q. (15)

Of course, in the case of isotropic mass variation, that is,
isotropic in a system that moves with the body, the net contri-
bution from thedm

dt term is zero. Thus, in this case the correct
equation is the common Newton’s second law

m
dv

dt
= F. (16)

In Eq. (14) the time ratedm
dt should be taken as a positive

quantity, since it represents the rate at which the mass of the
system increases. On the other hand, if the system is losing
mass, then the time ratedm

dt present in Eq. (15) must be taken
as a negative quantity. Furthermore, the Eq. (19) is actually
invariant under Galilean transformations.

Equations (14) and (15) describe the motion of a time-
varying mass particle, and represent the proper extension of
Newton’s second law. The termdm

dt (w− v) in the right-hand
side should be interpreted as a real force acting on the parti-
cle, apart from the external forceF .

Interestingly, for the particular caseF = 0 (absence of
any external forces) the Eq. (15) leads to the simplified equa-
tion of motion

m
dv

dt
= −dm

dt
q. (17)

Equation (17) is known as the rocket equation, used to
describe the motion of a rocket drifting in the free space. The
relative velocityq represents the velocity of the gases escap-
ing from the rocket, and is often called theexhaust veloc-
ity [5,8].

Also note that Eq. (13) may be put in the form

F =
d

dt
(mv)− dm

dt
w, (18)

which means that Eq. (18) recovers Eq. (4) in the particular
casew = 0.

Rev. Mex. Fis.60 (2014) 31–38



A MODEL OF OSCILLATOR WITH VARIABLE MASS 33

3. One-dimensional oscillator with variable
mass

In order to model a variable-mass oscillator, consider a leak-
ing bucket of water which is attached to a spring, as illus-
trated in Fig. 3. The water exits out through a small hole
at the bottom of the bucket. In this situation, and ignoring
friction, the system is subjected to the action of three differ-
ent forces, namely, the elastic force exerted by the spring, the
weight of the oscillator, and the force exerted by the flowing
water. Assuming that the movement is along thez-axis, and
in accordance with Eq. (15), this model can be described by
the following equation of motion [7]:

m
d2z

dt2
= −dm

dt
q − kz −mg, (19)

wherez(t) is the position of the center of mass measured
from the rest position,q = w − dz

dt is the relative velocity of
escaping water with respect to the center of mass of the body,
k is the stiffness coefficient of the linear restoring force, and
g is the constant acceleration of gravity.

FIGURE 2. (Color online) - Oscillator with a variable mass. A
bucket filled with water is attached to a spring. The water flows out
through a small hole in the bottom of the bucket.

For q = 0, dm
dt = 0, and d2z

dt2 = 0 Eq. (19) gives the
equilibrium position

z0 = −m0g

k
, (20)

wherem0 is the initial mass of the oscillator. Ifm is constant,
the system oscillates around the positionz0. So, by means of
the coordinate transformation

z → z + z0, (21)

the equation of motion (19) turns into

m
d2z

dt2
= −dm

dt
q − kz + (m0 −m) g. (22)

So, at every timet the “instantaneous” equilibrium position
is given by

z0(t) =
m0 −m(t)

k
g. (23)

The mass of water has a quadratic dependence on the time
(see Appendix A for details of calculation) which is given by

mw(t) = mw(0)
(

1− ft

√
g

2h0

)2

, (24)

wheremw(0) is the initial mass of water,f = a
A is the ratio

between the cross-sectional areaa of the hole, and the cross-
sectional areaA of the column of water, andh0 is the initial
height of the column of water. The mass of the oscillator is
given by the summation of the mass of the bucketmb, and
the time-varying mass of watermw(t).

Assuming the leaking of water occurs at a very low rate,
one can neglect the effect of the first term on the right side of
Eq. (22) on the dynamics of the oscillator. In this approach,
the equation of motion of the oscillator reads

[mb + mw(t)]
d2z

dt2
= −kz + [mw(0)−mw(t)] g. (25)

4. Solution of the equation of motion

In this section, we present the analytical solution of the equa-
tion of motion (25). For this purpose, we have to analyze the
problem in two different scenarios. The first one corresponds
to the existence of the water within the bucket. According
to Eq. (24), the bucket is completely empty after the elapsed
time given by

τ =
1
f

√
2h0

g
. (26)

In this case, by using Eqs. (24) the equation of motion (25),
which is valid for the time interval0 ≤ t ≤ τ , can be put in
the form [

mb + mw(0)
(

1− t

τ

)2
]

d2z

dt2
=

− kz −mw(0)g

[(
1− t

τ

)2

− 1

]
. (27)
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After the elapsed timeτ , the oscillations are governed by
the differential equation

mb
d2ẑ

dt2
+ kẑ = mw(0)g, t ≥ τ. (28)

Now, we shall consider the solution of the Eq. (27).
Defining the new variable

x = −mw(0)
mb

(
1− t

τ

)2

, (29)

and following rather simple calculations, Eq. (27) transforms
into

x(1− x)
d2z

dx2
+

1
2

(1− x)
dz

dx

− τ2k

4mw(0)2
z = − τ2g

4mw(0)
(mw(0) + mbx). (30)

Now we assume that the general solution of Eq. (30) can be
written in the form

z(x) = zh(x) + zp(x), (31)

wherezh(x) stands for the solution of the homogeneous dif-
ferential equation associated to Eq. (30), andzp(x) is a
particular solution of the same equation. The former corre-
sponds to the well-known Hypergeometric differential equa-
tion [9,10]:

x(1− x)
d2z

dx2
+ [c− (a + b + 1)x]

dz

dx
− abz = 0. (32)

Equation (32) is invariant by permutationa ←→ b with
singularities atx = 0, 1, and∞ (all regular). Thus, the solu-
tion of equation (32) reads

z(x) = c1 2F1(a, b, c, x)

+ c2x
1−c

2F1(a + 1− c, b + 1− c, 2− c, x), (33)

where c /∈ Z, c1 and c2 are arbitrary constants, and
2F1 (a, b, c, x) is the Hypergeometric function, defined by

2F1 (a, b, c, x) =
Γ (c)

Γ (a) Γ (b)

×
∞∑

n=0

Γ (a + n) Γ (b + n)
Γ (c + n)

xn

n!
, (34)

with Γ representing the gamma function [9,10]. The radius of
convergence of this series is|x| ≤ 1 for Re(c− a− b) > 0.

Direct comparison between Eqs. (32) and (33) leads to
the system

c =
1
2
, a + b = −1

2
, ab =

τ2k

4m0
, (35)

which provides

a = −1
4
± 1

4

√
1− 4τ2k

m0
,

b = −1
4
∓ 1

4

√
1− 4τ2k

m0
. (36)

Then, the homogeneous solution corresponding to the
Eq. (32) can be expressed in the following form

(
choosing

e.g.a = − 1
4 + 1

4

√
1− 4τ2k

m0
andb = − 1

4 − 1
4

√
1− 4τ2k

m0

)
:

zh(t)=c1 2F1

(
−1

4
+

1
4

√
1−4τ2k

m0
,−1

4
−1

4

√
1−4τ2k

m0
,

1
2
,−m0

mt

(
1− t

τ

)2
)

+ c2

√
m0

mt

(
1− t

τ

)

× 2F1

(
− 1

4
+

1
4

√
1−4τ2k

m0
,−1

4
−1

4

√
1− 4τ2k

m0
,

3
2
,−m0

mt

(
1− t

τ

)2
)

. (37)

In order to get an oscillatory solution, it is enough to in-
sure that

kh0

m0gf2
>

1
8
. (38)

On the other hand, a glance at the right-hand side of
Eq. (30) suggests to propose the following particular solu-
tion:

zp(t) = γt2 + ξt + η, (39)

whereγ, ξ andη are arbitrary constants. Inserting Eq. (39)
into Eq. (30) yields

γ = − m0g

τ2k + 2m0
, ξ =

2m0τg

τ2k + 2m0
,

η =
2m0g (m0 + mt)
k (τ2k + 2m0)

. (40)

Finally, inserting the obtained expressions forγ, ξ and
η into Eq. (39), the general solution of the equation of mo-
tion (30) is obtained by substituting Eqs. (37) and (39) into
Eq. (31).

Let us look now for the Eq. (28). Clearly, the solution is
given by the simple harmonic form

ẑ(t) = c3 sin

(√
k

mt
+ φ

)
− z0, t ≥ τ, (41)

the constantz0 being defined by Eq. (20).

The four constantsc1 , c2 , c3 andφ can be determined by
using the initial conditionz(0) = 0 andv(0) = 0, together
with the condition of continuity of the solutionsz(t) andẑ(t)
as well asv(t) andv̂(t) calculated at the timet = τ . The ex-
plicit formulas for these constants are given in the Appendix.
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5. Results

The scheme for solving the problem encompasses the fol-
lowing steps. First, assign initial values to all variables: the
elapsed timet = 0; the initial positionz = z(0); the ini-
tial velocityv(0); the initial mass of watermw(0); the initial
height of the water columnh(0); the value of the ratiof be-
tween the cross-sectional areasa andA. Assign values to
constantsg, k, and the mass of the bucketmt. Then, eval-
uate the positionz(t) at the timet, given by Eq. (31), for
0 ≤ t ≤ τ , and by Eq. (41), fort ≥ τ .

We trigger the time evolution of the oscillator with the ini-
tial conditionz(0) = 0 m andv(0) = 0 m s−1. This means
that the change in the dynamic state of the system is purely
caused by the change in mass of the oscillator with time. Fig-
ure 3 depicts the behavior of the position of the oscillator in
thez-axis as a function of time for the adopted values of the
model parameters as outlined in the caption of the figure. The
mass of the oscillator at every time ism(t) = mt + mw(t),
with mw(t) given by Eq. (24).

As shown in Fig. 3, the “instantaneous” equilibrium po-
sition of the oscillator moves upward while the water in the
bucket flows out. The oscillations are obviously caused by
the action of the restoring force, as the mass of the oscillator

FIGURE 3. (Color online) - Position as a function of time for
f = 0.01. The used values of the other parameters are
g = 9.8 m s−2, k = 102 kg s−1 (stiffness coefficient of the spring),
mb = 1.0 kg (mass of the bucket),mw(0) = 10.0 kg (initial mass
of water), andh(0) = 0.5 m (initial height of the water column).

FIGURE 4. (Color online) - Energy as a function of time for
f = 0.01. The values of the other parameters are the same used in
the previous figure.

decreases, and so its weight. The system shows a typical os-
cillatory behavior with “amplitude” and “frequency” which
vary as the water leaves the bucket. At the end, there re-
mains only the bucket that oscillates like a one-dimensional
harmonic oscillator with constant amplitude and frequency.
The final equilibrium position, around which the bucket os-
cillates aftert > τ , can be computed by using Eq. (23),
which in the present case has the value0.98 m.

We also compute the elastic potential energy,Uk, and the
gravitational potential energy,W , which are given respec-
tively by

Uk =
1
2
k

(
z − m0

k
g
)2

, (42)

and
W = mgz. (43)

The mechanical energy of the system is set by the sum of
the elastic potential energy, the gravitational potential energy
and the kinetic energy, namely,E = T + Uk + W .

Figure 4 depicts the behavior of the energy of the oscil-
lator as a function of time for the same set of values of the
parameters used in Fig. 3. As discussed in Sec. 3, we can see
that the total energy of the oscillator is not conserved due to
the mass loss of the system.

6. Concluding remarks

In this work we present a set of equations which are used to
model the dynamics of a one-dimensional oscillator with a
time-varying mass. The time change of the mass is taken into
account, using a simple modeling (the bucket of water) where
the mass of the oscillator has a quadratic dependence on time.

The resulting equation of motion is analitycally solved in
terms of the Hypergeometric functions, and some results for
some chosen values of the model parameters have been pre-
sented and discussed in the text.

At this point, we point out that the quadratic dependence
of mass on time is only a motivator for the leaking oscillator
problem, treated here as a purely theoretical problem. There-
fore, this result should be considered within its appropriate
limitations. Probably, when the bucket is moving, going up
and down with the oscillations, the flow rate through the hole
could be seen to change as well, deviating slightly from the
results obtained here. In other words, we are ignoring the
fact that the bucket, as well as the water within it, are ac-
celerating frames. However, we can admit that the quadratic
dependence of mass must work as a reasonable approxima-
tion in the case the loss of water occurs at a very low rate,
and the oscillating bucket experiences smooth motions as in-
vestigated in this article. As a suggestion, the model could
be investigated experimentally using a motor and a leaking
bucket of water, for example, in order to validate or not the
assumptions made for the present model for the quadratic de-
pendence of mass.

The present study is intended to be used as a useful ap-
proach to the physics of time-varying mass systems at under-
graduate e level.
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A: Leaking bucket of water

Consider a bucket of water with cross-sectional areaA and
the column of water of heighth. At the bottom of the bucket
there is a small hole with cross-sectional areaa, with a ¿ A.

Disregarding losses, we can apply the Bernoulli equation:

p2 +
1
2
ρQ2 + ρg (z1 + h) = p1 +

1
2
ρq2 + ρgz1, (A.1)

wherep1 andp2 are the pressures at the bottom of the bucket
and at the free liquid surface, respectively. The upper part
of the bucket is open to the atmosphere, and so the wa-
ter leaks the bucket freely through the hole. We thus have
p1 = p2 = p0, wherep0 is the local atmospheric pressure.
Q is the velocity at the free liquid surface andq is the exit
velocity of the water;h is the height of the free liquid surface
relative to the bottom;ρ is the density of the liquid; andz1 is
the position of the bottom of the bucket in thez-axis.

BecauseA À a, the velocityQ can be set equal to zero.
Thus, we can make these substitutions into the Bernoulli
equation to obtain

q =
√

2gh. (A.2)

Notice that Eq. (A.2) is valid even when the surface level
is decreasing due to water leakage, provided that the time rate
of change ofh andQ is sufficiently small.

From the equation of continuity the rate of loss of mass
is related to the mass flow trough the equation

dm

dt
= −ρqa. (A.3)

On the other hand, the mass of water stored in the bucket at
the timet is given by

m(t) = ρAh. (A.4)

Inserting (A.2) into (A.3) yields

dm

dt
= −ρA

√
2gh. (A.5)

From (A.4), we can put (A.5) in the form

dm

dt
= −f

√
ρA

√
2gm, (A.6)

wheref = a
A . Thus, Eq. (A.6) leads to

mw∫

mw(0)

dm√
m

= −
t∫

0

f
√

ρA
√

2gdt, (A.7)

wheremw(0) = ρAh0. By carrying out both integrals in the
Eq. (A.7), one obtains Eq. (24).

B

In this appendix we write down the explicit expressions of the
constantsc1 , c2 , c3 andφ appearing in the general solutions
(33) and (41). The constantc1 is given by

c1 = − 2m0g

k (τ2k + 2m0)
S1

S2
, (B.1)

where

S1 = 3mt

[
k + τ−2(m0 + mt)

]× 2F1

(
1
4
+

1
4

√
1−4τ2k

m0
,
1
4
−1

4

√
1−4τ2k

m0
,
3
2
,−m0

mt

)

−k(m0+mt)2F1

(
5
4
−1

4

√
1−4τ2k

m0
,
5
4

+
1
4

√
1− 4τ2k

m0
,
5
2
,−m0

mt

)
, (B.2)

and

S2 = −k 2F1


5

4
− 1

4

√
1− 4τ2k

m0
,
5
4

+
1
4

√
1− 4τ2k

m0
,
5
2
,−m0

mt




×2 F1


−1

4
+

1
4

√
1− 4τ2k

m0
,−1

4
− 1

4

√
1− 4τ2k

m0
,
1
2
,−m0

mt




+ 3k 2F1


3

4
− 1

4

√
1− 4τ2k

m0
,
3
4

+
1
4

√
1− 4τ2k

m0
,
3
2
,−m0

mt




×2 F1


1

4
+

1
4

√
1− 4τ2k

m0
,
1
4
− 1

4

√
1− 4τ2k

m0
,
3
2
,−m0

mt


 (B.3)
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+ 3mtτ
−2

2F1


1

4
+

1
4

√
1− 4τ2k

m0
,
1
4
− 1

4

√
1− 4τ2k

m0
,
3
2
,−m0

mt




×2 F1


−1

4
+

1
4

√
1− 4τ2k

m0
,−1

4
− 1

4

√
1− 4τ2k

m0
,
1
2
,−m0

mt


 . (B.4)

Similarly, the constantc2 can be expressed as

c2 = − 6m0g

τ2k + 2m0

√
mt

m0

S3

S4
, (B.5)

where

S3 = −mt 2F1


−1

4
+

1
4

√
1− 4τ2k

m0
,−1

4
− 1

4

√
1− 4τ2k

m0
,
1
2
,−m0

mt




+ (m0 + mt) 2F1


3

4
− 1

4

√
1− 4τ2k

m0
,
3
4

+
1
4

√
1− 4τ2k

m0
,
3
2
,−m0

mt


 , (B.6)

and

S4 = 3k 2F1


3

4
− 1

4

√
1− 4τ2k

m0
,
3
4

+
1
4

√
1− 4τ2k

m0
,
3
2
,−m0

mt




×2F1


1

4
+

1
4

√
1− 4τ2k

m0
,
1
4
− 1

4

√
1− 4τ2k

m0
,
3
2
,−m0

mt




+ 3mtτ
−2

2F1


1

4
+

1
4

√
1− 4τ2k

m0
,
1
4
− 1

4

√
1− 4τ2k

m0
,
3
2
,−m0

mt




× 2F1


−1

4
+

1
4

√
1− 4τ2k

m0
,−1

4
− 1

4

√
1− 4τ2k

m0
,
1
2
,−m0

mt




− k 2F1


5

4
− 1

4

√
1− 4τ2k

m0
,
5
4

+
1
4

√
1− 4τ2k

m0
,
5
2
,−m0

mt




× 2F1


−1

4
+

1
4

√
1− 4τ2k

m0
,−1

4
− 1

4

√
1− 4τ2k

m0
,
1
2
,−m0

mt


 . (B.7)

Finally, the remaining constantsc3 andφ are obtained from the constantsc1 andc2 by means of the following formulas:

c3 =

√(
c1 +

2m0mtg

k (τ2k + 2m0)

)2

+
m0c2

2

τ2k
, (B.8)

and

φ = arcsin
[

1
c3

(
c1 +

2m0mtg

k (τ2k + 2m0)

)]
− τ

√
k

mt
. (B.9)
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