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In this work we provide an introductory discussion to quasi-probabilities in quantum optics and how to use them for evaluating the Mandel
parameter.
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1. Introduction

The focus of this article is the notion of quasi-probability.
Why? because this is an important concept for quantum op-
tics (among other fields). What is a quasi-probability dis-
tribution (QPD)? It is a mathematical construction that, al-
though resembling a probability distribution, does not exactly
fulfill the Kolmogorov’s axioms on which probability theory
is founded [1], more specifically, the third one may be vio-
lated [1]. Quasi-probabilities exhibit general features of or-
dinary probabilities. They yield expectation values with re-
spect to the weights of the quasi-distribution. However, let
us reiterate, they violate the third probability postulate [1], in
the sense that regions integrated under them do NOT rep-
resent probabilities of mutually exclusive states. In some
cases, quasi-probability distributions exhibit zones of nega-
tive probability density. QPDs often arise in the phase space
representation of quantum mechanics, customarily employed
in quantum optics, time-frequency analysis, etc.

It is well known that the dynamics of a quantum system
is determined by a master equation. One faces an equation of
motion for the density operator̂ρ, expressed via a complete
orthonormal basis. It is always possible to cast the density
operator in a diagonal manner, provided that an overcomplete
basis be used [2]. The most famous such basis is that of co-
herent states|α〉 [3]. One writes [2]

ρ̂ =
∫

d2α

π
f(α, α∗) |α〉〈α|. (1)

We see that a central role is assigned to the ordinary func-
tion f , that becomes endowed with the features of a quasi-
probability distribution. In particular, one hasd2α/π =
dxdp/2π~. The system evolves as prescribed by the evolu-
tion of the quasi-probability distribution function. Coherent
states, right eigenstates of the annihilation operatorâ, serve
as the overcomplete basis in such a build-up [2,3].

In quantum optics f is called the functionP . One speaks
of the P-representation. There exists two other important
representations, known as theQ- andW - ones. There ex-
ists a family of different representations, each connected to
a different ordering of the underlying creation and destruc-
tion operatorŝa and â†. Historically, the first of these is
the Wigner quasi-probability distributionW [4], related to
symmetric operator ordering. In quantum optics the particle
number operator is naturally expressed in normal order and,
in the pertinent scenario, the associated representation of the
phase space distribution is the Glauber–SudarshanP one [3].
In addition to these two (W and P ), one often encounters
other quasi-probability distributions emerging in alternative
representations of the phase space distribution [5]. A quite
popular representation is the HusimiQ one [6-9], employed
when operators are in anti-normal order.

In this paper we wish illustrate how these orderings are
tackled so as to find theW , P , andQ representations for the
important instance of the Harmonic Oscillator (HO) of angu-
lar frequencyω in the canonical ensemble formulation. In
such a scenario one deals with three functions associated to
the W, Q, and P representations that are simple Gaussians and
the treatment becomes entirely analytical, a very convenient
didactic feature. The HO is a really important system that
yields insights usually having a wide impact. Thus, the HO
constitutes much more than a mere simple example. Nowa-
days, it is of particular interest for the dynamics of bosonic or
fermionic atoms contained in magnetic traps [10-12] as well
as for any system that exhibits an equidistant level spacing
in the vicinity of the ground state, like nuclei or Luttinger
liquids. For the sake of concreteness we focus attention on
a physical important quantity, a noise indicator, called the
Mandel parameter.

So as to accomplish our didactic purposes, this commu-
nication is organized as follows. In Sec. 2. we review some
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notions about the Mandel parameter. In Sec. 3. we dis-
cuss the formulation of the Mandel parameter in terms of
theP−function for a thermal state. In Sec. 4. we reproduce
the same ideas viaQ−function, and in Sec. 5. we recalculate
these results in terms of the Wigner function. Finally, some
conclusions are drawn in Sec. 6.

2. Mandel parameter

Since the very beginnings of quantum mechanics there has
been interest in gauging how non-classical a quantum system
can be. Several questions can be asked in this respect. For
instance, how closely does the probability distribution for a
state after a given series of measurements resemble that of a
classical system? Or, how much is a quantum state perturbed
by a measurement on the system?

A useful parameter to characterize non-classicality in
quantum optics is the so-called Mandel parameter, introduced
by Mandel in Ref. 13. It is defined as

QM =
(∆n̂)2

〈n̂〉 − 1 ≡ F − 1, (2)

and intimately linked to the normalized variance,
which is also denominates the quantum Fano factor
F=(∆n̂)2/〈n̂〉 [15] of the photon distribution, with
(∆n̂)2 = 〈n̂2〉 − 〈n̂〉2, and the number operator̂n = â†â.
One must take note that

• ForF < 1 (QM ≤ 0), emitted light is referred to as
sub-Poissonian since it has photo-count noise smaller
than that of coherent (ideal laser) light with the same
intensity (F = 1; QM = 0), whereas

• for F > 1, (QM > 0) the light is called super-
Poissonian, exhibiting photo-count noise higher than
the coherent-light noise.

If for the photon number operator̂n the fluctuations in̂n dis-
appear, the Mandel parameter becomesQM = −1 (F = 0).
We pass now to our central issue, the evaluation of the Man-
del parameter for our three quasi-probability instances,i.e.,
P , Q, andW .

3. Mandel Parameter via theP−function

The most general density operator is just a superposition
of projection operators, known as the Glauber-Sudarshan
P−representation [14]. One has

ρ̂ =
∫

d2α

π
P (α, α∗) |α〉〈α|, (3)

where the functionP (α, α∗) plays the role of a probability
density for the distribution of values ofα over the complex
plane. A coherent state|α〉 is a specific kind of quantum state,
the one that most resembles a classical state. It is applicable

to the quantum harmonic oscillator, the electromagnetic field,
etc., and describes a maximal kind of coherence and a clas-
sical kind of behavior. The states|α〉 are normalized,i.e.,
〈α|α〉 = 1, and they provide us with a resolution of the iden-
tity operator

∫
d2α

π
|α〉〈α| = 1, (4)

which is a completeness relation for the coherent states [3].
The standard coherent states|α〉 for the harmonic oscillator
are eigenstates of the annihilation operatorâ, with complex
eigenvaluesα, which satisfyâ|α〉 = α|α〉 [3]. Also, â, a†,
andn̂ fulfills the commutation relations

[â, â†] = 1, (5a)

[n̂, â] = −â, (5b)

[n̂, â†] = â†. (5c)

As stated above,P (α) is a quasi-probability distribution
function because it can have negative values and strong sin-
gularities, especially when the density operator corresponds
to a nonclassical state with sub-Poisson photon statistics
(see Ref. 16 and references therein). When this function
tends to vary little over large ranges of the parameterα, the
nonorthogonality of the coherent states will make little differ-
ence, andP (α) can be interpreted as a probability distribu-
tion [3]. The normalization property of the density operator
requires thatP (α) obey the normalization condition [3]

Tr ρ̂ =
∫

d2α

π
P (α, α∗) = 1. (6)

Accordingly, the expectation value of an observableÂ is
given by [16]

〈Â〉 = Tr(ρ̂Â) =
∫

d2α

π
P (α, α∗) 〈α|Â|α〉. (7)

In this context,the average particle-number–an important
quantity for our present considerations– acquires a simple
form that, according to Eq. (3), can be cast in the fashion [3]

〈n̂〉 = Tr(ρ̂â†â) = 〈â†â〉P

=
∫

d2α

π
P (α, α∗) |α|2 = 〈|α|2〉P , (8)

indicating that the average photon number is the mean
squared absolute value of the amplitudeα. Note that〈 〉P
is the average with respect toP (α).

In particular, for a thermal state for which the density op-
erator is of the form prescribed by the canonical ensemble’s
representation we have

ρ̂ = (1− e−β~ω) e−β~ωâ†â (9)
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and the correspondingP−function becomes

P (α, α∗) =
1
〈n̂〉 exp

(
−|α|

2

〈n̂〉
)

, (10)

while the average particle-number is given by [3]

〈n̂〉 = 〈|α|2〉P =
e−β~ω

1− e−β~ω . (11)

Now, for all normal-ordered operator-averages we have

〈â†râs〉P =
∫

d2α

π
P (α, α∗)α∗rαs. (12)

In particular, forr = s = 2, and taking into account the
commutation relations between̂a andâ†, we find

〈â†2â2〉P = 〈(â†â)2〉P − 〈â†â〉P ≡ 〈n̂2〉 − 〈n̂〉, (13)

where

〈â†2â2〉P =
∫

d2α

π
P (α, α∗) |α|4 = 〈|α|4〉P . (14)

Considering Eqs. (13) and (14), we realize that one can write

〈n̂2〉 = 〈|α|2〉P + 〈n̂〉. (15)

In accordance with Eqs. (11) and (15), the Mandel pa-
rameter now becomes, via theP−function,

QM =
〈|α|4〉P − 〈|α|2〉2P

〈|α|2〉P =
e−β~ω

1− e−β~ω , (16)

a temperature dependent expression, where the statistical
averages in phase space are computed utilizingP (α) as a
weight function

〈|α|s〉P = 2

∞∫

0

dα |α|s+1 P (α, α∗), (17)

with s = 2, 4.

4. Mandel parameter via theQ−function

A closely related phase space distribution is obtained by tak-
ing the diagonal matrix element of density operatorρ̂

Q(α, α∗) = 〈α|ρ̂|α〉, (18)

which it has all the properties of a classical probability dis-
tribution [18]. For a thermal state, theQ−function is the
gaussian quantity given by

Q(α, α∗) =
1

1 + 〈n̂〉 exp
(
− |α|2

1 + 〈n̂〉
)

. (19)

The Q−representation gives operator averages in antinor-
mal order, so in this case the antinormal-ordered average be-
comes [18]

〈âsâ†r〉Q =
∫

d2α

π
Q(α, α∗)α∗rαs, (20)

where 〈 〉Q denotes the average with respect toQ(α, α∗).
Takingr = s = 2 we have

〈â2â†2〉Q =
∫

d2α

π
Q(α, α∗) |α|4 = 〈|α|4〉Q. (21)

Considering the identitŷa2â†2 = n̂2 + 3n̂ + 2 and Eq. (21),
it is easy to show that

〈n̂2〉 = 〈|α|4〉Q − 3〈n̂〉 − 2. (22)

Also, for s = r = 1, Eq. (20) reduces to

〈ââ†〉Q =
∫

d2α

π
Q(α, α∗) |α|2 = 〈|α|2〉Q, (23)

and we have

〈n̂〉 = 〈|α|2〉Q − 1. (24)

Finally, from Eqs. (22) and (24) the Mandel parameter in
terms of averages ofQ turns out to be

QM =
〈|α|4〉Q − 2〈|α|2〉Q − 〈|α|2〉2Q + 1

〈|α|2〉Q − 1

=
e−β~ω

1− e−β~ω , (25)

and coincides with the pertinent expression obtained via the
P -representation. Here, the means values are calculated us-
ing

〈|α|s〉Q = 2

∞∫

0

dα |α|s+1 Q(α, α∗), (26)

with s = 2, 4, with Q(α, α∗) given by (19).

5. Mandel parameter via the Wigner function

The Wigner function can be obtained from theP−function
from the relation [17]

W (α, α∗) = 2
∫

d2z

π
P (z, z∗) exp(−2|α− z|2), (27)

such that for a thermal state this function becomes

W (α, α∗) =
1

〈n̂〉+ 1/2
exp

(
− |α|2
〈n̂〉+ 1/2

)
, (28)

with 1/(〈n̂〉 + 1/2) = 2 tanh(β~ω/2). The symmetric or-
dered operator used in this Wigner representation is, in this
case,

〈(â†râs)S〉W =
∫

d2α

π
W (α, α∗) α∗rαs, (29)
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where(â†râs)S denotes the symmetric operator product of
the creation operators and annihilation ones [18], and〈 〉W
indicates the average with respect toW (α, α∗). Thus, for
r = s = 2 we get

〈(â†2â2)S〉W =
∫

d2α

π
W (α, α∗) |α|4=1

6
(〈â†2â2〉+〈â†ââ†â〉

+ 〈â†â2â†〉+ 〈ââ†2â〉+ 〈ââ†ââ†〉+ 〈â2â†2〉), (30)

implying, after to use the commutation relations (5), that

〈n̂2〉 = 〈|α|4〉W − 〈n̂〉 − 1
2
. (31)

Also, for r = s = 1 we get,

〈(â†â)S〉W =
∫

d2α

π
W (α, α∗) |α|2

=
1
2
(〈âa†〉+ 〈â†â〉), (32)

yielding

〈n̂〉 = 〈|α|2〉W − 1
2
. (33)

From Eqs. (31) and (33) we obtain now the Mandel parame-
ter in the fashion

QM =
〈|α|4〉W − 〈|α|2〉2W − 〈|α|2〉W + 1/4

〈|α|2〉W − 1/2

=
1− tanh(β~ω/2)
2 tanh(β~ω/2)

=
e−β~ω

1− e−β~ω , (34)

where we have considered the mean values of|α|2 and|α|4
according to

〈|α|s〉W = 2

∞∫

0

dα |α|s+1 W (α, α∗), (35)

with s = 2, 4, beingW (α, α∗) a statistical wight function
given by (28).

Interestingly enough, the Mandel parameter for a thermal
state is the same in the three representations we are discussing
in this work.

6. Conclusions

We have shown into some detail how to proceed to evalu-
ate the quasi-probability distributions corresponding, respec-
tively, to the P-, Q- and Wigner representations in the case of
a thermal state for the harmonic oscillator. Using them we
have computed the noise-factor called the Mandel parameter.
We have seen that it is the same quantity, independent on the
nature of the quasi-probability distribution. It is hoped that
these reflections may help students in their efforts to navigate
quantum optics waters.
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