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Validating quantum storage and state transference based on spin
systems through elimination of exchange degeneracy
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Received 28 November 2014; accepted 26 January 2015

A quantum storage and state transference machine based on spin systems is considered. The process described cannot be regarded a a
quantum teleportation because it does not involve any measurement. In previous work on quantum storage and state transference based
on spin systems,exchange degeneracywas not taken into account and this is important because the initial and final states can become
indistinguishable from each other and so the state transference may loose its meaning. It is shown that such a failure can be corrected by
symmetrization. We conclude that in a consistent state transference and storage process, the parity of the initial state is not necessarily
conserved.
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1. Introduction

If Alice and Bob each posses an identical particle and they are
distant enough for the wave function of the particles do not
overlap during the time of observation of the system, then we
can keep track of the particles when they are distinguishables.
However, if the wave functions overlap it is not possible to
know which particle is initial and which the final one. In such
a case it is impossible to track each particle and the particles
become indistinguishable having arbitrary labels (not just Al-
ice and Bob) each one. Then we conclude that the description
of the system becomes ambiguous because of theexchange
degeneracyphenomenon [1]. Such a situation may happen in
protocols implementing the physical process of quantum in-
formation storage and state transfer. For instance, in Ref. 2 a
quantum spin system in the form of a ferromagnetic Heisen-
berg spin chain or an isotropic antiferromagnetic spin ladder
system was employed for transferring coherently a quantum
state. However, in Ref. 2 it was not taking into account the
fact that if the wave function of the input state and the out-
put state overlap, there is a confusion between the state ini-
tially to be transferred and the final state transferred (storage
system). In Fig. 1 it is depicted such a situation. In order
that the process be successful it is necessary that the initial
and final state are distant enough for their respective wave
functions do not overlap. But if the quantum bus for trans-
ferring the information is a long spin chain there appears the
unwelcome decoherence effects. This effect was not consid-
ered in Ref. 2. To avoid decoherence effects, one is forced
to employ a short distance quantum bus for transferring and
storage the information with the risk that the wave functions
overlap, appearing with this theexchange degeneracyprob-
lem. According to the principles of Quantum Mechanics the
solution to the problem ofexchange degeneracyis to sym-
metrize the states either boson (symmetric wave function)
or fermion (antisymmetric wave function) to distinguish the

states. In the present work, we pinpoint the way in which
form the wave function of the systemS can be constructed
for preventing such a problem.

2. Transference of a state: Data bus model

In the past there have been attempts for transferring coher-
ently and store quantum information [3–6]. An interesting
approach was introduced in Ref. 2 where it is explored the
possibility of implementing quantum information storage and
state transfer by using quantum spin systems. In such a work,
it is shown that quantum state transfer can be seen as a gener-
alized quantum storage with three subsystems, the input with
a Hilbert spaceSA, the data bus withD and output withSB .
For this, we assume that the subsystemsA andB are very dis-
tant one of each other in such a way that they are not coupled
and the wave function of the total system can be separated. It
is worth noting that in such a situation the data bus is a very
long spin chain with which the decoherence effects increase
deteriorating with this the perfect state transfer. The Hilbert
space of the total system should be

ST = SA ⊗D ⊗ SB ≡ SA ⊗M, (1)

whereM = D ⊗ SB is the generalized quantum memory
with the memory space spanned by the orthonormal vectors
|Mn〉 = |D〉 ⊗ UB |SB

n 〉. In the above|D〉 is the data bus
state andUB is a local unitary transformation with respect
to B. The data bus state|D〉 and the transformationUB are
independent of the initial state for a legitimate quantum bus.
The independence ofUB with respect to the state to be trans-
ferredA will be important for the present approach and such
a property will be employed lines below. Att = 0 the total
state is

|ψ(0)〉 =
∑

n

cn|SA
n 〉 ⊗ |M〉, (2)
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FIGURE 1. A quantum spin system in the form of a ferromagnetic Heisenberg spin chain or an isotropic antiferromagnetic spin ladder
system is employed for transferring coherently a quantum state. There appears theexchange degeneracyif the input stateSA and its
associated transferred stateSB overlap.

where|M〉 = |D〉 ⊗ |SB〉. Thus, the quantum state transfer
can be described after a period of timet = Tf as

|ψ(Tf )〉 = |S〉 ⊗ |D〉 ⊗
∑

n

cnUB

∣∣SB
n

〉

= |S〉 ⊗
∑

n

cn|Mn〉, (3)

where|S〉 =
∑

n c′n|SA
n 〉. The separation of the above wave

function has been already explained lines above. Equation (3)
indicates that quantum state transfer can be thought of as a
generalized quantum memory. In order that the effects of de-
coherence do not intervene in the transferring process, the
extension of the data bus spin chain through which the trans-
ferred state transits, must be short enough. However, in this
caseexchange degeneracyappears making indistinguishable
the systemsA and B and creating confusion between the
original state|ψ(0)〉 and the transferred state|ψ(Tf )〉. We
should realize that the storage process is not teleportation be-
cause the later leads to an output state that corresponds to the
input with a fidelityF = 1. In quantum teleportation there is
a measure (collapse) of the Bell state while in quantum stor-
age the system is permanently in evolution without no mea-
surement never requiring of any measurement whatsoever.

If we assume a spatial reflection symmetry under the par-
ity operatorP then[H, P ] = 0 whereH is the Hamiltonian
of the system. It is straightforward to prove according to the
approach of Ref. 2 that the transferred wave function is

|ψ
(
r, t =

π

E0

)
〉 =

∑
n

Cn(−1)Nn |φn(r)〉

= ±P |ψ(r)〉 = ±|ψ(−r)〉, (4)

where the state to be transferred is|ψ(r, t = 0)〉 = |ψ(r)〉.
The interpretation of Eq. (4) is that the transference process
through a quantum bus changes up to a phase the probability
amplitude of the wave function. The later means that a prob-
ability (e.g. measurement) of occurrence of the transferred
state does not change. A justification for that is that the quan-
tum bus along the spin chain is prepared in such a way that
in any time the initial and final state are not interacting (i.e.
absence of dechoherence). Equation (4) follows immediately
if one notes that the wave function evolves in time according
to

|ψ(r, t)〉 = e−iHt|ψ(r)〉 =
∑

n

Cne−iNnE0t|φn(r)〉, (5)

whereCn = 〈φn|ψ〉. With the above two equations one can
conclude that if the eigenvaluesεn = NnE0 of a 1 − D
Hamiltonian H with spatial reflection symmetry are odd-
number spaced (N −n−Nn−1 always odd), any initial state
|ψ(x)〉 evolves into±|ψ(−x)〉 at timet = π/E0. However,
when the quantum bus composed by a spin chain is short
enough then there appearsexchange degeneracybetween the
initial state to be transferred|ψ(x)〉 and the transferred state
±|ψ(−x)〉. By the above reason, the initial and final states
become indistinguishable. According with the principles of
Quantum Mechanics the solution to the indistinguishability
of the states is the symmetrization postulate of the wave func-
tion that describe them [1,7].

Symmetrization Postulate -In a system containing indis-
tinguishable particles, the only possible states of the system
are: (i) either completely symmetrical with respect to permu-
tation (bosons); (ii) either completely antisymmetrical with
respect to permutation (fermions).

By assuming that the quantum information system to stor-
age is a fermion then the principles of Quantum Mechanics
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demand that the wave function of the initial state to be trans-
ferred must bei

|Ψ(r)〉A =
1√
2

(
|ψ(r)〉 − |ψ(−r)〉

)
, (6)

which is antisymmetrical with respect to exchange of the la-
bel r → −r. In Eq. (6), the state|ψ(−r)〉 is defined through
Eqs. (4) and (5). It is crucial to observe that according to the
above, the final transferred wave function that does not suffer
overlap with the state to be transferred is

|Ψ(r)〉B = e−iHQBTf |Ψ(r)〉A, (7)

where the state to be transferred|Ψ(r)〉A is given by Eq. (6)
andHQB the Hamiltonian of the quantum bus is such that
the overlap between|Ψ(r)〉A and |Ψ(r)〉B is null. As it
was mentioned lines above, by construction of a legitimate
quantum bus, the unitary operationUB = e−iHQBTf must
be independent of the initial state|Ψ(r)〉A which is given
by Eq. (6). Such a condition demands that the Hamilto-
nianH of Eq. (5) andHQB are independent of each other.
One particular striking situation where the overlapping be-
tween|Ψ(r)〉A and |Ψ(r)〉B vanishes is when the quantum
gateUB = e−iHQBTf changes the parity of the initial an-
tisymmetrical state|Ψ(r)〉A of Eq. (6) into a symmetrical
final state|Ψ(r)〉B . The later can be though of as a sort
of quantum NOT gate which converts the state|0〉 into the
state|1〉 and viceversa remembering that〈0|1〉 = 〈1|0〉 = 0.
In the context of the present work one would require that
B〈Ψ(r)|Ψ(r)〉A = 0. It is worth emphasizing that according
to the principles of Quantum Mechanics, it can be concluded
that the transference of a state through a spin chain (quantum
bus) does not necessarily preserve the parity of a state.

3. Conclusions

We have considered the storage and transference of a quan-
tum state through a quantum bus composed by a spin chain.
The transference of the quantum state is carried through the
spin chain. It has been pointed out that if the spin chain is
short enough there is the risk of an overlap between the ini-
tial state and the storage final state. On the other hand, an
overlap is avoided if the spin chain is long enough, however
in such a situation appears an unwelcome decoherence dete-
riorating the storage and transference of the quantum state.
In presence of decoherence the spatial reflection symmetry
as given by Eqs. (4) and (6) would not be possible. Thus,
it is necessary a decoherence free short spin chain as a quan-
tum bus for transferring the initial state appearing with this an
exchange degeneracy due to the overlap between the initial
and final (transferred) state. We point out that such a loss of
identity of the statesSA andSB is circumvented through the
Symmetrization Postulate of Quantum Mechanics for making
distinguishable the states. Notice that the quantum transfer-
ence and storage does not require a measuring process con-
sequently cannot correspond to nothing similar to a quantum
teleportation. As a main result we have found that a solution
imposed by the principles of Quantum Mechanics is the sym-
metrization of the state to be transferred. With the above it
is possible to nullify the ambiguities between the state to be
transferred and the transferred state. The price that one must
pay is that the parity of the initial state is not necessarily con-
served.
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i. Let us observe that according to the approach of [2], the trans-
ferred state is|ψ(−r)〉 while the state to be transferred is
|ψ(r)〉. Such an approach is feasible only if the overlap be-
tween the states vanishesi.e. 〈ψ(r)|ψ(−r)〉 = 0 which in gen-
eral does not happen as Eq. (4) shows it.
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