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Packing of monosized spheres in a cylindrical container of a fixed diameter is a frequently discussed subject in recent studies. It is motivated
by the high applicability of these models, particularly by the advances in nanomaterial science and engineering, associated with the develop-
ment of hierarchically ordered matters of specific structures and properties. Their features strongly depend on the arrangement and density
of the filling atoms in the channels of a nanostructured porous matrix. A special interest is devoted to a dense random packing, which by
its nature is not totally random when the spheres do not overlap. In this paper, related models of packing are classified basing on the space
filling method, and the densities reached theoretically as well as experimentally for those classes are given. The effects produced by some
parameters on the packing density and the main properties are analyzed. The experimental techniques and computer modeling approaches
are summarized.

Keywords: Packing; monosized spheres; cylinder; density; porosity; modeling.

El empaquetamiento de esferas del mismo tamaño en un contenedor cilı́ndrico de díametro fijo es un tema que se discute frecuentemente
en investigaciones recientes. Eso es motivado por la alta aplicabilidad de dichos modelos, debido a los avances en la ciencia e ingenierı́a
de nanomateriales y el desarrollo de materiales jerárquicamente ordenados con estructuras y propiedades especı́ficas. Sus caracterı́sticas
dependen estrictamente del arreglo y densidad de losátomos en canales de una matriz porosa nanoestructurada. Un interés especial está
enfocado en un empaquetamiento aleatorio denso, el cual por su naturaleza no es totalmente aleatorio cuando las esferas no se traslapan.
En este artı́culo, los modelos relacionados con el empaquetamiento son clasificados basándose en el ḿetodo de llenado del espacio, y
las densidades alcanzadas tanto teóricamente como experimentalmente para estas clases son dadas. Los efectos producidos por algunos
paŕametros en la densidad y las propiedades del empaquetamiento son analizados. Son resumidas las técnicas experimentales y los alcances
del modelado por computadora.

Descriptores: Empaquetamiento; esferas iguales; cilindro; densidad; porosidad; modelado.

PACS: 89.20.Ff

1. Introduction

The three-dimensional (3D) structural model of a matter may
be designed in many cases as a set of identical spheres oc-
cupying an available space. When this space is limited to
a predetermined region, such as channels of a nanostructured
porous matrix filled by atoms or molecules of a substance, the
properties of the resulting matter strongly depend on the ar-
rangement and density of the particles. These structures can
be modeled as packings of monosized spheres in a cylindrical
container.

Packing of spheres is one of the most-studied models.
In 1959, Bernal first employed a random close packing of
monosized spheres as a useful model for an ideal liquid [1].
Afterwards, this approach generated considerable interest of

researchers as a consequence of the diversity of practical ap-
plications and the described structures depending on the ma-
terials used, the space shape, the sphere size, etc.

The investigation of non-overlapping packings of mono-
sized spheres in the d-dimensional Euclidean space has been
strongly motivated by the study of processes in chemical and
nuclear reactors as well as thermal heat exchangers, seee.g.,
[2-7]. A review of the literature describing the packing struc-
ture and effective thermal conductivity of randomly packed
beds consisting of monosized particles has been recently pre-
sented in [8]. In chemical engineering and material physics,
models of monosized sphere packings are applied for the
description of diverse matter structures such as crystals [9-
10], liquids [1], bones [11], etc. Such models are also used
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for predicting properties of transport processes in gas-liquid
flowing systems [12]. Monosized packing structures are ap-
propriate models to study properties of a matter in an equi-
librium state in line with the critical state of density in the
transition point between two phases for diverse granular mat-
ters [13] such as powder [14-16], ceramics [17], sand [18],
etc. The researchers noted some physical phenomena that
occur frequently in a semi-confined space in consequence
of the density increasing due to the presence of the gravi-
tational field or an excessive external influence: fluidization,
segregation, rearrangement, elastic deformation, fragmenta-
tion, plastic flow, abrasion [15,19,20], solidification [21], di-
latancy [18], cohesion [22]. Such deformations affect the
maximum packing density attainable as well as the desirable
packing structure and properties.

The theoretical problem of the densest packing of mono-
sized spheres in the Euclidean space belongs to the optimiza-
tion problems of discrete and computational geometry and
can be stated as follows: For a given set of spheres with
identical radii, it is necessary to find an arrangement in a 3D
packing space (the entire space, a cylinder, a cube, etc.) that
has the highest density,i.e., which minimizes the amount of
the empty space between them. It is known that even for
restricted versions with identical regular-shaped objects and
domains of low-dimensional space, this problem is NP-hard,
and therefore its exact solution cannot be obtained in polyno-
mial time unlessP = NP [23]. There are only a few pure
theoretical results due to the complexity of the geometry. The
majority of works are focused on an experimental investiga-
tion and a numerical simulation of the packing structures as
well as the measurement or evaluation of the parameters.

The rest of this paper is organized as follows: In Sec. 2, a
classification of 3D packing models is proposed. The known
densities for different models are listed in Sec. 3. Three as-
pects of the studies that have influenced the packing proper-
ties are described in Sec. 4: the state of the matter, the wall
effects of the containers, and the aspect ratio of the diameter.
The computer modeling approaches, referred to in Sec. 5, are
classified into three categories: numerical simulation, pore
networks, and mathematical programming. Some conclud-
ing remarks, summarizing the hot topics of modern science
and technology connected with packing problems complete
the paper.

The paper is directed to students and researchers in com-
putational science and physical-chemical areas studying the
material structure modeled by means of sphere packing ap-
proaches. It may also be considered as a teaching tool for
students in the field of nanoscience and nanotechnology.

2. Classification of filling models

Identical particles of spherical shape packed in a closed 3D
space produce a variety of models, considering different fill-
ing methods and assumptions of the problem. The interest
of the researchers is focused on the prediction of the packing
structure and its properties.

Initially, packing models are classified into ordered (reg-
ular) [2,24], and disordered (random) packings [3,6,22,25-
29]. Ordered packing arrangements comprise rows and lay-
ers placed in cubic or hexagonal crystalline patterns. A ran-
dom packing with highest density is referred to as a random
close packing. The term random indicates that the pack-
ing structure remains random, even if the density increases
over the commonly observed range. In the absence of a
global ordering when the spheres attain a closest proximity
to one another, the highest packing densities can be achieved
through an agitation: shaking or jolting [14,17,17,30], vibra-
tion [2,14,24], tapping [14,15].

A packing of minimal density is referred to as a random
loose packing [11,13]. It does not require any agitation or
shaking. More than two of these models of packing can be
defined. An infinite number of particle arrangements can be
produced between these two limits. Packing may also allow
trimming [31], sliding, rolling sliding [32], lifting or overlap-
ping of the particles [5,33].

In addition, the packing models should be divided into
static, dynamic and combined ones. Static models are
designed to produce a fixed arrangement of spheres [12],
whereas dynamic ones are capable of producing a sequence
of arrangements [34]. The simplest approach to simulate a
static packing is a sequential addition of the particles to an
initial configuration. Physically a more realistic approach is
the modeling of a sequential deposition of the spheres under
the influence of gravity, by dropping them from random loca-
tions and allowing to roll until settling them on the container
bottom or top of three other spheres in a gravitationally stable
position. Dynamic models do not incorporate gravity effects.
Mueller [28] noted that, regardless of the nature of packing,
the final stable equilibrium of the geometrical structure of the
packed particles is of main interest, and it greatly influences
all properties of packing.

3. Known packing densities

Several works, both experimental and computational ones,
deal with the description and prediction of overall and local
structural properties of a packing. The primary parameters of
a packed structure are the space occupation coefficient (den-
sity) and the void fraction (porosity). In 1611, Johannes Ke-
pler conjectured that the density of a packing of congruent
spheres is never greater thanπ/(3

√
2) ≈ 0.74048 [35]. De-

spite the apparent simplicity of this assertion, Kepler’s con-
jecture has been proved by Hales only recently in 1998 [36].
Kepler’s space occupation coefficient implies also the lowest
void fraction known to be attained. In 1955, Rankin [37] ob-
tained 0.827. . . as an upper bound for these densities and
three years later, Rogers lowered it. Roger’s theorem asserts
that the density of an arrangement of non-overlapping equal
spheres cannot exceed

√
18
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]
= 0.7797 . . . ,
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but it does not imply that this upper bound is necessarily at-
tainable [38]. Accordingly, the void fraction cannot be less
than 0.22036.

When the spheres are packed randomly, the void fraction
typically lies in a region surrounding 0.38, and, according to
Scott [39], it is unlikely that it can lie outside the limits of
0.36(3) and 0.39(9). In a more recent publication, Zhanget
al. [40] affirmed that ordered structures attained a range of
porosity [0.2595 . . . 0.4764]. Disordered packings exhibit a
much smaller porosity falling into the range [0.36 . . . 0.40].
No theory is provided about an exact value, but the well-
accepted limit is 0.36, plus or minus some small amount that
varies according to the source consulted.

Some important sphere packing densities are as follows:

• The upper bound on the density of an arrangement of
non-overlapping equal spheres is 0.7797 [38];

• The maximal density of an ordered packing is about
0.74048 (Kepler’s Conjecture) [35];

• The random close packing density is about0.6366 ±
0.0005 [30]; according to the improved data, the exper-
imentally obtainable values of a random close packing
fall into the range of0.64± 0.02 [41];

• The random loose packing density of granular matter
is 0.608± 0.006 [39];

• The random loose packing density of granular matter,
at the limit of a zero gravitational force, is0.555 ±
0.005 [42].

4. Experimental studies

The majority of the information about packing properties
comes from experimental results due to the complexity of the
modeling of the geometry. Experimental studies involve the
construction of a physical model, and then its desired struc-
tural properties are measured. In the papers [2-4,25,40], an
extensive analysis and a review of experimental techniques
were given. Several techniques that have been used to de-
termine the radial void fractions were briefly reviewed by
Mueller [43].

4.1. Influence of the states of matter on the packing den-
sity

Typically, densely packed monosized spheres have a space
occupation coefficient of 60%-64%. German [44] indicated
that the tap (vibrated) density depends on the material, the vi-
bration amplitude, the vibration frequency, the shear and test
apparatus, and it varies with the duration of vibration. Never-
theless, McGeary [45] noted that a wide variety of materials
(lead, sulfur and steel shot, steel ball bearings, glass beads,
rounded sand, round California beans and poppy seeds) all
produce packings within this range of density. Results for a

given material and container are reproducible up to a frac-
tion of a percent. While the sizes of the different materials
tested vary considerably, the main conclusion was that nei-
ther the material density nor a difference in the size from one
material to another significantly affected the ultimate packed
density.

The difference in the density between the solid and the
liquid states of simple monatomic substances, such as rare
gases, is 15-16%, which is approximately the difference be-
tween the density of hard spheres in a regular packing and
the density measured for a model of hard spheres in a ran-
dom close packing [30,46]. Taking into account the state of
matter, Bernalet al. [9] made a suggestion that the struc-
ture of a liquid may be regarded as a “heap” of molecules, in
contrast to the structure of a crystalline solid which may be
considered as a regular “pile”. Several properties of liquids
have been shown to have their geometrical counterparts in a
randomly packed array of hard spheres [39].

Vandewalleet al. [22] studied the influence of the rela-
tive humidity on the experimental results with random pack-
ings. Millimeter-sized glass beads were used. The authors
observed electrical charges on the beads when the air humid-
ity was low. It was due to the friction between the contact-
ing beads. When the moisture content was increasing, the
charges disappeared exponentially and liquid bridges were
formed between the contacting grains by a capillary con-
densation. The authors noted that cohesive forces like liq-
uid bridges and electrical charges, represent a barrier for lo-
cal reorganizations and could mask or modify the physical
properties of granular materials. According to this study,
the best condition for conducting granular experiments with
glass beads corresponds to a relative humidity of about 45%,
when cohesion is minimal.

4.2. The wall effect

It is known that spheres near the container wall form more
ordered structures than those in the internal region of ran-
dom packings. This wall effect propagates from two to four
sphere diameters into the container, depending on the pack-
ing density, seee.g. [40]. This phenomenon makes structural
properties of particles near the wall different from those far
away from the wall.

The wall effect consists of two components, namely the
effect of the side wall (radial direction) and the effect of the
top-bottom walls (axial direction or thickness effect). The
side wall effect for spheres packed in cylindrical contain-
ers was studied for many years [2,19,24,27,40,47]. It can be
quantified by a radial distribution function, which is the num-
ber of spheres per unit volume at a given distance away from
a fixed point [48]. The wall effect is often characterized in
terms of porosity. A quantitative understanding of the poros-
ity variation is essential for the evaluation of the wall effect
on a fluid flow. Different experimental techniques have been
employed to measure the variation of the packing porosity on
a distance from the container wall,e.g., using diverse sub-
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stances like paraffin or epoxy resin as a substitute of void, or
applying the X-ray radiography, a high-resolution computed
tomographic scans on each assembly [47] to monitor the po-
sitions of the particles. A more recent review of the used ex-
perimental techniques was presented in Mueller’s paper [43].

Due to the top-bottom wall effect, the porosity is depen-
dent on the sphere and the cylinder diameters,d andD, re-
spectively, but also on the ratio of the particle diameterd to
the packing heightH, which can be referred to as the thick-
ness effect. This dependence can be mathematically repre-
sented byε(d/H, d/D) and in many studies it is implicitly
assumed to be negligible. Studying the porosity behavior in
dependence onε(d/H, d/D), Zou and Yu [4] noted that the
thickness effect can be readily identified for a constant ratio
d/D. For both a loose and a dense packing, increasing the
d/H ratio is also increasing the porosity. It was shown that
for a constant ratiod/D, the porosityε(d/H, d/D) decreases
with the increase ofd/H, while for a constant ratiod/H, the
porosityε(d/H, d/D) increases withd/D for small values
d/D (less than about 0.6) but it decreases withd/D for large
valuesd/D. The authors described another phenomenon: in-
creasing the ratiod/D within the range from 0.25 to 0.35 can
decrease the porosityε(d/H, d/D).

4.3. The aspect ratio of the diameter

The impact that the wall effect has on the overall poros-
ity depends on the ratio of the cylinder-to-sphere diameter
D/d. It has been well established that the overall porosity
decreases while this ratio increases. Various equations were
empirically formulated to quantify this relationship. Analyti-
cal models and experimental measurements have clearly indi-
cated the presence of an oscillatory radial porosity variation
[4,6,8, 25,49,50]. According to the semi-empirical equations
developed by Dixonn [49], a maximum overall porosity of
ε = 0.67 occurs atD/d ≈ 1.72.

Theuerkaufet al. [51] used the discrete element method
(DEM) to analyze the porosity distribution of spherical parti-
cles in narrow pipes with a valueD/d in the range from 3 to
20. DEM is used to create an explicit numerical model that
approximates the mechanical behavior of an assembly of ar-
bitrarily shaped particles. These particles displaced indepen-
dently of each other and interact only at the contact points,
where they are allowed to overlap. This is referred to as a
soft contact approach. The force between the particles dur-
ing a contact is calculated by mechanical elements such as
springs and dash pots.

Properties of “small” packings turned out to be of spe-
cial interest for researchers [27,52-54]. When the size of a
sphere starts to get too close to the cylinder diameter, namely
approximately in the range1 ≤ D/d ≤ 8, the density func-
tion drastically depends on the valueD. A simple mecha-
nistic modeling shows that the packing density represents a
non-monotonic function of the cylinder diameter, varying in

the range from approximately 0.4 to about 0.6 while the ratio
D/d changes only from 2.0 to 2.5 [55-57].

Chu and Ng [52] studied the morphology of the flow in
tubes with tube-to-particle diameter ratios between 2.5 and
40. A computer-generated slim tube randomly packed with
spheres was first tessellated into tetrahedra in the interior and
into pentahedra near the walls of the tube. Then, the pore
space was represented by a network of interconnected circu-
lar and triangular sinusoidal flow channels. The authors have
discovered that the presence of the walls had two counteract-
ing effects on the fluid flow: a higher porosity promoted flow
along the walls but a higher surface area per unit volume hin-
dered it. The porosity and solid surface area per unit volume
of the porous mediums were determined as a function of the
distance away from the wall. For tube-to-particle diameter ra-
tios greater than 25, the permeability was the same as that of
a large diameter tube,k∞. Between 8 and 25, the permeabil-
ity was larger or smaller thank∞; and below 8, the confining
walls caused a marked increase in the overall bed porosity
and the permeability was always larger thank∞. McGeary
[45] studied experimentally the packing density of arrange-
ments, where the ratioD/d varied from 1:1 to about 200:1.
He showed that the effect of the container size on the packing
efficiency of monosized spheres became negligible for ratios
above 50:1.

Tingate [2] considered two regions of packing: the outer
region, where the thickness is equal to the sphere diame-
ter, and the remainder, the central region. The outer region
contained whole spheres touching the wall and intruding seg-
ments of a number of spheres which did not touch the wall.
The central region contained the other segments of the intrud-
ing spheres, and the balance of the whole spheres located en-
tirely within the central region. The experiments have shown
that the mean occupancy fraction of the central region was
remarkably constant for ratios ofD/d between 5.6 and infin-
ity. It was equal to 0.598 forD/d = 5.6 and increased up
to 0.615 forD/d = ∞. This indicates that a ratio ofD/d
equal to 5.6 can be used for exploratory experiments without
sacrificing the accuracy unduly in the central region and the
homogeneity of the packing density.

When the ratio ofD/d is large, the tapping of particles
can be used to obtain the densest packings. The experiments
of Li and Funkenbusch [15] examined container diameters
that exceeded those of the powders by 51:1 to 343:1, for
the purpose of a powdered material fabrication. Hence, the
container size effect was considered to be negligible. The
packing density was found to increase quickly with the initial
taps, leveling off after several hundred taps. An increase of
roughly 3% was found for typical monosized powder pack-
ings during the first 500 taps, while 500 more taps produced
only an additional increase of 1% and further tapping up to
200000 taps produced less than an additional increase of 1%.
That is, after the first 500 taps, the reduction of the void frac-
tion was insignificant. The results were within 0.1% repro-
ducibility.
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5. Computer modeling approaches

A dense random packing by its nature is not totally random.
The fact that particles cannot overlap and that they are placed
as close as possible, introduces some structure to a dense ran-
dom packing and results in the formation of ordered substruc-
tures [3,24,47,55]. The three principal lines in modeling such
structures and the methods used are referred to below.

5.1. Numerical simulation methods

A numerical simulation based on the experimental data is an
attractive research method for such complex physical assem-
blies as a packing due to the easiness of creating and repro-
ducing for any aspect ratio of the diameter and accurately
determining the parameters. On the other hand, the pack-
ing properties are highly dependent on the assumptions of
the method and the generating algorithm. A short review of
deterministic simulation methods was presented in [28].

Ganet al. [5] proposed an algorithm based on the idea
of concurrently removing the worst overlap and reducing the
outer radius for the calculation of the random closed pack-
ing parameters in pebble beds. Computer simulations were
applied to assemblies of monosized and polydisperse spheres
(nearly spherical particles). This algorithm should be used
for different kinds of containers to determine packing struc-
tures in the bulk and near-wall zones. A comparison between
the simulation and the X-ray tomography results was given
as a verification of the method.

A computer aided design (CAD) method was presented
by Lal and Sun [11] for modeling two extreme microsphere
packing cases: (a) a minimum-density packing with max-
imum porosity for a closed-cell bone structure; and (b) a
maximum-density packing with minimum porosity for an
open-cell bone structure. The number of microspheres
packed by these two models was then determined. Abreu
et al. [19] employed the Monte Carlo method to describe
the packing and segregation of the particles in a cylinder
in the presence of a gravitational field and shaking move-
ments. The calculation of void fraction profiles in both the
axial and radial directions was realized, and some results
were given. The simulations indicated that the presence of
a cylindrical wall did not seem to have a strong effect on the
gravitational segregation phenomenon. Wensrich [47] pro-
vided complete characterizations of various particulate as-
semblies with the aid of Computed Tomographic scans and
Discrete Element Models, and he used this data to examine
the finer details of the effect of the boundaries. A fitting al-
gorithm based on the optimization of an objective function
has been developed to direct fitting particles to Computed
Tomographic scans. Discrete Element Models of each tube
were created using the proprietary software PFC3D v4.0 (64-
bit version) by ITASCA. Analyzing the obtained structure,
the author gave some conclusions. First, he has noted that a
dense random packing was far away from being totally ran-
dom, and this was most evident at the walls of the container.

Then Wensrich supposed that dense random packing struc-
tures were similar to the ordered packings, such as a Face
Centered Cubic and a Hexagonal Close Packed, however, on
small scales.

The gravitational sphere packing method based on
Monte-Carlo simulation was developed and recently applied
to loose packed monosized spheres by Roozbahaniet al. [58].
The authors used a cylindrical packing approach to simulate
filling of different virtual rectangular containers. The wall
effect was considered. The porosity of sphere packings in
the inner part of the cylinder was examined also without the
effect of the boundaries to show the structure of packing in
different rectangular containers with different ratios of side
sizes.

The Bennet model and its modifications are frequently
used to generate random packings. The packings are built by
adding new spheres, one at a time, on a horizontal basal layer
using iterative sequential algorithms. An added sphere is al-
ways found in contact with three other spheres. The choice
of the deposition site used is varied [54,59]. In the Bennet
model, the position with the lowest vertical coordinate is se-
lected. In the “anti-Bennet” model, only the positions that
are stable under gravity are considered, and the one with the
highest vertical coordinate is selected. In the Eden model, the
new sphere is selected at random among all the possibilities
and in the stable Eden model, the random choice is limited to
positions that are stable under gravity.

A packing method that used a sequential addition tech-
nique was developed by Tingate and Mueller in the works
[2,3,6,27,28]. The method employs no random procedures.
When D ≥ 3d, spheres are added to the packing above
the base layer utilizing two different types of positions: the
wall sphere (WS) positions and the inner sphere (IS) posi-
tions. The WS positions are locations, in which newly added
spheres get into contact with two other spheres and the wall
of the cylindrical container. The IS positions are locations,
where spheres get into contact with three other spheres but
not with the container wall. The sphere to be added to the
packing on an IS position must be stable under gravity. When
D < 3d, in addition to the WS and IS locations, there exists
a possibility for the third type of a position. It is the one in
which newly added spheres are in contact with one sphere
only and the wall. Mueller [27] provided formulas to calcu-
late the number of spheres and the coordinates of their cen-
ters. A dimensionless packing parameter is used to determi-
nate a stable gravity position of the spheres inside a cylinder.
The experimental results showed that deterministic simula-
tions become more inaccurate for larger diameter aspect ra-
tios.

5.2. Network approach

The spaces within a packing form a continuous network of
interconnecting pores or voids. The structure of the lattices
generated by randomly packed spheres was extensively stud-
ied over a long time period because of its importance as a
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predictive model in many processes involving granular ma-
terials. The research was centered principally on measuring
the packing properties and the acquisition of void distribution
models.

McGeary [45] described a ball-bearing model in terms of
tetrahedral subunits in random close packed lattices of uni-
form spheres. Zou and Yu [4] and Van Antwerpen [8] ana-
lyzed the voids associated with tetrahedral structures. Each
tetrahedral structure contained a central pore and four outer
constrictions. Although the four connections associated with
each pore varied in their sizes, nevertheless the pores joined
by a common constriction were similar in size. Nolan and
Kavanagh [26] simulated the packing structure as a network
of cylindrical pores by applying the Voronoi-Delaunay tes-
sellation technique that was able to predict accurately the
transport properties of the porous medium for an ordinary
diffusion. The Voronoi cells, or regions, are defined as the
set of points closer to the selected sphere than to any other
sphere. In 1998, Sean McLaughlin demonstrated that the
smallest Voronoi cell is the regular dodecahedron circum-
scribing the sphere [35]. The volume ratio of these two fig-
ures is 0.754697, which is very close to the value of Ke-
pler’s limit (0.74048), and thus it represents an excellent up-
per bound on the space occupation coefficient.

The Voronoi-Delaunay approach for the analysis of the
free volume, considering packing of balls confined in a cylin-
der, was described in [53], where a generalized Voronoi di-
agram was used as the underlying data structure. The edges
of the Voronoi diagram are located between the objects, and
they are often referred to as the Voronoi network. Two prob-
lems were considered: i) an efficient construction of the con-
fined Voronoi diagram inside a cylindrical boundary, and ii)
an analysis of the Voronoi network to study the distribution
of the empty spaces (voids) in the system. An algorithm was
proposed to calculate the Voronoi network for 3D systems,
based on the idea of the Delaunay empty sphere: it moves in-
side the system so that it touches at least three objects at any
time moment. In this case, the center of the sphere moves
along an edge of the 3D Voronoi network. Explicit formulas
to compute the coordinates of the Voronoi vertex were pro-
vided. The algorithm was implemented and tested in a 3D
system for packings with disordered structure, representing a
bed of spherical particles in cylinders of different radii. The
models were obtained by using the Monte Carlo relaxation
method.

5.3. Minimization of the cylinder size

Several papers deal with minimizing the size of a container to
be filled by a fixed set of items without overlapping. Most ap-
proaches consider rectangular containers as the packing ob-
ject. A generalized mathematical model for a variety of cir-
cular and spherical packing problems was proposed by Bir-
gin and Sobral [60]. These non-linear models considered the
minimization of the dimension of the container, fitting non-
overlapping items inside. The authors implemented an effi-

cient methodology based on strategies applied to theN -body
problem to reduce the computational cost of computing the
overlap. TheN -body problem consists of the computation of
the gravitational force betweenN particles in the 3D space,
where each particle exerts a force on all the other particles,
implying pairwise interactions. This kind of a physical sys-
tem occurs in several fields, like celestial mechanics, plasma
physics, fluid mechanics and semiconductor device simula-
tions. By using this strategy, packing problems with a large
number of items were solved. Several models were summa-
rized for distinct forms of the objects (container).

A solution for the optimization problem of identical
sphere packing in a cylinder of minimal height was proposed
by Stoyan and Yaskov [29]. This problem is a multi-extremal
one and NP-hard. A mathematical model was offered and its
characteristics were pointed out. Based on those characteris-
tics, a strategy of searching for an approximation to a global
minimum was proposed: generation of a special search tree
to obtain the starting points leading to different local minima;
a modification of the Zoutendijk feasible direction method to
calculate the local minima, and a modification of the decre-
mental neighborhood method to search for an approximation
to a global minimum. Numerical examples and a perfor-
mance analysis of the solutions were given. On the basis
of the mathematical model and the numerical experiments, a
number of analytical conclusions were drawn. The numerical
examples illustrated that the run time increased dramatically
if the number of spheres was more than 200. In this case, the
offered approach became ineffective.

6. Concluding remarks

Finding the densest packing is important in several differ-
ent areas. First, a densest packing means the best utilization
of space. Therefore, it is a basic problem of mathematics,
physics and engineering, and one of the most important com-
putational problems over centuries.

Nowadays, there are many modern applications and in-
dustrial branches, beginning from the bundle of nuclear fuel
rods for a thermonuclear reactor to crystal engineering in
the design of functionalized solids, nanoparticles, materi-
als with predetermined microporous, chemical and physical
properties, where the problem of filling an available restricted
empty space with characteristic matrix porosity starts to be a
key issue. At a fundamental level, there is a need to achieve
a general 3D control over the packing of components in a
volume.

Hierarchically structured hybrid nanocomposite materi-
als demonstrate outstanding properties, see,e.g. [61,62]. The
manufacture of these materials requires to realize the design
and successful processing of a new generation of smart in-
gredients which are important for the development of het-
erogeneous catalysis, photocatalysis, light harvesting, hybrid
organic/inorganic surface chemistry, etc. The physicochem-
ical properties of such materials start to be size-dependent,
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and they are strongly influenced by the confinement in
nanoporous matrices [63-65].

The confinement in molecular sieves is a promising
strategy for fabricating nanostructured assemblies with a
highly uniform size distribution. So, nanomaterials based on
nanoparticles stabilized inside of zeolite matrices have been
widely searched. Existing approaches to the procedure of
packing of idealized hard spheres inside a zeolite framework
were recently reviewed in [66].

Some experimental results, which deal with the processes
of stabilizing clusters and nanoparticles into different zeo-
lite matrices, their optical, electrical, magnetic properties and
theoretical approaches to the properties of obtained systems,
revealed that the physicochemical properties of nanomate-
rials start to be size-dependent, and they are strongly influ-
enced by the confinement in nanoporous matrices [67-70]. It
was shown that the diffusion in ultrathin channels depends on
their size [71,72].

Careful attention is paid to biomedical applications of
nanomaterials. For example, a bone is a nanocomposite,
which consists of organic and inorganic components, with a
hierarchical structure ranging from nano- to macroscale. The
development of nanomaterials for bone repair and regener-
ation was reviewed in [73]. As interesting examples of the

papers dedicated to sphere packings, some medical applica-
tions can be mentioned [11,74].

Another example of a new application of the packing ap-
proach to design the structure was found in the corrosion of
materials. The porosity of reinforced concrete structures are
the paths for a migration of chloride ions from the saline
environment to the carbon steel reinforcement, causing se-
vere corrosion damage. To avoid this problem, the pores are
sealed using monosized spheres as it has been demonstrated
by modeling spherical and cylindrical particles [75].

The packing approach permits to organize nanostructured
materials not only by an ordering of a nanosized matter, but
as well by organizing nanosized voids. Metal foams are an
example of those materials, which currently attract a concen-
trated interest due to their outstanding properties [76]. In this
sense, the foam materials with the packing of empty spheres
or other kinds of bubbles of emptiness start to become a chal-
lenge in the synthesis of nanomaterials.
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