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An equation of mation for describing the motion of a massive pulsating system with spherical symmetry has been deduced. Such equation
has applications in astrophysics and cosmology as long as the physical and the symmetry conditions are satisfied.
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Se deduce una ecuaai para describir el movimiento de un sistema massivo pulsante conisiresfrica. Esta ecuadn puede tener
aplicaciones en astrisica y cosmolo@, siempre y cuando las condiciones impuestas en la dédusean satisfechas.
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1. Introduction non-radial pulsations or by considering linear or non-linear
perturbation, however the topic is not completely understood
In a previous paper (Paper |) an equation of motion to deand instead of doing computer simulations that require the
scribe the pulsation of a system with spherical symmetryintroduction ofad hocparameters and constants [20,13], the
has been proposed and resolved [5]. This equation of maaim of the present paper is to help via Eq. (36) to treat the
tion contains exactly the kinetic energy and the potentialCepheid problem by a strictly analytic method which can be
energy where the energy of the gravitational field and thestep by step well understood and fitted with astronomical ob-
thermal energy are present. Using the knowledge obtaineservations. Additionally, by considering that the Cepheid
in the courses of theoretical mechanics [9], basic informais never motionless and with the normalization conditions
tion of hydrodynamics [19] and with educational purposest(t) = R(t)/Robs ((t) = Ro/Robs X(t) = Rops/ R, Where
in mind, one derives in-depth such equation of motion. WeRsis the observed radius of the star by the astronomers and
begin assuming that the constituent of such system is basR the radius of the sun, the problem described by the differ-
cally a gas without strong interactions between the particlegntial equation mentioned above transforms into a variational
so that it can be described as a non compressible fluid viproblem which must be solvealla Lanczos [14,7,17]. This
the hydrodynamical equations, namely the continuity equatopic has been exhaustively discussed in Paper | as well. Ad-
tion, the Euler momentum equation and the Poisson equatiogitionally, with the aid of the parameterand the physical re-
for taking into account the gravitational interaction betweenstrictions imposed by the perturbation analysis i(t9, (¢)
the particles. The deduced equation is precisely Eq. (36andx(¢), some relations to obtain characteristic parameters
and in order to generalize the applications of such equaef the star can be obtained namely the mass of the system, the
tion a normalization has been done, namghs (R(t)/Ry)  surface gravity, the amplitude of the elongation, the maximal
(cf. Eq. (37)), whereRy, means the hydrostatic radius. velocity of the pulsation and the luminosity. For Cepheids,
Thus the differential equation to be solved transforms intaat least four quantities have been observed and they can be
P?=2MG/R3)((1/y)—(1/2)(1/y*))+E, with E=const.  matched with the results provided by Eq. (36) [8,1,18,12].
describing the total energy in mass units. After a carefullyThe outline of the paper is as follows: Sec. 2 contains the
adjustment the equation deduced here can be applied eitherdieduction of the equation of motion, in Sec. 3 the constant of
understand or to solve problems in astrophysics and cosmoinotion is obtained and in Sec. 4 the results are discussed.
ogy. In the framework of the astrophysics a direct application
of the equation is for studying the pulsation of Cepheids. In
this case, the solution depends of a free paramejeorfly 2.  Our Hydrodynamical model
which accounts either for the anharmonicity or harmonicity
of the pulsation of the star [15]. The pulsation of CepheidsFor the obtention of the equation of motion, one supposes
has been broadly studied either in relationship with radial andhat the system pulsates asoéum i.e., particle and energy
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interchanges between different internal layers of the systeri.2. Potential energy

which could originate additional internal disturbances are not

present. Moreover, the following assumptions must be con] e energy of the gravitational fiell; and the thermal en-
sidered: the oscillations are adiabatical and the system caff9Y Of the gas contributes substantially to the potential en-
loss mass obeying the conditié) < dU — §W. Addition-  €rgy of the system. For a potential and a density with depen-

ally, there are energy conservation so that dence of the radius only, the Poisson equation reads
d V2¢(r) = 4nGp(r), ©)
a(Ekin + Epot) = 0. 1) . o
where G is the gravitational constant [3] and for a system
Where Ey, means kinetic energy anél,; potential en- ~ With spherical symmetry, Eq. (9) reduces to
ergy [16]. Then one needs expressions for such energies. 9 9o
o <r2a> = 47Gp(r)r?. (10)
T T

2.1. Kinetic ener
9y The first integration of this equation gives

We begin turning to the mass conservation of the system:

AM  d (4 dr % _ g / dp (' 2 + Cor;jtant an
T = 3 = — 2r 3 - .
Tl (37rR p) 3 (3pR’R+ R*p), (2) J

. _ _ The integral of the last equation correspond to the mass
where M is the mass, R the radius of the system it contained in a sphere of radiusand whenr = R, one
density. The point over the variable means derivation withhasg¢(r = R)/dr = MG/R2 which in conjunction with

respect to the time. From Eq. (2) follows that Constant= 0 can be used as a boundary conditions. Addi-
. tionally, for avoiding a singularity in the origin (center of the
o+ 35[) —0. ) sphere) a mas&/’ = constant at this point can be assumed,
R so that the magnitude of the gravitational fie|g|( = g¢.)

On the other hand, the continuity equation for non compressc-iue to a mass contained in a sphere of raditssgiven by

ible fluids reads dp  GM,

=3 r = T 5. — ) 12
pV T+ p=0. (4) g or 2 (12)
Since the system has a spherical symmetry, using Eq. (3) aﬁ’éﬂ'th T
supposing the velocity has radial dependence only, Eq. (4) M, = 47r/p(r’)r’2dr’. (13)
takes the form )
p d R For constant density the integration of Eq. (13) is immediate
2
g () =35p =0, (5)  andtheny, = —(47/3)Gpr but alsog, = —dé(r)/dr (cf.

Eq. 12) so that the integration for the potential provides the
[16] and a restriction for the radial dependence of the velocfollowing expression
ity follows immediately:

2 2
. o(r) = 2TCPT L4 (14)
— E (6) 3
v(r) = R" To determine the constant the continuity condition at the
Assuming the system of mad$ and radiusR is divided into zt;refa;]c:fs = —(MG/R) must be taken into account, thus
concentric rings of mas#én and thicknesdr, the differential ,
of the kinetic energy is 2rGpR 1 MG MG
— 4t A= —+ A= ——+ 15
] ) 3 + 2 R + R’ (15)
1 2 1 2 R2 2 R2 4 i i i i
dFEyin = §dmv — 5477;)7‘ drﬁr = gmﬁr dr, (7) and solving this equation fot one obtains
3IMG
where the expression for the velocity of Eq. (6) has been A= T OR (16)

d. The int i fEQ. (7) f Otor = Rgi I
use e integration of Eq. (7) from=0tor gves Consequently, the gravitational potential is given by

R

2 . 3MG 172

Bun = 2mp g [rdr = GMEE @) o=~ (1= 578)- an
0

On the other hand, in order to calculate the gravitational po-
which is the kinetic energy for the pulsation of the system. tential energy of an ensemble of particles, must be considered
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that the gravitational force that undergoes a test patidiee g, = —(4w/3)Gpr and carried out the integration for the
to a particleu is pressure, one obtains
— Gm,m, . — _2i 2.2
L (18) S VAR @4
n v

Where B is an integration constant. Using the bound-
beingr,,, an unitary vector pointing from the partigleto the  ary conditionp,(r = R) = 0 follows immediately that
test particlev, m,, the mass of the particlg , m, the mass B=(27/3)p?G R? and taking into accoumt=(M /(4r/3) R®)
of the test particler and7,,, 7, the position vectors of the the gravitational pressure is then
particlesy andv respectively [11]. 3 M2 )2
Since the gravitational field of the particleis conservative Pe= g i (1 — R2> . (25)
theng, = —V¢, and consequently the field of the parti- &
cle 4 and the force given by Eq. (17) keeps a similar rela-It must be pointed here that in this case a singularity at
tion with the potential energy of the test particlenamely r = 0 is not present because at this point the pressure is
g,my = Fu, = =V¢,m, = —VE,, where the poten- p,. = (3/87)(M>G/R*).
tial energy of the test particles in the field of the particle The mean value of binding pressure can be obtained via
wis defined a0, = —pumy, = —(Gmum, /|7y —Tul).  (pg) = (1/V) [ pgdx? [2] and with the aid of (25) one ob-
Thus for all theu particles, the gravitational potential energy tains

2
of thev test particles is given by _ 3 MG
(pg) 20m R* (26)
. Z Gmym, (19) and at this point it must be noticed that,./(p,)) = (5/2).
Epotn = [ On the other hand, the gas pressure is given by
. S . p(1+2)

And for a substratum constituted by identical particles, the Dgas= nkT = 7AkT. (27)

mm

total gravitative potential energy for the= v particles reads
o Herek is the Boltzmann constarif; is the temperature of the
Lmymy = system,A the nucleonic numbet/ is the electrons number
Epor = ZZ [ me(m), (20) andn = (p/m) = (p(1 + Z)/myA) is the particle density
where the mass densipyis normalized to the hydrogen mass
where$(7,) is the potential created by each one of all themy and with ((1 + Z)/mpy A) containing the information
u particles. For a continuous distribution of matter, the lastabout the chemical composition of the system [10].

equation can be written as In order to satisfy the hydrostatic equilibrium requirement,
the gravitational pressure must equals the gas pressure
Epot = l/m(r)d% = l/pqzs(r)ﬁdrdg ({pg) = (pgag), SO that with the the aid of Egs. (25) and (27)
2 2 an expression for the temperature for every interior point
) R can be obtained:
= 7/47Tp¢(r)r2dr. (21) 1MG mpgA r?
24 T =3%R 1+2) <1 32) (28)

Whered®z represents a three dimensional integration @nd In a similar way as it has be done above for the pressure, the
the solid angle. By substituting the expression (17)gr) ~ Mean temperature can be obtained through
and after a straightforward algebra the following expression

for the gravitational potential energy is obtained: (T) = /T(r)d3x _ 1 /47rT(r)r2dr. (29)
|4 Vv
E 3 M2G 22
PL= "5 R (22) Substituting Eq. (28) and carrying out the integration, one
- obtains

2.3. Gravitational pressure o iMQG muA  1MG myA )
In order to obtain the pressure due to the gravitational field, 20 kpR* (1+2) 5 kR (1+2)
a hydrostatic equilibrium is assumed so that the followingyhich is also an expression of the temperature as function
equation is full satisfied of the mass of the system. From Eqg. (28) the central

P L temperature can be obtained and follows immediately that

p=-0=—pVep — Vpg. (23) (7./(T)) = (5/2). In addition, substituting Eq. (30) into

&z Eqg. (27), one obtains fofpgas the same value as that ob-
For a constant acceleration of the particles and a sphetained for(p,) in Eq. (26) which is in agreement with the
ical symmetry we havedp,/0r = pg, so that using hydrodynamical equilibrium condition.
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In the potential energy either the thermal energy associateflo that the associated equation of motion obtained with the
to the equation of state of an ideal gas described by Eq. (2®ondition(d/dt)(OL/OR) — (OL/R) = 0'is
as the gravitational energy given by Eq. (22) must be present,

ie., 3M?G 3., R

. )
1427 M2 3MR+ —-M"G— =0, (40)
Foor = 4okt 2y 3MC (31) b R2 5 TR

We have used the fact that for a system of N par_and using the substitution proposed in Eq. (37) the last dif-
ticles with tree freedom degrees its thermal energy iderential equation transforms into

Einermal = (3/2)NET and for the particle number we have MG /1 1

takenN = (1 + Z/mgA)M. Nevertheless, the dependence i+ —5 (2 - 3> =0. (41)

of the potential energy from the chemical composition can Ry \y Yy

still eliminated. For an adiabatical pulsation [6], one has

Multiplying the last equation by(t)y being~(¢) an arbitrary
TR? = TyR? = constant (32) function of the time and after a straightforward algebra one

arrives into the following equation
whereTy and Ry are the values of the temperature and the

radius of the system by hydrostatic equilibrium. In such state g4 { ( )yT MG { d {7(15)} d P(t)”
v(t) % -
2 dt | 2

the pressure of the gas equals the gravitational pressaire, at ng at y 22
po(1+2) 3 M3G . 1 MG /1 1
——kTy = — —— 33 2 _
muA 0T 207 RI (33) +(1) <2y T (y - 2y2>) =0, (42)

with pg the mass density by hydrostatic equilibrium as )
well. Multiplying the last equation byR2, substituting The coefficient ofy(¢) is the sum of the kinetic energy and
p= (47r/3)MR53 and using Eg. (32), one obtains the potential energy per unit mass,, the total energy per
unit mass, and once must be pointed out that it is less than
KT (1 + Z) — 1MGR07 (34)  zero because we have a binding system sifigg > FEiin.
mpA 5 R? In order to have a constant of motion, it is necessary that
whose substitution into Eq. (31) provides the following ex-dE~/dt = E% and introducing this condition into Eq. (42),

pression for the potential energy one arrives to
3M*G 3 Ry d 21 MG (d [—()
Epot=—=——— + —M?*G—; (35) Ll P i it
5 R 100 TR a "7 B |y
Finally, taken into account either the kinetic energy as the d [() d
potential energy, the equation of motion which describes the + pr BQ} } + d—(E’y) =0 (43)
radial pulsation of the spherical system is tl2y t
. M? And the constant of motion is
Sz 3 ¢ + EMQG& =contant  (36)
10 5 R 10 R? 2 MG 1 1
and using the substitution Y#) |5+ 55 | —— + 55 | + E| =Constant (44)
2 Ry y o2y
vy= Ry’ (37 Whichis properly the total energy per unit mass.
the equation of motion transforms into
MG (1 11 4. Discussion and Conclusions
0

. . .. In the present work an equation of motion to describe the
Where_E < 0 means the total d_|m_en5|onless energy and it ISpulsation of a system with spherical symmetry has been de-
negative because we have a binding system. duced. Such equation contains basically an expression for
the kinetic energy and the potential energy where the energy

3. Integral of motion of the gravitational field and the thermal energy are present.
The Eqg. (36) has applications into astrophysics and cosmol-

In the present section we will show that indeed the equatiora)gy as well as into physical problems for which the physical
of motion given by Eq. (36) has the integral of motion de- and the symmetry conditions are satisfied. For astrophysical
manded in Eq. (1) [4]. According with Eq. (8) and Eq. (35) problems, a direct application of such equation is for studying

the lagrangian is the pulsation of Cepheids. In this case, the solution depends
3 ., 3M2G 3 ., R only of a free parameter) which accounts either for the an-
L = Eiin — Bpot = 1g MR+ —p——15M Gﬁ~ (39)  harmonicity or harmonicity of the pulsation of the star. The
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pulsation of Cepheids has been broadly studied but the topic Additionally, the constant of motion is obtained and it is
is not completely understood and instead of doing computeproperly the total energy per unit mass multiplied by a func-
simulations that require the introduction @ffi hocparame- tion of the time acting on the system asodum here must
ters, the Cepheid problem, as presented in Paper I, can lie pointed out that such function of the time takes relevance
treated by a strictly analytic method which can be step bywhen it is associated with the Hubble function, so that the
step well understood and fitted with astronomical observaeosmological application of our results may be relevant and
tions. By considering that the Cepheid is never motionlesst is a topic of another paper.

and with the normalization conditiongt) = R(t)/Robs

¢(t) = Ro/Robs, x(t) = Robs/Re, Where Rops is the ob-
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