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Apartado Postal 216, 72840 Tonantzintla, Puebla, México,
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An equation of motion for describing the motion of a massive pulsating system with spherical symmetry has been deduced. Such equation
has applications in astrophysics and cosmology as long as the physical and the symmetry conditions are satisfied.
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Se deduce una ecuación para describir el movimiento de un sistema massivo pulsante con simetrı́a esf́erica. Esta ecuación puede tener
aplicaciones en astrofı́sica y cosmoloǵıa, siempre y cuando las condiciones impuestas en la deducción sean satisfechas.
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1. Introduction

In a previous paper (Paper I) an equation of motion to de-
scribe the pulsation of a system with spherical symmetry
has been proposed and resolved [5]. This equation of mo-
tion contains exactly the kinetic energy and the potential
energy where the energy of the gravitational field and the
thermal energy are present. Using the knowledge obtained
in the courses of theoretical mechanics [9], basic informa-
tion of hydrodynamics [19] and with educational purposes
in mind, one derives in-depth such equation of motion. We
begin assuming that the constituent of such system is basi-
cally a gas without strong interactions between the particles
so that it can be described as a non compressible fluid via
the hydrodynamical equations, namely the continuity equa-
tion, the Euler momentum equation and the Poisson equation
for taking into account the gravitational interaction between
the particles. The deduced equation is precisely Eq. (36)
and in order to generalize the applications of such equa-
tion a normalization has been done, namelyy = (R(t)/R0)
(cf. Eq. (37)), whereR0 means the hydrostatic radius.
Thus the differential equation to be solved transforms into
ẏ2=(2MG/R3

0)((1/y)−(1/2)(1/y2))+E, with E=const.
describing the total energy in mass units. After a carefully
adjustment the equation deduced here can be applied either to
understand or to solve problems in astrophysics and cosmol-
ogy. In the framework of the astrophysics a direct application
of the equation is for studying the pulsation of Cepheids. In
this case, the solution depends of a free parameter (a) only
which accounts either for the anharmonicity or harmonicity
of the pulsation of the star [15]. The pulsation of Cepheids
has been broadly studied either in relationship with radial and

non-radial pulsations or by considering linear or non-linear
perturbation, however the topic is not completely understood
and instead of doing computer simulations that require the
introduction ofad hocparameters and constants [20,13], the
aim of the present paper is to help via Eq. (36) to treat the
Cepheid problem by a strictly analytic method which can be
step by step well understood and fitted with astronomical ob-
servations. Additionally, by considering that the Cepheid
is never motionless and with the normalization conditions
ξ(t) = R(t)/Robs, ζ(t) = R0/Robs, χ(t) = Robs/R¯, where
Robs is the observed radius of the star by the astronomers and
R¯ the radius of the sun, the problem described by the differ-
ential equation mentioned above transforms into a variational
problem which must be solveda la Lanczos [14,7,17]. This
topic has been exhaustively discussed in Paper I as well. Ad-
ditionally, with the aid of the parametera and the physical re-
strictions imposed by the perturbation analysis intoξ(t), ζ(t)
andχ(t), some relations to obtain characteristic parameters
of the star can be obtained namely the mass of the system, the
surface gravity, the amplitude of the elongation, the maximal
velocity of the pulsation and the luminosity. For Cepheids,
at least four quantities have been observed and they can be
matched with the results provided by Eq. (36) [8,1,18,12].
The outline of the paper is as follows: Sec. 2 contains the
deduction of the equation of motion, in Sec. 3 the constant of
motion is obtained and in Sec. 4 the results are discussed.

2. Our Hydrodynamical model

For the obtention of the equation of motion, one supposes
that the system pulsates as atotum, i.e., particle and energy
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interchanges between different internal layers of the system
which could originate additional internal disturbances are not
present. Moreover, the following assumptions must be con-
sidered: the oscillations are adiabatical and the system can
loss mass obeying the conditionδQ ¿ dU − δW . Addition-
ally, there are energy conservation so that

d

dt
(Ekin + Epot) = 0. (1)

Where Ekin means kinetic energy andEpot potential en-
ergy [16]. Then one needs expressions for such energies.

2.1. Kinetic energy

We begin turning to the mass conservation of the system:

dM

dt
=

d

dt

(
4
3
πR3ρ

)
=

4π

3
(
3ρR2Ṙ + R3ρ̇

)
, (2)

where M is the mass, R the radius of the system andρ its
density. The point over the variable means derivation with
respect to the time. From Eq. (2) follows that

ρ̇ + 3
Ṙ

R
ρ = 0. (3)

On the other hand, the continuity equation for non compress-
ible fluids reads

ρ~∇ · ~v + ρ̇ = 0. (4)

Since the system has a spherical symmetry, using Eq. (3) and
supposing the velocity has radial dependence only, Eq. (4)
takes the form

ρ

r2

d

dr

(
r2v

)− 3
Ṙ

R
ρ = 0, (5)

[16] and a restriction for the radial dependence of the veloc-
ity follows immediately:

v(r) =
Ṙ

R
r. (6)

Assuming the system of massM and radiusR is divided into
concentric rings of massdm and thicknessdr, the differential
of the kinetic energy is

dEkin =
1
2
dmv2 =

1
2
4πρr2dr

Ṙ2

R2
r2 = 2πρ

Ṙ2

R2
r4dr, (7)

where the expression for the velocity of Eq. (6) has been
used. The integration of Eq. (7) fromr = 0 to r = R gives

Ekin = 2πρ
Ṙ2

R2

R∫

0

r4dr =
3
10

MṘ2, (8)

which is the kinetic energy for the pulsation of the system.

2.2. Potential energy

The energy of the gravitational fieldEG and the thermal en-
ergy of the gas contributes substantially to the potential en-
ergy of the system. For a potential and a density with depen-
dence of the radius only, the Poisson equation reads

∇2φ(r) = 4πGρ(r), (9)

whereG is the gravitational constant [3] and for a system
with spherical symmetry, Eq. (9) reduces to

∂

∂r

(
r2 ∂φ

∂r

)
= 4πGρ(r)r2. (10)

The first integration of this equation gives

∂φ

∂r
=

G

r2

r∫

0

4πρ(r′)r′2dr′ +
Constant

r2
(11)

The integral of the last equation correspond to the mass
contained in a sphere of radiusr and whenr = R, one
has∂φ(r = R)/∂r = MG/R2 which in conjunction with
Constant= 0 can be used as a boundary conditions. Addi-
tionally, for avoiding a singularity in the origin (center of the
sphere) a massM ′ = constant at this point can be assumed,
so that the magnitude of the gravitational field (‖g‖ = gr)
due to a mass contained in a sphere of radiusr is given by

gr = −∂φ

∂r
= −GMr

r2
, (12)

with

Mr = 4π

r∫

0

ρ(r′)r′2dr′. (13)

For constant density the integration of Eq. (13) is immediate
and thengr = −(4π/3)Gρr but alsogr = −∂φ(r)/∂r (cf.
Eq. 12) so that the integration for the potential provides the
following expression

φ(r) =
2πGρr2

3
+ A. (14)

To determine the constantA the continuity condition at the
surfaceφS = −(MG/R) must be taken into account, thus
one has

2πGρR2

3
+ A =

1
2

MG

R
+ A = −MG

R
, (15)

and solving this equation forA one obtains

A = −3MG

2R
. (16)

Consequently, the gravitational potential is given by

φ(r) = −3MG

2R

(
1− 1

3
r2

R2

)
. (17)

On the other hand, in order to calculate the gravitational po-
tential energy of an ensemble of particles, must be considered
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that the gravitational force that undergoes a test particleν due
to a particleµ is

Fµν = − Gmµmν

|rµ − rν |2
r̂µν , (18)

beingr̂µν an unitary vector pointing from the particleµ to the
test particleν, mµ the mass of the particleµ , mν the mass
of the test particleν andrµ, rν the position vectors of the
particlesµ andν respectively [11].
Since the gravitational field of the particleµ is conservative
then gµ = −∇φµ and consequently the field of the parti-
cle µ and the force given by Eq. (17) keeps a similar rela-
tion with the potential energy of the test particleν, namely
gµmν = Fµν = −∇φµmν = −∇Epotν where the poten-
tial energy of the test particlesν in the field of the particle
µ is defined asEpotν = −φµmν = −(Gmµmν/|rµ − rν |).
Thus for all theµ particles, the gravitational potential energy
of theν test particles is given by

Epotµ = −
∑

µ

Gmµmν

|rµ − rν | . (19)

And for a substratum constituted by identical particles, the
total gravitative potential energy for theµ 6= ν particles reads

Epot = −1
2

∑
µ

∑
ν

Gmµmν

|rµ − rν | =
1
2

∑
µ

mνφ(rµ), (20)

whereφ(rµ) is the potential created by each one of all the
µ particles. For a continuous distribution of matter, the last
equation can be written as

Epot =
1
2

∫
ρφ(r)d3x =

1
2

∫
ρφ(r)r2drdΩ

=
1
2

R∫

0

4πρφ(r)r2dr. (21)

Whered3x represents a three dimensional integration andΩ
the solid angle. By substituting the expression (17) forφ(r)
and after a straightforward algebra the following expression
for the gravitational potential energy is obtained:

Epot = −3
5

M2G

R
. (22)

2.3. Gravitational pressure

In order to obtain the pressure due to the gravitational field,
a hydrostatic equilibrium is assumed so that the following
equation is full satisfied

ρ
∂

∂t
v = −ρ∇φ−∇pg. (23)

For a constant acceleration of the particles and a spher-
ical symmetry we have∂pg/∂r = ρgr so that using

gr = −(4π/3)Gρr and carried out the integration for the
pressure, one obtains

pg = −2π

3
ρ2Gr2 + B. (24)

Where B is an integration constant. Using the bound-
ary conditionpg(r = R) = 0 follows immediately that
B=(2π/3)ρ2GR2 and taking into accountρ=(M/(4π/3)R3)
the gravitational pressure is then

pg =
3
8π

M2G

R4

(
1− r2

R2

)
. (25)

It must be pointed here that in this case a singularity at
r = 0 is not present because at this point the pressure is
pgc = (3/8π)(M2G/R4).
The mean value of binding pressure can be obtained via
〈pg〉 = (1/V )

∫
pgdx3 [2] and with the aid of (25) one ob-

tains

〈pg〉 =
3

20π

M2G

R4
, (26)

and at this point it must be noticed that(pgc/〈pg〉) = (5/2).
On the other hand, the gas pressure is given by

pgas= nkT =
ρ(1 + Z)

mHA
kT. (27)

Herek is the Boltzmann constant,T is the temperature of the
system,A the nucleonic number,Z is the electrons number
andn = (ρ/m) = (ρ(1 + Z)/mHA) is the particle density
where the mass densityρ is normalized to the hydrogen mass
mH and with ((1 + Z)/mHA) containing the information
about the chemical composition of the system [10].
In order to satisfy the hydrostatic equilibrium requirement,
the gravitational pressure must equals the gas pressure
(〈pg〉 = 〈pgas〉), so that with the the aid of Eqs. (25) and (27)
an expression for the temperature for every interior pointr
can be obtained:

T (r) =
1
2

MG

kR

mHA

(1 + Z)

(
1− r2

R2

)
. (28)

In a similar way as it has be done above for the pressure, the
mean temperature can be obtained through

〈T 〉 =
1
V

∫
T (r)d3x =

1
V

R∫

0

4πT (r)r2dr. (29)

Substituting Eq. (28) and carrying out the integration, one
obtains

〈T 〉 =
3

20π

M2G

kρR4

mHA

(1 + Z)
=

1
5

MG

kR

mHA

(1 + Z)
, (30)

which is also an expression of the temperature as function
of the mass of the system. From Eq. (28) the central
temperature can be obtained and follows immediately that
(Tc/〈T 〉) = (5/2). In addition, substituting Eq. (30) into
Eq. (27), one obtains for〈pgas〉 the same value as that ob-
tained for〈pg〉 in Eq. (26) which is in agreement with the
hydrodynamical equilibrium condition.
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In the potential energy either the thermal energy associated
to the equation of state of an ideal gas described by Eq. (27)
as the gravitational energy given by Eq. (22) must be present,
i.e.,

Epot = +
3
2
kT

1 + Z

mHA
M − 3

5
M2G

R
. (31)

We have used the fact that for a system of N par-
ticles with tree freedom degrees its thermal energy is
Ethermal = (3/2)NkT and for the particle number we have
takenN = (1 + Z/mHA)M . Nevertheless, the dependence
of the potential energy from the chemical composition can
still eliminated. For an adiabatical pulsation [6], one has

TR2 = T0R
2
0 = constant, (32)

whereT0 andR0 are the values of the temperature and the
radius of the system by hydrostatic equilibrium. In such state
the pressure of the gas equals the gravitational pressure,i.e.,

ρ0(1 + Z)
mHA

kT0 =
3

20π

M2G

R4
0

, (33)

with ρ0 the mass density by hydrostatic equilibrium as
well. Multiplying the last equation byR2

0, substituting
ρ = (4π/3)MR−3

0 and using Eq. (32), one obtains

kT (1 + Z)
mHA

=
1
5

MGR0

R2
, (34)

whose substitution into Eq. (31) provides the following ex-
pression for the potential energy

Epot = −3
5

M2G

R
+

3
10

M2G
R0

R2
(35)

Finally, taken into account either the kinetic energy as the
potential energy, the equation of motion which describes the
radial pulsation of the spherical system is

3
10

MṘ2 − 3
5

M2G

R
+

3
10

M2G
R0

R2
= contant, (36)

and using the substitution

y =
R

R0
, (37)

the equation of motion transforms into

ẏ2 = 2
MG

R3
0

(
1
y
− 1

2
1
y2

)
+ E, (38)

whereE < 0 means the total dimensionless energy and it is
negative because we have a binding system.

3. Integral of motion

In the present section we will show that indeed the equation
of motion given by Eq. (36) has the integral of motion de-
manded in Eq. (1) [4]. According with Eq. (8) and Eq. (35)
the lagrangian is

L = Ekin − Epot =
3
10

MṘ2+
3
5

M2G

R
− 3

10
M2G

R0

R2
. (39)

So that the associated equation of motion obtained with the
condition(d/dt)(∂L/∂Ṙ)− (∂L/R) = 0 is

3MR̈ +
3
5

M2G

R2
− 3

5
M2G

R0

R3
= 0, (40)

and using the substitution proposed in Eq. (37) the last dif-
ferential equation transforms into

ÿ +
MG

R3
0

(
1
y2
− 1

y3

)
= 0. (41)

Multiplying the last equation byγ(t)ẏ beingγ(t) an arbitrary
function of the time and after a straightforward algebra one
arrives into the following equation

d

dt

[
γ(t)

ẏ2

2

]
+

MG

R3
0

{
d

dt

[−γ(t)
y

]
+

d

dt

[
γ(t)
2y2

]}

+ ˙γ(t)
(
−1

2
y2 +

MG

R3
0

(
1
y
− 1

2y2

))
= 0. (42)

The coefficient of ˙γ(t) is the sum of the kinetic energy and
the potential energy per unit mass,i.e., the total energyE per
unit mass, and once must be pointed out that it is less than
zero because we have a binding system sinceEpot > Ekin.
In order to have a constant of motion, it is necessary that
dEγ/dt = Eγ̇ and introducing this condition into Eq. (42),
one arrives to

d

dt

[
γ(t)

ẏ2

2

]
+

MG

R3
0

{
d

dt

[−γ(t)
y

]

+
d

dt

[
γ(t)
2y2

]}
+

d

dt
(Eγ) = 0 (43)

And the constant of motion is

γ(t)
[
ẏ2

2
+

MG

R3
0

(
−1

y
+

1
2y2

)
+ E

]
= Constant (44)

Which is properly the total energy per unit mass.

4. Discussion and Conclusions

In the present work an equation of motion to describe the
pulsation of a system with spherical symmetry has been de-
duced. Such equation contains basically an expression for
the kinetic energy and the potential energy where the energy
of the gravitational field and the thermal energy are present.
The Eq. (36) has applications into astrophysics and cosmol-
ogy as well as into physical problems for which the physical
and the symmetry conditions are satisfied. For astrophysical
problems, a direct application of such equation is for studying
the pulsation of Cepheids. In this case, the solution depends
only of a free parameter (a) which accounts either for the an-
harmonicity or harmonicity of the pulsation of the star. The
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pulsation of Cepheids has been broadly studied but the topic
is not completely understood and instead of doing computer
simulations that require the introduction ofad hocparame-
ters, the Cepheid problem, as presented in Paper I, can be
treated by a strictly analytic method which can be step by
step well understood and fitted with astronomical observa-
tions. By considering that the Cepheid is never motionless
and with the normalization conditionsξ(t) = R(t)/Robs,
ζ(t) = R0/Robs, χ(t) = Robs/R¯, whereRobs is the ob-
served radius of the star by the astronomers andR¯ the radius
of the sun, the problem described by the differential equation
presented here transforms into a variational problem which
must be solved via the variation principlea la Lanczos [14].
This topic has also been exhaustively discussed in Paper I
where the application to Cepheids has been reported. Addi-
tionally, with the aid of the parametera and the physical re-
strictions imposed by the variational analysis intoξ(t), ζ(t)
andχ(t), expressions to know the mass of the star, the surface
gravity, the amplitude of the elongation, the maximal veloc-
ity of the pulsation and the luminosity of Cepheids, have been
obtained.

Additionally, the constant of motion is obtained and it is
properly the total energy per unit mass multiplied by a func-
tion of the time acting on the system as atotum, here must
be pointed out that such function of the time takes relevance
when it is associated with the Hubble function, so that the
cosmological application of our results may be relevant and
it is a topic of another paper.
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Clásica(México: Editorial Trillas, 1976), pp. 67.

7. I. M. Gelfand and S. V. Fomin,Calculus of Variations(New
york: Dover Publications, 2000), pp. 14-22.

8. W. P. Gieren,A&A 225(1989) 381.

9. H. G. Goldestein,Classical Mechanics(USA: Addison-Wesley
Publishing Company, 1980), pp. 25-63.

10. C. J. Hansen, S. D. Kawaler,Stellar Interiors(New York Berlin
Heidelberg London Paris Tokyo Hong Kong Barcelona Bu-
dapest: Springer-Verlag, 1994), pp. 17-20.
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