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A geometrical point of view of symmetry adapted projection to irreducible subspaces is presented. The projection is applied in two stages.
The first step consists in projecting over subspaces spanning irreducible representations (irreps) of the symmetry group, while the second
projection is carried out over the irreps of a subgroup defined through a suitable group chain. It is shown that choosing different chains is
equivalent to propose alternative bases (passive point of view), while changing the projected function corresponds to the active point of view
where the vector to be projected is rotated. Because of the importance of choosing the appropriate basis, an approach based on the concept
of invariant operators to obtain the basis for discrete groups is presented. We show that this approach is analogue to the case of continuum
groups and it is closely related to the definition of quantum numbers. The importance of these concepts is illustrated through the effect of
symmetry breaking. Because of the deep insight into the group theory concepts, we believe the presented viewpoint helps to understand the
main ingredients involved in group representation theory using the latest advances in the subject for discrete groups.
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Se presenta un punto de vista geométrico de la proyección a subepacios que portan representaciones irreducibles. La proyección se lleva
a cabo en dos pasos. Primero se efectúa la proyeccíon sobre subespacios que portan representaciones irreducibles del grupo de simetrı́a,
para posteriormente efectuar la proyección con respecto a un subgrupo definido a través de una cadena apropiada de subgrupos. Se muestra
que la selección de diferentes cadenas es equivalente a proponer bases alternativas (punto de vista pasivo), mientras que el cambio de la
función a proyectar equivale al punto de vista activo, donde el vector a proyectar es rotado. Debido a la importancia de seleccionar una
base apropiada, se presenta un método de proyección basado en el concepto de operadores invariantes en el caso de grupos discretos. Se
muestra que este ḿetodo es ańalogo al caso de grupos continuos e intimamente relacionado con el mismo concepto de número cúantico. La
importancia de estos conceptos es ilustrada mediante el concepto de rompimiento de simetrı́a. Creemos que dada la profundidad del marco
teórico presentado,este material será de gran ayuda en la comprensión de los conceptos de terorı́a de representaciones de grupos, en donde
se ha incluido la esencia de losúltimos ḿetodos de proyección desarrollados para grupos discretos.

Descriptores: Proyeccíon de simetŕıa; números cúanticos; grupos discretos; método de funciones propias; rompimiento de simetrı́a.

PACS: 03.65.Ge; 02.20.-a; 02.20.Bb

1. Introduction

Symmetry plays a pervasive role in chemistry and physics.
In chemistry the application of symmetry to molecular or-
bital theory, valence bond theory, crystal field theory, molec-
ular chemical reactions, and ro-vibrational spectroscopy; for
instance, represents the classical applications of group rep-
resentation theory to this field [1–9]. In physics, on the
other hand, group theory is the basic language in elementary
particle physics, nuclear, molecular, atomic and space-time
physics, for instance. It is not possible to conceive modern
physics without group representation theory [10–16].

The advantage of approaching the systems from the sym-
metry point of view is twofold. On one hand it provides
a way for a deep understanding of the concept of quantum
numbers, but on the other hand it also allows a remarkable
simplification in solving the Schrödinger equation as well as
in establishing the selection rules. The basic idea to incorpo-
rate the systems symmetry consists in identifying invariant
subspaces of minimum dimension labeled with irreducible
representations (irreps) of the symmetry group. This goal
is achieved on the basis of the orthogonality theorems, de-
rived from the Schur’s lemmas [14]. However, although the
fundamental concepts involved in group representation the-

ory are widely discussed in textbooks, recent advances re-
lated with projection techniques in discrete groups together
with a geometrical point of view have not been considered
as it should be. Here we take advantage of a geometrical
analogy emphasizing the importance of using a subgroup to
label the states, a standard approach in establishing the basis
in continuous groups but not weighted up properly concern-
ing discrete groups. The group theoretical concepts presented
in this work are concerned with discrete finite groups, which
emerge in natural form in the study of molecules, crystals
and identical particles. The geometrical viewpoint however
is also valid for continuous groups since in both cases the
projection can be carried out by diagonalizing the matrix rep-
resentation of invariant operators. The search for invariant
operators is closely related to the establishment of a set of
commuting operators to provide a complete labeling scheme
for the states. In this contribution we show that the concept
of quantum numbers leads to a projection technique known
as the eigenfunction method in discrete groups developed by
Chen [17]. This approach turns out to be the most efficient
approach to carry out a projection and consequently to estab-
lish a basis since it forms part of a well established machinery
in quantum mechanics consisting in diagonalizing matrices.
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Symmetry may be considered from a geometrical point
of view (obvious symmetry), but also from a dynamical per-
spective. In the latter case the concept of dynamical group
emerges as an algebraic structure suitable to model the in-
teractions [22]. In this way every dynamical variable is ex-
panded in terms of the generators of the dynamical algebra.
In particular the Hamiltonian belongs to this case and the ba-
sis to obtain its representation matrix is crucial. Several basis
may be proposed, which may be suitable to be interpreted ge-
ometrically. In this contribution we emphasize this point of
view taking discrete groups as a tool to achieve this goal.

This paper is organized as follows. A summary of the ba-
sic concepts of representation theory is presented in§2, em-
phasizing the geometrical interpretation of the projection of
symmetry adapted functions.§3 is devoted to work out a sim-
ple example in order to illustrate the concepts of active and
passive viewpoint.§4 is devoted to present the connection
between the quantum numbers and the irreducible represen-
tations of a group. In addition it is shown that the eigenfunc-
tion approach emerges in natural form from this concept. In
§5 we present the importance of choosing the appropriate ba-
sis in symmetry breaking phenomena. Finally, in§6 the sum-
mary and conclusions are presented.

2. Fundamental concepts of group representa-
tion theory

A general quantum mechanical problem consists in solv-
ing the Schr̈odinger equation. In particular for a time-
independent Hamiltonian, a basis is expected to be proposed
to obtain the Hamiltonian representation matrix and, in this
way, proceed to its diagonalization. The basis can be re-
arranged in a special way in order to carry suitable labels
known asgoodquantum numbers. This is precisely the role
of group representation theory as we next explain.

We first identify the symmetry groupG of the system,
which is defined as the maximum set of transformations that
leaves the Hamiltonian̂H invariant [11]:

[ÔR, Ĥ] = 0; ∀R ∈ G. (1)

We then proceed to identify an invariantn-dimensional sub-
space of functionsLn = {|φ1〉 , |φ2〉 , . . . , |φn〉}, which
transforms into itself under any operatorÔR associated with
the elementR in the symmetry groupG. The maximum
dimensionn corresponds to the order|G| of the symmetry
group and is less than the dimension of the total space carry-
ing the physical manifold of the system. In this contribution
we shall consider scalar functions only. In a precise mathe-
matical language we have [14]

ÔR |φi〉 =
n∑

i=1

∆(red)
ji (R) |φj〉 ; R ∈ G, (2)

where the set of matrices∆(red)(R), ∀R ∈ G, constitutes a
reducible matrix representation of G. Group representation

theory provides the way to identify invariant subspacesLnΓ ,
with nΓ < n which transforms into themselves. The new
functions belonging toLnΓ satisfy the invariance condition

ÔR

∣∣∣qψ(Γ)
γ

〉
=

nΓ∑

i=1

D
(Γ)
γ′γ(R)

∣∣∣qψ(Γ)
γ′

〉
; R ∈ G, (3)

whereD(Γ)(R) is a matrix irreducible representation ofG
andq = 1, . . . aΓ is a multiplicity index that takes into ac-
count the repetition of irreps. The new kets|qψ(Γ)

γ 〉 are given
in terms of linear combinations of the original ones

∣∣∣qψ(Γ)
γ′

〉
=

n∑

i

Si;qΓγ |φi〉 , (4)

where the matrixS = ||Si;qΓγ || = ||〈φi|qψ(Γ)
γ′ 〉|| defines

the change of basis that reduces the original representation
∆(red)(R) into a block diagonal form expressed as a direct
sum of irreps

S−1∆(red)(R)S =
∑

Γ

⊕ aΓ D(Γ)(R), (5)

where the symbol⊕ means direct sum of matrices [14], and
aΓ is a multiplicity factor that indicates the number of times
that theΓ-th irrep appears in the reduction. In Eq. (5) the
matrix ∆(red)(R) is the only known variable, the rest of the
terms have to be determined. The integer numbersaΓ are cal-
culated through the well known formula involving the char-
actersχ(R) [14]:

aΓ =
1
|G|

|G|∑

R∈G

χ(Γ)∗(R) χ(red)(R), (6)

while the matrixS is obtained by projecting one or more kets
|φi〉 as we shortly explain. But before proceeding with this
task, we should remark that any vector|Ψ〉 can be expanded
in terms of the basisLn = {

∣∣
qψ

(Γ)
γ′

〉}, which means that [11]

|Ψ〉 =
|K|∑

Γ

nΓ∑
γ=1

aΓ∑
q

CqΓγ

∣∣∣qψ(Γ)
γ′

〉
. (7)

This equation corresponds to the expansion of a vector|Ψ〉
in terms of the basis{∣∣qψ(Γ)

γ′
〉}, with coordinatesCqΓγ given

by de internal product

CqΓγ ≡
〈

qψ
(Γ)
γ

∣∣∣ Ψ
〉

, (8)

where we have assumed the orthonormality property
〈

q′ψ
(Γ′)
γ′

∣∣∣∣ qψ
(Γ)
γ

〉
= δqq′δΓΓ′δγγ′ . (9)

If, in addition, the vector|Ψ〉 to be projected has been nor-
malized, then

∑
Γ,γ,q |CqΓγ |2 = 1. The expansion (7) justi-

fies to depict the projection as in Fig. 1. In general, we have
an hyper-space without the possibility of being represented
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FIGURE 1. Graphical representation of the expansion (7).

in graphical form. To avoid this problem we shall discuss
cases involving, at most, three irreps.

The question which arises is concerned with the projec-
tion approach to satisfy (9). Here we shall consideraΓ = 0, 1
in (5), because in such cases only the group characters are
needed. Otherwise more advanced methods would be nec-
essary [17–20], as will be discussed in Section 4. Hence,
from now on we shall takeq = 0, 1 and consequently this
index will be omitted. We should stress however that the ba-
sic ideas and the analysis we present are equally valid to the
general caseaΓ ≥ 2.

The projection operator, involving characters only, is
given by [11,14]

P̂(Γ) =
nΓ

|G|
|G|∑

R∈G

χ(Γ)∗(R) ÔR, (10)

whose action over any vector|Ψ〉 leads to a vector spanning
theΓ-th irrep

P̂(Γ) |Ψ〉 ∝
∣∣∣ζ(Γ)

〉
, (11)

where we consider normalized projected functions, which ex-
plains the proportionality sign. As we note this projection
does not distinguish components of theΓ-th irrep. Hence it
is compulsory to obtain both components in order to have a
complete description. This goal may be achieved with the
projection operator involving an explicit matrix representa-
tions [14]. However it is possible, as an alternative, to extract
the components using the characters of a subgroupH ⊂ G.
The first step consists in choosing an appropriate groupH as
we next explain.

Given an irrepD(Γ)(G) of the groupG, the set of ma-
trices{D(Γ)(h); h ∈ H} constitutes a representation space
of H. This representation is in general reducible and conse-
quently it can be reduced in similar form to (5):

Q−1D(Γ)(h)Q =
∑

γ

⊕ aγ D(γ)(h); h ∈ H, (12)

where we have denoted withγ the irreps of the subgroupH.
It is said that ifaγ = 0, 1 then the subgroup is appropriate
(canonical reduction), for in this case the components of the
irrep Γ can be distinguished. In Eq. (12) we only need to
calculateaγ . For our purposes it is not necessary to obtain
theQ matrix defining the change of basis. Associated with
H we have the projection operator

P̂(γ) =
nγ

|H|
|H|∑

h∈H

χ(γ)∗(h) Ôh. (13)

The symmetry adapted functionsψ(Γ)
γ (x) are then obtained

through the double projection

P̂(γ)P̂(Γ) |Ψ〉 ∝
∣∣∣ψ(Γ)

γ′

〉
, (14)

where again the proportionality sign means that after the pro-
jection the functions are understood to be normalized. Here
we should stress, as it can be proved, that the operators in-
volved in (14) commute:

[P̂(γ), P̂(Γ)] = 0; (15)

and consequently, from the algebraic point of view, the or-
der of these operators may be inverted. However the order
stated in expression (14) is more convenient from the effi-
ciency point of view as well as from a geometrical perspec-
tive, as it is next explained.

From the geometrical point of view, the first projection
in (14) is equivalent to consider the expansion of the vector
|Ψ〉 in the basis{|ψΓ〉}:

|Ψ〉 =
∑

Γ

BΓ

∣∣ψΓ
〉
, (16)

with normalized kets given by

∣∣ψΓ
〉

=
∑

γ

NΓγ

∣∣∣ψ(Γ)
γ

〉
. (17)

In this way the basis involved in the expansion is orthonormal

〈ψ(Γ′), ψ(Γ)〉 = δΓΓ′ . (18)

Equation (17) provides the second expansion of|ψΓ〉 in terms
of the basis|ψ(Γ)

γ 〉, whose components are obtained through

〈ψ(Γ)
γ , ψ(Γ)〉 = NΓγ . (19)

These successive projections are illustrated in Fig. 2. The
relation between the coefficientsCΓγ in (7), for q = 1, is
obtained by the substitution of (17) into (16), yielding the
following result

CΓγ = BΓNΓγ ; 〈ΨΓ
γ |Ψ〉 = 〈ΨΓ

γ |ΨΓ〉〈ΨΓ|Ψ〉, (20)
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FIGURE 2. (a) Projection of the state|Ψ〉 over the space of kets|ψΓ〉 spanning irreps of the group G, (b) Projection of the component|ψΓ〉
over the space of kets|ψΓ

γ 〉 carrying irreps of the subgroup H

provided the normalization constraints
∑

Γ

|BΓ|2 =
∑

Γγ

|CΓγ |2 =
∑

γ

|NΓγ |2 = 1. (21)

The selection of the subgroupH is not unique. In general
several possibilitiesG ⊃ Hα are available, and each chain
defines a reference frame, as we illustrate in Fig. 3. To point
out the idea, letG ⊃ K be a second group chain, besides
G ⊃ H, which in turn defines the new expansion

∣∣ψΓ
〉

=
∑

β

AΓβ

∣∣∣ζ(Γ)
β

〉
, (22)

FIGURE 3. Each chainG ⊃ Hα defines a reference frame in the
passive picture in such a way that the bases are connected through
a rotation.

where nowβ labels the K subgroup irreps. From this expres-
sion and (17), we obtain the connection between the coordi-
natesNΓγ andAβΓ

∑
γ

NΓγMΓ
βγ = AΓβ , (23)

whereMΓ
βγ is the overlap matrix between the bases:

MΓ
βγ = 〈ζΓ

β , ψΓ
α〉. (24)

Geometrically this is the rotation matrix that establishes the
connection between the bases. We now proceed to show an
example involving every concept before presenting an ad-
vanced projection method.

3. An illustrative example: H+
3

To illustrate the concepts previously presented, we next con-
sider as an example the projection of thes-orbitals of the hy-
drogen atoms in the molecule H+

3 . Here our representation
space isL3 = {|s1〉 , |s2〉 , |s3〉}, which will be considered
to satisfy the ortho-normality condition〈si | sj〉 = δij . This
assumption is chosen in order to simplify the discussion, but
in any case it is possible to construct a set of localized ortho-
normal functions isomorphic to thes-orbitals with the prop-
erty that both sets coincide in the null overlap limit [21].

This molecule is invariant under theD3h group. How-
ever, since thes-orbitals are invariant under the horizontal
reflection we can consider the subgroupD3 as the symmetry
group of the system. In Fig. 4 we present the diagram of
symmetry elements embedded in the reference frame of the
molecule, while in Table 1 theD3 character table is given. In
this table we have included the characters associated with
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FIGURE 4. Molecular system H+3 embedded in theD3 diagram of
symmetry elements.

TABLE I. Character table of theD3 group, as well as the charac-
ters of the reducible representation generated by theL3 space of
s-orbitals.

D3 E; C3, C2
3; Ca

2 , Cb
2, Cc

2

A1 1 1 1

A2 1 1 -1

E 2 -1 0

Γ(red) 3 0 1

the reducible representation generated by the spaceL3. Us-
ing (6) we find

Γ(red) = A1 ⊕ E. (25)

The projection operator (10) may be applied to any function
of the setL3, s1-orbital for instance, and the action of the op-
erator can be interpreted as the dot product of vectors in the
|G| dimensional space (this explains the action of projection)

P(Γ)s1 =
nΓ

|G|cΓ · f1, (26)

where

cΓ =
(
χ(Γ)∗(E), χ(Γ)∗(C3), χ(Γ)∗(C2

3 ),

χ(Γ)∗(Ca
2 ), χ(Γ)∗(Cb

2), χ
(Γ)∗(Cc

2)
)
, (27)

f1 =
(
ÔE |s1〉, ÔC3 |s1〉, ÔC2

3
|s1〉,

ÔCa
2
|s1〉, ÔCb

2
|s1〉, ÔCc

2
|s1〉

)

=
(
|s1〉, |s2〉, |s3〉, |s1〉, |s3〉, |s2〉

)
. (28)

TABLE II. Vectors involved in the projection (26), considering the
threes-functions.

cA1 cE f1 f2 f3
R χA1∗(R) χE∗(R) ÔR |s1〉 ÔR |s2〉 ÔR |s3〉
E 1 2 |s1〉 |s2〉 |s3〉
C3 1 -1 |s2〉 |s3〉 |s1〉
C2

3 1 -1 |s3〉 |s1〉 |s2〉
Ca

2 1 0 |s1〉 |s3〉 |s2〉
Cb

2 1 0 |s3〉 |s2〉 |s1〉
Cc

2 1 0 |s2〉 |s1〉 |s3〉

Because of the linear dependence of the functions, the pro-
jected space turns out to be three-dimensional. Only for the
regular representation the|G|-dimension corresponds to the
space involved in the projection [14]. A convenient manner
to carry out the projection is through the construction of Ta-
ble II. Columns 2 and 3 correspond to the possible vectors
cΓ, while the last three columns are associated with the kets
|si〉, represented by the vectorsfi. The projection of the ket
|s1〉 is obtained in a straightforward way

P̂(A1) |s1〉 ≈
∣∣∣ψ(A1)

〉
=

1√
3
(|s1〉+ |s2〉+ |s3〉), (29)

P̂(E) |s1〉 ≈
∣∣∣ψ(E)

〉
=

1√
6
(2 |s1〉 − |s2〉 − |s3〉). (30)

In our geometric picture, this means that the vector|s1〉 in the
basis{|ψ(A1)〉, |ψ(E)〉} takes the form

|s1〉 = BA1

∣∣∣ψ(A1)
〉

+ BE

∣∣∣ψ(E)
〉

, (31)

with coordinates

BA1 =
〈
ψ(A1)

∣∣∣ s1

〉
=

1√
3
;

BE =
〈
ψ(E)

∣∣∣ s1

〉
=

2√
6
. (32)

This result is illustrated in Fig. 5. We now have to estab-
lish a chain of groups to carry out the second projection.
This fixes the reference frame for the components of the two-
dimensional irrep. We propose the chain

D3 ⊃ Ca
2 ; with Ca

2 = {E,Ca
2 }. (33)

In Table III it is shown that the chain (33) is indeed canonical.

TABLE III. Reduction of the irreps ofD3 to theCa
2 subgroup.

Ca
2 E Ca

2

A 1 1

B 1 -1

A1 1 1 A

A2 1 -1 A

E 2 0 A⊕B
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FIGURE 5. Graphical representation of: (a) the expansion (31) over the group and (b) the expansion (34) over the subgroup.

We now proceed to project the function
∣∣ψ(E)

〉
to the irreps

A andB of the subgroupCa
2 . The result is

P̂(A)
∣∣∣ψ(E)

〉
≈

∣∣∣ψ(E)
〉

+ ÔCa
2

∣∣∣ψ(E)
〉
≈

∣∣∣ψ(E)
〉
≡

∣∣∣ψ(E)
A

〉
(34)

P̂(B)
∣∣∣ψ(E)

〉
≈

∣∣∣ψ(E)
〉
− ÔCa

2

∣∣∣ψ(E)
〉

= 0, (35)

which means that the vector
∣∣ψ(E)

〉
is located along the∣∣∣ψ(E)

A

〉
axis, as it is shown in Fig. 5. This result represents

an incomplete task since we are unable to obtain the complete
set of functions. To overcome this problem we may either ro-
tate the vector or the reference frame. The former is achieved
by selecting another function to be projected. The latter by
selecting another chain. We next consider both possibilities.

Rotating the vector: active picture

Let us now select the ket|s2〉 to be projected. Following
the previous approach, from Table II we obtain the projected
states

P̂(A1) |s2〉 ≈
∣∣∣ψ(A1)

〉
=

1√
3
(|s1〉+ |s2〉+ |s3〉), (36)

P̂(E) |s2〉 ≈
∣∣∣ζ(E)

〉
=

1√
6
(2 |s2〉 − |s3〉 − |s1〉). (37)

Now we proceed with the projection over the subgroup irreps
to obtain

P̂(A)
∣∣∣ζ(E)

〉
≈

∣∣∣ζ(E)
〉

+ ÔCa
2

∣∣∣ζ(E)
〉
≈

∣∣∣ψ(E)
A

〉

=
1√
6
(2 |s1〉 − |s2〉 − |s3〉) (38)

P̂(B)
∣∣∣ζ(E)

〉
≈

∣∣∣ζ(E)
〉
− ÔCa

2

∣∣∣ζ(E)
〉
≈

∣∣∣ψ(E)
B

〉

=
1√
2
(|s2〉 − |s3〉). (39)

Here we have selected the following phase

〈
ψ

(E)
B

∣∣∣ Ĉ3

∣∣∣ψ(E)
A

〉
=
√

3
2

(40)

for theE irrep . The components for the expansion

|s2〉 = BA1

∣∣∣ψ(A1)
〉

+ BE

∣∣∣ζ(E)
〉

, (41)

are again given by

BA1 =
〈
ψ(A1)

∣∣∣ s2

〉
=

1√
3
;

BE =
〈
ζ(E)

∣∣∣ s2

〉
=

2√
6
, (42)

while for the projected function

∣∣∣ζ(E)
〉

= NEA

∣∣∣ψ(E)
A

〉
+ NEB

∣∣∣ψ(E)
B

〉
, (43)

we have

NEA =
〈
ψ

(E)
A

∣∣∣ ζ(E)
〉

= −1
2
;

NEB =
〈
ψ

(E)
B

∣∣∣ ζ(E)
〉

=
√

3
2

. (44)
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FIGURE 6. Graphical representation of the different choices for the projected vector. In (a) the three projected functions vectors over theE

irrep are projected over theCa
2 irreps. In (b) the projection is over viewed in a three dimensional scheme.

These numbers are the components of the new vector
∣∣ζ(E)

〉
in the same reference system. The vector has been rotated.
The angle is obtained through the internal product

(ζ(E), ψ(E)) = −1
2

= cos θ; θ =
2π

3
, (45)

This situation is depicted in Fig. 6.
We may have been chosen|s3〉 as the alternative vector.

In that case the result for the expansion (16) is

|s3〉 =
1√
3

∣∣∣ψ(A1)
〉

+
2√
6

∣∣∣φ(E)
〉

, (46)

where ∣∣∣φ(E)
〉

=
1√
6
(2 |s3〉 − |s2〉 − |s1〉). (47)

The second projection over
∣∣φ(E)

〉
provides the full projected

states
∣∣∣φ(E)

〉
= − 1√

2

∣∣∣ψ(E)
A

〉
−
√

3
2

∣∣∣ψ(E)
B

〉
. (48)

We may now represent the projection in the 3-dimensional
spaceA ⊕ EA ⊕ EB through the relation (20). The states
turn out to have the following components in the basis
{|ψ(E)

A 〉, |ψ(E)
B 〉, |ψ(A1)

A 〉}:

|s1〉 :
(

2√
6
, 0,

1√
3

)
, (49)

|s2〉 :
(
− 1√

6
,

1√
2
,

1√
3

)
, (50)

|s2〉 :
(
− 1√

6
,− 1√

2
,

1√
3

)
. (51)

These three possible projections are depicted in Fig. 6. We
remark that these vectors are connected through a rotationC3

in both Fig. 4 and Fig. 6b. While in the former we have the
physical Euclidean space with the rotation axis located along
thez-direction, in the latter we have a space of functions with
the corresponding rotation axis located along the

∣∣ψ(A1)
〉

di-
rection, as it should be since this axis is invariant.

The presented analysis corresponds when the projected
vectors are varied, but another possibility consists in chang-
ing the basis vectors as we next describe. In this way we are
also able to obtain the complete projected basis.

Rotating the reference frame: passive picture

As previously mentioned, an alternative way to obtain the
needed component of theE irrep is by rotating the reference
frame. In such case we obtain another functions

∣∣∣η(E)
A′

〉
and∣∣∣η(E)

B′

〉
spanning irreps of the new subgroup. Consider for

instance the new chain

D3 ⊃ Cb
2; with Cb

2 = {E, Cb
2}, (52)

keeping the ket|s1〉 as the original vector|Ψ〉. The first ex-
pansion (16) takes the same form (31) with the same compo-
nents (32). The difference appears when the new subgroup is
considered. In this case the projected function

∣∣ψ(E)
〉

takes
the form

∣∣∣ψ(E)
〉

= DEA′

∣∣∣η(E)
A′

〉
+ DEB′

∣∣∣η(E)
B′

〉
, (53)
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FIGURE 7. Passive picture corresponding the selection of the
chains (52) and ( 58).

where the new functions are obtained by the projection over
the irreps of the new subgroupCb

2:

P̂(A′)
∣∣∣ψ(E)

〉
≈

∣∣∣ψ(E)
〉

+ ÔCb
2

∣∣∣ψ(E)
〉
≈

∣∣∣η(E)
A′

〉

=
1√
6
(2 |s2〉 − |s3〉 − |s1〉), (54)

P̂(B′)
∣∣∣ψ(E)

〉
≈

∣∣∣ψ(E)
〉
− ÔCb

2

∣∣∣ψ(E)
〉
≈

∣∣∣η(E)
B′

〉

=
1√
2
(|s3〉 − |s1〉). (55)

Note that for convenience we denoted asA′ andB′ the ir-
reps of the groupCb

2. The components involved in the expan-
sion (53) are given by

DEA′ =
〈
η
(E)
A′

∣∣∣ ψ(E)
〉

= −1
2
;

DEB′ =
〈
η
(E)
B′

∣∣∣ ψ(E)
〉

= −
√

3
2

. (56)

The geometrical representation is depicted in Fig. 7. We have
thus changed the reference frame (the basis states) in order to
obtain a non vanishing contribution for both components.

A point to remark is concerned with the phases involved
in the two-dimensional representationE. The relative phases
between (54) and (55) were fixed in accordance with the con-
vention (40). This correlation must be carried out in order
to have consistence with the reference frames. More specif-
ically, a change in sign is equivalent to move from a right
handed to left handed reference frame.

The connection between the reference frames in Fig. 7
is given by the rotation matrix (24). Explicitly the matrix is
given by

M =
∣∣∣
∣∣∣(η(E)

β′ , ψ(E)
γ )

∣∣∣
∣∣∣ =

(
− 1

2

√
3

2

−
√

3
2 − 1

2 .

)
, (57)

which corresponds to a rotation of−2π/3 rad.
A third selection of reference frame is provided by the

chain

D3 ⊃ Cc
2; with Cc

2 = {E,Cc
2}. (58)

Again, keeping the ket|s1〉 as the original vector|Ψ〉 the first
expansion (16) takes the same form (31) with the same com-
ponents (32). Now the projected function

∣∣ψ(E)
〉

takes the
form

∣∣∣ψ(E)
〉

= DEA′′

∣∣∣ρ(E)
A′′

〉
+ DEB′′

∣∣∣ρ(E)
B′′

〉
. (59)

In the second projection the new projected functions are:

P̂(A′′)
∣∣∣ψ(E)

〉
≈

∣∣∣ψ(E)
〉

+ ÔCc
2

∣∣∣ψ(E)
〉
≈

∣∣∣ρ(E)
A′′

〉

=
1√
6
(2 |s3〉 − |s1〉 − |s2〉), (60)

P̂(B′)
∣∣∣ψ(E)

〉
≈

∣∣∣ψ(E)
〉
− ÔCc

2

∣∣∣ψ(E)
〉
≈

∣∣∣ρ(E)
B′′

〉

=
1√
2
(|s1〉 − |s2〉). (61)

The components involved in the expansion (59) are then
given by

DEA′ =
〈
ρ
(E)
A′′

∣∣∣ ψ(E)
〉

= −1
2
;

DEB′ =
〈
ρ
(E)
B′′

∣∣∣ ψ(E)
〉

=
√

3
2

. (62)

The geometrical representation is depicted in Figure 7. Here,
the rotation matrix takes the form

M =
∣∣∣
∣∣∣(ρ(E)

β′′ , ψ(E)
γ )

∣∣∣
∣∣∣ =

(
− 1

2 −
√

3
2√

3
2 − 1

2 .

)
, (63)

corresponding to a rotation of2π/3 radians. The geometrical
interpretation is displayed also in Fig. 7. He have thus shown
that a new choice of basis is equivalent to rotate the refer-
ence frame, and we have as many choices as allowed group
chains. The same interpretation can be used for the general
case when multiplicity of irreps appears. The projection how-
ever must be made following a different approach called the
eigenfunction approach [17–20].

Finally, given our example, it should be appreciated the
advantage of the order̂P(γ)P̂(Γ) followed in the projection
in (14) in accordance with a group chainG ⊃ H. This is
the natural approach to see the projection in successive steps.
Otherwise the projection should be viewed as an induction
process where the irreps ofH are induced to irreps ofG [8].
In a purely algebraic approach, however, both approaches are
equivalent. In Table IV we depicted a summary of the pro-
jections and expansions in the different basis.
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TABLE IV. The results of the expansion for the three alternative vectors, for the active and the passive picture. Only the components of the
E contribution change.

Vector |s1〉 |s2〉 |s3〉
1√
3

∣∣∣ψ(A1)
〉

+ 2√
6

∣∣∣ψ(E)
〉

1√
3

∣∣∣ψ(A1)
〉

+ 2√
6

∣∣∣ζ(E)
〉

1√
3

∣∣∣ψ(A1)
〉

+ 2√
6

∣∣∣φ(E)
〉

Basis
∣∣∣ψ(E)

〉 ∣∣∣ζ(E)
〉 ∣∣∣φ(E)

〉

Ca
2

∣∣∣ψ(E)
A

〉
− 1

2

∣∣∣ψ(E)
A

〉
+
√

3
2

∣∣∣ψ(E)
B

〉
− 1

2

∣∣∣ψ(E)
A

〉
−
√

3
2

∣∣∣ψ(E)
B

〉

Cb
2 − 1

2

∣∣∣η(E)

A′

〉
−
√

3
2

∣∣∣η(E)

B′

〉 ∣∣∣η(E)

A′

〉
− 1

2

∣∣∣η(E)

A′

〉
+
√

3
2

∣∣∣η(E)

B′

〉

Cc
2 − 1

2

∣∣∣ρ(E)

A′′

〉
+
√

3
2

∣∣∣ρ(E)

B′′

〉
− 1

2

∣∣∣ρ(E)

A′′

〉
−
√

3
2

∣∣∣ρ(E)

B′′

〉 ∣∣∣ρ(E)

A′′

〉

4. Choice of the basis: quantum numbers and
eigenfunction approach

In this section we shall discuss the procedure to obtain a ba-
sis. Instead of using the traditional approach based on the
projection operators we shall present an approach based on
the definition of quantum numbers.

One of the fundamental concepts in quantum mechan-
ics is the complete set of commuting operators (CSCO). The
essence of this concept lies on the necessity of labeling with-
out ambiguity the eigenstates of the Schrödinger equation for
stationary states

Ĥ|Ψ〉 = E|Ψ〉. (64)

It should be clear that the Hamiltonian itself can be consid-
ered as part of the set of the CSCO, since the energyE pro-
vides a label for the eigenstates|Ψ〉 through (64). Ifα stands
for an index introduced to distinguish different energies, a
more precise form of expressing the Eq. (64) is

Ĥ|Ψα
i 〉 = Eα|Ψα

i 〉; i = 1, . . . , gα, (65)

where the subindexi accounts for the possibility of having
several functions (in this casegα functions) associated with
the same energy. In practice, since the exact solutions|Ψα

i 〉
cannot be found, they are expanded in terms of a set ofn
known orthonormal kets|φj〉

|Ψα
i 〉 =

n∑

j=1

sj;α,i|φj〉. (66)

The substitution of this equation into (65) leads to the system
of eigenvalues

n∑

j=1

(hkj − Eαδkj)sj;α,i = 0, (67)

where
hkj = 〈φk|Ĥ|φj〉 (68)

are the matrix elements of the Hamiltonian in the basis
Ln = {|φi〉, i = 1, . . . , n}. The homogeneous linear set

of Eqs. (67) is equivalent to the diagonalization of the matrix
H ≡ ||hkj ||, e.g

S−1HS = Λ, (69)

whereΛ is a diagonal matrix with elements given by the
eigenvaluesEα, and S ≡ ||sj;α,i||. The CSCO is con-
cerned with the procedure to distinguish (adding labels cor-
responding to eigenvalues of additional operators) the set of
kets {|Ψα

i 〉, i = 1, . . . , gα}. The criterion to establish the
CSCO is based on symmetry concepts, where the machin-
ery of group representation theory emerges as a fundamental
tool.

By definition the maximum set of transformations that
leaves the Hamiltonian invariant corresponds to thesymme-
try groupG, as previously pointed out through (1). We may
think that the set of operators{Ĥ,ORi ; i = 1, . . . , |G|} is
useful to define a CSCO, but in general[ORi ,ORj ] 6= 0,
unless the group is Abelian. This problem is solved by se-
lecting subsets ofG,corresponding to the conjugate classes
of the group. Aconjugate classKi with number of elements
|Ki| is defined by the set of elements{g(i)

j ; j = 1, . . . |Ki|},
which are connected by at least one elementu ∈ G through

g
(i)
j = u g

(i)
k u−1. (70)

The class operator for thei-th class is defined by

K̂i =
|Ki|∑

β=1

Ôg
(i)
β . (71)

From (1), it is clear that

[Ĥ, K̂i] = 0, ∀K̂i (72)

and since every classKi commute with any elementu ∈ G,
we have that[Ki, u] = 0, a property followed from (70). As
a consequence we also have the remarkable property

[Kj ,Ki] = 0, ∀i, j. (73)

Hence the Hamiltonian together with the classes of the group
constitute a set of commuting operators and they can be di-
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agonalized simultaneously in any space of independent func-
tions. LetLn = {|φi〉, i = 1, . . . , n} the space to be cho-
sen, which may be given by atomic orbitals or internal co-
ordinates. The set{|Ψα

i 〉, i = 1, . . . , gα} given by (66) are
eigenvectors of̂H. We may now construct the representation
matrix of the classKp in this basis

||〈Ψα
j |K̂p|Ψα

i 〉||; i, j = 1, . . . gα. (74)

The diagonalization of this matrix provides eigenvectors of
type{|Ψα,λp

k 〉, k = 1, . . . , gα,λp}, with the property

Ĥ|Ψα,λp

l 〉 = Eα|Ψα,λp

l 〉, K̂p|Ψα,λp

l 〉 = λp|Ψα,λp

l 〉, (75)

whereλp is the label that distinguishes the different eigen-
values of the class operator̂Kp, and l accounts for the de-
generacy. We may now proceed to obtain the matrix repre-
sentation of the next clasŝKq in the new basis|Ψα,λp

l 〉, to
obtain eigenvectors with the additional labelλq. We may
follow this procedure with the rest of the classes to obtain a
set of states{|Ψα,λ1,...,λ|K|

l } characterized by the eigenvalues
{α, λ1, . . . , λ|K|}. This set of labels is not complete, a de-
generacy still remains. To see why this is the case we should
note that the classes{Ki; i = 1, . . . , |K|} are linearly in-
dependent and consequently there are as many different sets
{λ1, . . . , λ|K|} as number of classes. But we know that the
number of irreps is equal to the number of classes and conse-
quently the set of labels{λ1, . . . , λ|K|} is expected to specify
an irrep. Introducing the labelν for the possible solutions (ir-
reps), a more precise labeling would be

FIGURE 8. Eigenstates labeled with the energy and the irreps. A
degeneracy still remains due to the degeneracy of the irreps.

{λν
1 , λν

2 , . . . , λν
|K|}. (76)

This is a formal way to name an irrep. For two and three
dimensional irreps (E and F), for instance, a degeneracy still
remains, which by the way is not broken by the Hamiltonian
since the energyEα only distinguish different sets with the
same irrep. This situation is illustrated in Fig. 8.

The question which arises is concerned with the identifi-
cation of the new set of operators capable to distinguish the
states associated with the degeneracy of the irreps. The an-
swer is given by the classes of a subgroup.

Let H be a subgroup ofG: H ⊂ G. Suppose thatH has
|k| classes{k1, . . . , k|k|} which clearly satisfy

[kp, kq] = 0. (77)

But the classes{Ki, i = 1, . . . , |K|} of the groupG com-
mute with any element of the group, and consequently com-
mute also with the classes of the subgroup

[Ki, kp] = 0, ∀i, p. (78)

This fact suggests to diagonalize the operatorsk̂p in the basis
{|Ψα,λ1,...,λ|K|

l 〉} to obtain a complete labeling for the com-
ponents of the irreps. Indeed, this is the case as long as a
suitable subgroup forming a canonical chain is chosen. After
this procedure of diagonalization the matrix representation of
the classes of the subgroupH, we arrive to the complete la-
beling scheme ∣∣∣∣Ψ

α,λν
1 ,...,λν

|K|
λµ

1 ,...,λµ
|k|

〉
, (79)

where the subindicesλµ
p are defined by

k̂p

∣∣∣∣Ψ
α,λν

1 ,...,λν
|K|

λµ
1 ,...,λµ

|k|

〉
= λµ

p

∣∣∣∣Ψ
α,λν

1 ,...,λν
|K|

λµ
1 ,...,λµ

|k|

〉
, (80)

considering thatµ labels the irreps of the subgroupH. This
process of labeling is very simple and we will see that it is
not necessary to use all the classes to establish an unambigu-
ous labeling scheme. In fact, the relevant involved classes are
intended to contain the generators of the group and subgroup,
a resulting set with cardinality less than the total number of
classes|K|.

Let us now turn our attention to the identification of the
labels involved in (79) as quantum numbers. The time evolu-
tion of the expectation value of an operatorÂ is given by [24]

d

dt
〈Ψ|Â|Ψ〉 = 〈Ψ|[Ĥ, Â]|Ψ〉+ 〈Ψ|∂Â

∂t
|Ψ〉, (81)

where[Ĥ, Â] is the commutator of the Hamiltonian with the
operatorÂ. Hence, a remarkable consequence is that if the
operatorÂ does not depend explicitly on time and commute
with the Hamiltonian, then the expected value is constant in
time:

d

dt
〈Ψ|Â|Ψ〉 = 0; [Ĥ, Â] = 0,

∂Â

∂t
= 0. (82)
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Suppose now that the states are chosen to be eigenstates of
the Hamiltonian together with the classes of the groupG and
subgroupH. Then

|Ψ〉 →
∣∣∣∣Ψ

α,λν
1 ,...,λν

|K|
λµ

1 ,...,λµ
|k|

〉
, (83)

and the set of Eqs. (82) translates into

d

dt
Eα = 0;

d

dt
λν

i = 0;

d

dt
λµ

p = 0; i = 1, . . . , |K|; p = 1, . . . , |k|, (84)

whenÂ is substituted byĤ, K̂i andk̂p. Hence the eigenval-
ues of the set of operators{Ĥ; K̂1, . . . ,K|K|; k̂1, . . . , k|k|}
are independent of time and consequently arequantum num-
bers.

For a given energy eigenvalueα there is a set ofλν
i val-

ues characterizing theν-th irrep in accordance with (76). As
mentioned before this fact suggests a connection between the
λν

i values and the charactersχ
(ν)
i of the group as we show

next. For a given irrepν the representation of a classKi is
given by

D(ν)(Ki) =
|Ki|∑

β=1

D(ν)(g(i)
β ). (85)

But since

[D(ν)(Ki),D(ν)(R)] = 0; ∀R ∈ G, (86)

it follows by Schur’s Lema II [14], thatD(ν)(Ki) must be
proportional to the unit matrix. In fact, we have [14]

D(ν)(Ki) =
|Ki|χ(ν)

i

nν
1. (87)

But the eigenvalues of the classes are given by

D(µ)(Ki) = λν
i 1, (88)

and consequently

λν
i =

|Ki|
nν

χ
(ν)
i ; i = 1, . . . , |K|, (89)

wherenν refers to the dimension of theν-th irrep. A similar
relation holds forλµ

p and the characters of the subgroupH.
Note that the expression (89) basically tells us that a character
table constitutes a tabulation of quantum numbers, a remark-
able feature not mentioned explicitly in textbooks. Indeed,
the Eq. (89) leads to the most efficient projection technique,
as we next explain.

The relation (89) itself suggests a projection method
based on the diagonalization of class operators. This asser-
tion may be appreciated because of the following: any set of
symmetry adapted functions{|ψ(ν)

i 〉, i = 1, nν} spanning
theν-th irrep of dimensionnν satisfies [17]

K̂i|ψ(ν)
i 〉 = λν

i |ψ(ν)
i 〉; i = 1, . . . , nν , (90)

which is a consequence of (88) and it means that the functions
|ψ(ν)

i 〉 are eigenvectors of the class operators with eigenvalue
λν

i . This remarkable result suggests to proceed in the other
way around to obtain (79): we start diagonalizing the class
operators and at the end the Hamiltonian is diagonalized tak-
ing advantage that its representation in such basis is block
diagonal. This approach leads to the eigenfunction method
of projecting functions [17].

Eigenfunction Method

Here it is convenient to point out the difference between the
approach presented here and Chen’s approach to the eigen-
function method. As the reader noticed, our approach is
based on Wigner’s theorem and the concept of CSCO to label
the eigenstates. In this way the concept of quantum numbers
is intrinsically connected with the eigenvalues of the class
operators which in turn are related to irreps of the symmetry
group. In contrast, in Chen’s theory the main ingredient is
that the eigenvectors in the class space are identified as pro-
jection operators, while Wigner’s theorem is discussed sepa-
rately. The whole representation theory is developed in detail
but it seems disconnected with the fundamental Wigner’s the-
orem.

We now introduce in more detail the eigenfunction ap-
proach. We start with an arbitrary set of orthonormal func-
tions {|φi〉, i = 1, . . . , n} with 〈φi|φj〉 = δij . Then we
choose a subset of classes ofG as well as ofH that allows
their corresponding irreps to be distinguished [17–20]. A lin-
ear combination of the selected classes provides eigenvectors
carrying theν-th irrep. Let us consider an example to il-
lustrate this idea. Suppose we want to obtain the symmetry
projected functions from the same space previously consid-
ered: L3 = {|s1〉, |s2〉, |s3〉} corresponding to the atomic
s-orbitals of the H+3 molecule. The character table is given
by Table 1 with the classesK1 = {E}, K2 = {C3, C

2
3}

andK3 = {Ca
2 , Cb

2, C
c
2}. Let us now construct a table of

eigenvalues of the classes, which we call it theλ′s table,
by using the expression (89). The result is given in Table
2, from which we notice that the classK3 by itself distin-
guishes the irreps (it contains the generators of the group)
and consequently the eigenvectors in (83) may be simplified
to ∣∣∣∣Ψ

α,λν
1 ,...,λν

|K|
λµ

1 ,...,λµ
|k|

〉
→

∣∣∣∣Ψ
α,λν

3
λµ

1 ,...,λµ
|k|

〉
, (91)

TABLE V. λ’s table for the groupD3 obtained from the character
table and the relation (89)

D3 λν
1 λν

2 λν
3

A1 1 2 3

A2 1 2 -3

E 1 -1 0
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where

K̂3

∣∣∣∣Ψ
α,λ

A1
3

λµ
1 ,...,λµ

|k|

〉
= λA1

3

∣∣∣∣Ψ
α,λ

A1
3

λµ
1 ,...,λµ

|k|

〉

= +3
∣∣∣∣Ψ

α,λ
A1
3

λµ
1 ,...,λµ

|k|

〉
, (92)

K̂3

∣∣∣∣Ψ
α,λ

A2
3

λµ
1 ,...,λµ

|k|

〉
= λA2

3

∣∣∣∣Ψ
α,λ

A2
3

λµ
1 ,...,λµ

|k|

〉

= −3
∣∣∣∣Ψ

α,λ
A2
3

λµ
1 ,...,λµ

|k|

〉
, (93)

K̂3

∣∣∣∣Ψ
α,λE

3
λµ

1 ,...,λµ
|k|

〉
= λE

3

∣∣∣∣Ψ
α,λE

3
λµ

1 ,...,λµ
|k|

〉
= 0, (94)

in accordance with Table V. This analysis suggests to deal
with the representation of the classK3 in the spaceL3 as a
first step to obtain the projection. Consider now the element
Ca

2 ∈ D3. From Fig. 4 we obtain the transformation of the
s-orbitals under the rotationCa

2 : Ca
2 |s1〉 → |s1〉, Ca

2 |s2〉 →
|s3〉, Ca

2 |s3〉 → |s2〉. In matrix form

Ĉa
2 (|s1〉, |s2〉, |s3〉) = (|s1〉, |s2〉, |s3〉)




1 0 0
0 0 1
0 1 0




≡ (|s1〉, |s2〉, |s3〉)∆(Ca
2 ), (95)

where we have introduced the definition for the representa-
tion ∆(Ca

2 ) associated with the operatorCa
2 in the spaceL3.

Following the same approach for the rotationsCb
2 andCc

2 we
obtain their corresponding matrix representations

∆(Cb
2) =




0 0 1
0 1 0
1 0 0


 ,

∆(Cc
2) =




0 1 0
1 0 0
0 0 1


 . (96)

These results allow the matrix representation of the classK3

to be constructed in a straightforward way. In fact, the repre-
sentation is given by

∆(K3) = ∆(Ca
2 ) + ∆(Cb

2) + ∆(Cc
2)

=




1 1 1
1 1 1
1 1 1


 . (97)

The diagonalization of this matrix provides the eigensystem
given in Table VI.

TABLE VI. Eigensystem associated with the matrix representation
of the class operatorK3.

Irrep Eigenvalue Eigenvector

A1 3 (1,1,1)

E 0 (1,0,-1)

E 0 (1,-1,0)

We should note that the eigenvalues correspond to the val-
ues3 and0 of theλ’s Table V. The eigenvectors of Table VI
give rise to the following symmetry adapted functions

|Ψ+3〉 =
1√
3
(|s1〉+ |s2〉+ |s3〉), (98)

|1Ψ0〉 =
1√
3
(|s1〉 − |s3〉), (99)

|2Ψ0〉 =
1√
3
(|s1〉 − |s2〉), (100)

where we have temporarily introduced an arbitrary left
subindex in order to distinguish the degenerate eigenvectors
associated with the irrepE (eigenvalue0 in accordance to Ta-
ble V). We now proceed to introduce a suitable subgroupH
in order to establish the labelsλµ

p associated with the classes
kp in (91). Let us propose the subgroupCa

2 = {E, Ca
2 }, a

selection that is usually expressed in the form of the chain of
subgroups

D3 ⊃ Ca
2 . (101)

To know whether this is a suitable chain to label the states we
should obtain the irreps of the subgroupCa

2 contained in the
irrep E. To this end it is convenient to present the charac-
ter table of the subgroupCa

2 , including the characters of the
irreps of the groupD3 (correlation table). This analysis is
displayed in Table VII, where the last three rows correspond
to the irreps ofD3 and are obtained by taking the characters
of Table I corresponding to each irrep, selecting the columns
K1 andK3 where the elements of the subgroupCa

2 are lo-
cated.

The last column corresponds to the reduction of the irreps
ofD3 into irreps ofCa

2 , and may be obtained either by inspec-
tion or using (6). We note that no repetition of irreps ofCa

2 ap-
pears in the reduction ofE and consequently the chain (117)
is canonical. We may now identify the class that determines
the irreps of the subgroup following the same approach that
was used in the group. Since in the subgroupCa

2 all the irreps
are one dimensional theλ’s table coincide with the character
table and consequently we can identify in a straightforward
way the classk2 = Ca

2 to distinguish the irreps. This means
that if we diagonalize the matrix representation of the opera-
tor Ĉa

2 in the basis (99-100), the corresponding eigenvalues

TABLE VII. Irreps ofCa
2 contained in the irreps of the groupD3.

Ca
2 E Ca

2

A 1 1

B 1 -1

A1 1 1 A

A2 1 -1 B

E 2 0 A⊕B

Rev. Mex. Fis. E61 (2015) 113–128



SYMMETRY PROJECTION, GEOMETRY AND CHOICE OF THE BASIS 125

will be +1,−1, for irrepsA and B respectively, in accor-
dance with Table VII. Indeed, the representation of the oper-
atorCa

2 turns out to be

Ĉa
2 (|Ψ+3〉, |1Ψ0〉, |2Ψ0〉)

= (|Ψ+3〉, |1Ψ0〉, |2Ψ0〉)



1 0 0
0 0 1
0 1 0




≡ (|Ψ+3〉, |1Ψ0〉, |2Ψ0〉)∆(Ca
2 ), (102)

where we have used (95) and (96). The representation∆(Ca
2 )

is a block diagonal matrix, an expected result since the oper-
atorsĈa

2 cannot mix functions of different irreps of the group
D3. The diagonalization of the matrix∆(Ca

2 ) provides the
eigenvectors

|Ψ0
1〉 = |1Ψ0〉+ |2Ψ0〉

=
1√
6
(2|s1〉 − |s2〉 − |s3〉), (103)

|Ψ0
−1〉 = |1Ψ0〉 − 2|Ψ0〉 =

1√
2
(|s2〉 − |s3〉), (104)

where the subindex appearing in the new functions corre-
sponds to the eigenvalues of the operatorĈa

2 . But from Ta-
bles V and VII we know the correspondence of the eigenval-
ues with the traditional labeling of the irreps. For the group
D3

+3 ↔ A1; 0 ↔ E, (105)

while for the subgroup

+1 ↔ A; −1 ↔ B. (106)

We may now identify the functions in the usual notation

|Ψ+3〉 ≡|ΨA1〉 =
1√
3
(|s1〉+ |s2〉+ |s3〉), (107)

|Ψ0
1〉 ≡|ΨE

A〉 =
1√
6
(2|s1〉 − |s2〉 − |s3〉), (108)

|Ψ0
−1〉 ≡|ΨE

B〉 =
1√
2
(|s2〉 − |s3〉). (109)

To obtain these projected functions we have carried out
two diagonalizations, corresponding to the operatorsK̂3 and
k̂2 = Ĉa

2 . We may simplify this procedure by diagonalizing
a unique operator obtained as a linear combination of the op-
eratorsK3 andk̂2. To obtain the appropriate combination we
construct a table containing the possible eigenvalues accord-
ing to theλ’s table forD3 andCa

2 , together with the reduction
given in Table VII. The results are given the Table VIII.

TABLE VIII. Eigenvalues associated with the operatorsK̂3 and
k̂2 = Ĉa

2 corresponding to the chain of groupsD3 ⊃ Ca
2 .

D3 λν
3 Ca

2 λµ
2 λν

3 + λµ
2

A1 +3 A +1 +4

A2 -3 B -1 -4

E 0 A +1 +1

E 0 B -1 -1

TABLE IX. Eigensystem associated with the matrix representation
of the class operator̂CII .

Irreps Eigenvalue Eigenvector

A1 +4 (1,1,1)

(E, A) +1 (2,-1,-1)

(E, B) -1 (0,1,-1)

In the last column we have included the sum of the eigen-
values. As noted all the numbers are different, a fact that
implies that we can define the operatorCII as

CII ≡ K̂3 + k̂2 = 2Ĉa
2 + Ĉb

2 + Ĉc
2, (110)

whose diagonalization provides the symmetry adapted func-
tions in a straightforward way in one step. Proceeding in this
manner we obtain the representation matrix

∆(CII) =




2 1 1
1 1 2
1 2 1


 . (111)

The diagonalization of this matrix provides the eigensystem
presented in Table VI, from which we identify immediately
the symmetry adapted functions in the form

|Ψ+4〉 ≡ |ΨA1〉 =
1√
3
(|s1〉+ |s2〉+ |s3〉), (112)

|Ψ1〉 ≡ |ΨE
A〉 =

1√
6
(2|s1〉 − |s2〉 − |s3〉), (113)

|Ψ−1〉 ≡ |ΨE
B〉 =

1√
2
(|s2〉 − |s3〉). (114)

This example allows us to establish the series of steps to
obtain a basis according to a chain of groups for any molecu-
lar system:

Step 1. - From the character table of the symmetry
groupG, theλ’s table is generated using (89).

Step 2. - We proceed to identify the column that distin-
guishes the irreps of the groupG. In general more than
one column is needed to achieve this goal. In such case
a linear combination of columns are selected in such a
way that the eigenvalues are all different. This pro-
cess defines the linear combination of classes, which
we shall identify with the operator̂C.

Step 3.- A subgroupH is proposed in such a way that
the irreps ofG are not contained more than once inH.
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Step 4.- From the character table ofH, we construct
the λ’s table and identify the columns that distin-
guishes the irreps. The columns involved define a lin-
ear combination of classes of the subgroup which de-
fine the operator̂C(s). This operator is the equivalent
of Ĉ in the groupG.

Step 5.- A table of eigenvalues associated withG and
H is constructed (Table V in our example). A linear
combination ofλ’s is identified to define a new opera-
tor ĈII .

Step 6.- The representation of the operatorĈII is gen-
erated using the space to be projected. The diagonal-
ization of the matrix representation∆(CII) provides
the symmetry adapted functions.

We should stress that up to step 5, no dependence of the
space appears. Given a molecular system, the first 4 steps are
general and are useful to project any representation space;
electronic functions, rotational functions, vibrational func-
tion or spin functions. Only the last step is a function of the
space.

5. Symmetry Breaking

In this section we show one of the advantages of labeling the
states according to a given chain of groups [17]. For exam-
ple, by establishing an appropriate group chain the analysis
of a perturbation on the system is simplified. Such perturba-
tions can be associated, for example, with the application of
an electric or magnetic field in the system surroundings [21].

Let us consider a time independent system with Hamilto-
nian,Ĥ, written as follows

Ĥ = Ĥ0 + V̂ , (115)

whereĤ0 is the zeroth order Hamiltonian with eigenkets [24]

Ĥ0

∣∣ψn(Γ),γ1,γ2

〉
= En

∣∣ψn(Γ),γ1,γ2

〉
, (116)

wheren labels the energy eigenvalue andΓ, γ1, γ2, are irreps
associated with the group chain [9]

G ⊃ K1 ⊃ K2. (117)

HereĤ0 is considered to be invariant underG group, which
explain the labeling scheme. The subgroupK2 was con-
sidered to account for the possibility that after the sym-
metry breaking a degeneracy still remains. The eigenkets∣∣ψn(Γ),γ1,γ2

〉
are orthonormal [14],

〈ψm(Γ′),γ′1,γ′2 , ψn(Γ),γ1,γ2〉 = δmnδΓ′Γδγ′1,γ1 , δγ′2,γ2 . (118)

When the perturbation̂V is added the symmetry may be
preserved or diminished. We shall consider the latter case
with the new symmetry group given byK1:

[
ÔS , V̂

]
= 0, ∀S ∈ K1. (119)

The potential is then invariant underK1 but not anymore un-
derG. The potential̂V A1 carries the totally symmetric rep-
resentationA1 of K1.

Given thatV̂ is not invariant underG the matrix elements
take the form

〈ψm(Γ′),γ′1,γ′2 |V̂ A1 |ψn(Γ),γ1,γ2〉 = Vmn δγ′1,γ1 , δγ′2,γ2 . (120)

Note that in caseV had the same symmetryG, the matrix
elements would take the form

〈ψm(Γ′),γ′1,γ′2 |V̂ |ψn(Γ),γ1,γ2〉
= VΓ

mnδΓ′Γδγ′1,γ1 , δγ′2,γ2 , (121)

and the matrixVΓ
mn would involve kets spanning the same

Γ irrep. In contrast, the matrix elementsVmn in (120) mix
states of differentΓ irrep. The kets|ψn(Γ),γ1,γ2〉 are then
expected to be mixed since the labelΓ is no longer a good
quantum number.

The eigenvectors|Φα(γ1)
γ2 〉 associated with the perturbed

Hamiltonian (115) are defined through

Ĥ|Φα(γ1)
γ2

〉 = Eα|Φα(γ1)
γ2

〉, (122)

where we assume that the degeneracy corresponds to the di-
mension of theγ2 irrep. The new eigenkets take thus the
general form

∣∣∣Φα(γ1)
γ2

〉
=

∑

n(Γ)

Cα;γ1,γ2
n(Γ)

∣∣ψn(Γ),γ1,γ2

〉
. (123)

Here we have two remarks. Firstly, the Kronecker deltas ap-
pearing in the matrix elements (120) are a consequence of
having labeled the states in accordance with the chain (117),
anticipating the symmetry reduction, and secondly, the di-
mensions of the blocks associated with the Hamiltonian ma-
trix corresponds to the number of functions

∣∣ψn(Γ),γ1,γ2

〉
,

characterized by theΓ irrep, containing theγ1 irrep.

5.1. Example

As an example we next analyze the symmetry breaking of a
particle in a cubic box. In this case the zeroth order Hamilto-
nianĤ0 is given by

Ĥ0 = − ~
2

2m

(
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

)
; (124)

with the following boundary conditions:





V (x, y, z) = 0; 0 ≤ x ≤ a; 0 ≤ y ≤ a; 0 ≤ z ≤ a
V (x, y, z) = ∞; x < 0; y < 0; z < 0
V (x, y, z) = ∞; x > a; y > a; z > a

(125)
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The eigenfunctions are given by

〈r|Ψnxnynz
〉 =

√
2
a

sin(πnxx/a)

×
√

2
a

sin(πnyy/a)

√
2
a

sin(πnzz/a), (126)

with eigenvalues [24]

En =
~2π2

2ma2
(n2

x + n2
y + n2

z). (127)

To simplify the discussion we shall consider that the sym-
metry group of the system isOh, which corresponds to the
the geometrical symmetry (obvious symmetry) of the cubic
box [23]. We now consider a perturbation of the form

V̂ = ezEz, (128)

which may correspond to the appearance of an electric field
along thez axis. After this perturbation, the system’s symme-
try group is reduced toC4v, which is a subgroup ofOh, and
V̂ is invariant under this group. In general the perturbation
splits the levels but since the groupC4v contains a degenerate
irrep, it is not expected that the electric field removes the de-
generacy completely. In this case it is convenient to establish
a labeling scheme of the original functions according to the
group chain [17],

Oh ⊃ C4v ⊃ C2v, (129)

The projection of the functions (126) in accordance with the
chain (129) provides the symmetry adapted basis of the form

|Ψn(Γ), γ1, γ2〉 =
∑

nx,ny,nz

Dn
nx,ny,nz

|Ψnxnynz 〉, (130)

where the sum involves states of the same energy character-
ized byn.

The matrix elements of the interaction potential acquire
the general form (120). In this case the dimension of the ma-
trix representation of the interaction turns out to be infinite.
However, using perturbation theory it is possible to estimate
the effect of the symmetry reduction. Let us consider a 3-
dimensional level withT1u symmetry associated with the en-
ergy

E0 =
~2π2

2ma2
· 6, (131)

with quantum numbers(1, 1, 2) and permutations. The re-
duction of the representation involved is given by

T1u = A1 ⊕ E, (132)

while for the reduction ofC4v to C2v we have

E = B1 ⊕B2. (133)

The first order correctionE(1) to the energyE0 is given by
the eigenvalues of a block diagonal matrix, with each block
labeled with theγ1 irrep, in this caseγ1 = A1, E:

FIGURE 9. Level splitting according to the canonical group chain
Oh ⊃ C4v ⊃ C2v.

V T1u

E,γ2
= 〈Ψn(T1u),E;γ2 |V̂ A1 |Ψn(T1u),E,γ2〉;

γ2 = B1, B2, (134)

V T1u

A1
=

〈
Ψn(T1u),A1,A1

∣∣ V̂ A1
∣∣Ψn(T1u),A1;A1

〉
, (135)

where
V T1u

E,B1
= V T1u

E,B2
(136)

as expected from Wigner-Eckart theorem [17]. The energies,
up to first-order perturbation correction, are then given by

E = E0 + V T1u

E,γ2
; γ2 = B1, B2, (137)

E = E0 + V T1u

A1,A1
. (138)

We should stress that the matrix elements are already diago-
nal and it is not necessary to proceed with a diagonalization
of the 3×3 dimensional matrix. This simplification is a con-
sequence of the appropriate labeling scheme in accordance
with the chain (129).

We may consider the addition of a new perturbation. Now
the Hamiltonian would be given by:

Ĥ1 = Ĥ + V̂2, (139)

whereV̂2 is invariant underC2v symmetry group. Again, the
labeling scheme provides with energy corrections in diagonal
form. In Fig. 9 we show the level splitting according to the
previous analysis.

6. Conclusions

We have presented the basic concepts involved in group rep-
resentation theory emphasizing the geometrical point of view.
From a reducible representation space, a change of basis is
carried out in order to reduce such space into a direct sum
of irreducible spaces labeled with irreps (eigenvalues of the

Rev. Mex. Fis. E61 (2015) 113–128



128 R. LEMUS AND A.O. HERNÁNDEZ-CASTILLO

class operators in discrete groups, and Casimir operators for
continuous groups). A complete labeling scheme is obtained
by establishing an appropriate (canonical) group chain. An
additional chain is needed when multiplicity of irreps ap-
pears. Although the latter case is not discussed, the geomet-
rical interpretation is not modified.

The concept of projection is illustrated with a simple al-
though yet remarkable rich system. The process of obtaining
symmetry adapted functions is analyzed through two steps
projection. The result of the second projection depends not
only on the projected function but also on the selected group
chain. We have shown that the change of the projected func-
tions is equivalent to carry out a rotation from an active point
of view, while the passive perspective corresponds to choos-
ing alternative group chains. The different basis associated
with the group chains are connected with a rotation matrix.

It has been shown that the concept of quantum numbers
in discrete groups is basically associated with the character
tables of the groups. A remarkable consequence of looking
for the invariants is that the eigenfunction method to project
functions emerges in natural form. The projections reduce
to diagonalize the representation matrix of a set of commut-
ing operators. This method makes superfluous the use of the
character tables in the symmetry projection process and pro-
vides in natural form a labeling scheme according to a chain
of groups. The labeling scheme following a group chain

is quite important in symmetry breaking situations, like the
presence of electric or magnetic fields in the systems sur-
roundings.

The present analysis illustrates many of the fundamen-
tal concepts used in group representation theory. In the more
general framework of algebraic methods [22], where the con-
cept of dynamical group emerges as the basic ingredient, each
chain of groups defines a dynamical symmetry, which means
that a Hamiltonian expanded in terms of Casimir operators
associated with that chain is diagonal in the corresponding
basis. A more general Hamiltonian involves Casimir oper-
ators of several chains and its matrix representation can be
obtained by using the transformation brackets, which in our
work are given by the overlap matrix (24). Hence a dynam-
ical symmetry defines a reference frame which is connected
through a multi dimensional rotation with the other possible
dynamical symmetries.

We believe that the presented material shows a useful
point of view to help in understanding group representation
theory, providing the basic physical ingredients of advanced
projection techniques.
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