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Symmetry projection, geometry and choice of the basis
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A geometrical point of view of symmetry adapted projection to irreducible subspaces is presented. The projection is applied in two stages.
The first step consists in projecting over subspaces spanning irreducible representations (irreps) of the symmetry group, while the secont
projection is carried out over the irreps of a subgroup defined through a suitable group chain. It is shown that choosing different chains is
equivalent to propose alternative bases (passive point of view), while changing the projected function corresponds to the active point of view
where the vector to be projected is rotated. Because of the importance of choosing the appropriate basis, an approach based on the conce
of invariant operators to obtain the basis for discrete groups is presented. We show that this approach is analogue to the case of continuur
groups and it is closely related to the definition of quantum numbers. The importance of these concepts is illustrated through the effect of
symmetry breaking. Because of the deep insight into the group theory concepts, we believe the presented viewpoint helps to understand th
main ingredients involved in group representation theory using the latest advances in the subject for discrete groups.
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Se presenta un punto de vista gerito de la proyectin a subepacios que portan representaciones irreducibles. La powysedieva

a cabo en dos pasos. Primero se éfeda proyecdn sobre subespacios que portan representaciones irreducibles del grupo da,simetr
para posteriormente efectuar la proyécceon respecto a un subgrupo definido aésagle una cadena apropiada de subgrupos. Se muestra

que la selecéin de diferentes cadenas es equivalente a proponer bases alternativas (punto de vista pasivo), mientras que el cambio de |
funcion a proyectar equivale al punto de vista activo, donde el vector a proyectar es rotado. Debido a la importancia de seleccionar una
base apropiada, se presenta ugtado de proyecbn basado en el concepto de operadores invariantes en el caso de grupos discretos. Se
muestra que esteé&todo es a@logo al caso de grupos continuos e intimamente relacionado con el mismo conceptoetie aantico. La
importancia de estos conceptos es ilustrada mediante el concepto de rompimiento da.SEretmos que dada la profundidad del marco
tedrico presentado,este material@ele gran ayuda en la compremside los conceptos de tefade representaciones de grupos, en donde

se ha incluido la esencia de lokimos nétodos de proyectn desarrollados para grupos discretos.

Descriptores: Proyeccbn de simefia; nimeros canticos; grupos discretos;atdo de funciones propias; rompimiento de sifiaetr

PACS: 03.65.Ge; 02.20.-a; 02.20.Bb

1. Introduction ory are widely discussed in textbooks, recent advances re-
lated with projection techniques in discrete groups together
Symmetry plays a pervasive role in chemistry and physicsyith a geometrical point of view have not been considered
In chemistry the application of symmetry to molecular or- as jt should be. Here we take advantage of a geometrical
bital theory, valence bond theory, crystal field theory, m0|eC-ana|0gy emphasizing the importance of using a subgroup to
ular chemical reactions, and ro-vibrational spectroscopy; fofapel the states, a standard approach in establishing the basis
instance, represents the classical applications of group repy continuous groups but not weighted up properly concern-
resentation theory to this field [1-9]. In physics, on thejng discrete groups. The group theoretical concepts presented
other hand, group theory is the basic language in elementary this work are concerned with discrete finite groups, which
particle physics, nuclear, molecular, atomic and space-timgmerge in natural form in the study of molecules, crystals
physics, for instance. It is not possible to conceive moderind identical particles. The geometrical viewpoint however
physics without group representation theory [10-16]. is also valid for continuous groups since in both cases the
The advantage of approaching the systems from the synprojection can be carried out by diagonalizing the matrix rep-
metry point of view is twofold. On one hand it provides resentation of invariant operators. The search for invariant
a way for a deep understanding of the concept of quanturdperators is closely related to the establishment of a set of
numbers, but on the other hand it also allows a I’emarkab|@ommuting operators to provide a complete labeling scheme
simplification in solving the Scladinger equation as well as for the states. In this contribution we show that the concept
in establishing the selection rules. The basic idea to incorpogpf guantum numbers leads to a projection technique known
rate the systems symmetry consists in identifying invariants the eigenfunction method in discrete groups developed by
subspaces of minimum dimension labeled with irreducibleChen [17]. This approach turns out to be the most efficient
representations (irreps) of the symmetry group. This goahpproach to carry out a projection and consequently to estab-
is achieved on the basis of the orthogonality theorems, deish a basis since it forms part of a well established machinery

rived from the Schur’s lemmas [14]. However, although thein quantum mechanics consisting in diagonalizing matrices.
fundamental concepts involved in group representation the-
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Symmetry may be considered from a geometrical pointheory provides the way to identify invariant subspacgs,
of view (obvious symmetry), but also from a dynamical per-with nr < n which transforms into themselves. The new
spective. In the latter case the concept of dynamical groufunctions belonging td,,. satisfy the invariance condition
emerges as an algebraic structure suitable to model the in-
teractions [22]. In this way every dynamical variable is ex- 5 ‘ (r)> (F) ‘ (F)> i
panded in terms of the generators of the dynamical algebra. Or ¥y ZD a¥ P Red ()
In particular the Hamiltonian belongs to this case and the ba-
sis to obtain its representation matrix is crucial. Several basiwhere D™ (R) is a matrix irreducible representation 6f
may be proposed, which may be suitable to be interpreted gendq¢ = 1,...ar is a multiplicity index that takes into ac-
ometrically. In this contribution we emphasize this point of count the repetition of irreps. The new km% are given
view taking discrete groups as a tool to achieve this goal. in terms of linear combinations of the original ones

This paper is organized as follows. A summary of the ba-
sic concepts of representation theory is presenté@ jem-
phasizing the geometrical interpretation of the projection of
symmetry adapted function$3 is devoted to work out a sim-
ple example in order to illustrate the concepts of active angvhere the matrixS = 1Siqr || = [[{(#ilq ¢<F)>|| defines
passive viewpoint.§4 is devoted to present the connectionthe change of basis that reduces the ongmal representation
between the quantum numbers and the irreducible represem(red)(R) into a block diagonal form expressed as a direct
tations of a group. In addition it is shown that the eigenfunc-sum of irreps
tion approach emerges in natural form from this concept. In
85 we present the importance of choosing the appropriate ba- S‘lA(’e‘D(R)S = Z @ ap DM (R), (5)
sis in symmetry breaking phenomena. Finallyg@the sum-
mary and conclusions are presented.

W) = Siars 191 )

where the symbop means direct sum of matrices [14], and
ar is a multiplicity factor that indicates the number of times
2. Fundamental concepts of group representa- that theI'-th irrep appears in the reduction. In Eq. (5) the
tion theory matrix A9 (R) is the only known variable, the rest of the
terms have to be determined. The integer numbgre cal-
A general quantum mechanical problem consists in solveulated through the well known formula involving the char-
ing the Schadinger equation. In particular for a time- actersy(R) [14]:
independent Hamiltonian, a basis is expected to be proposed
. I : . A le]

to obtain the Hamiltonian representation matrix and, in this 1 () (red)
way, proceed to its diagonalization. The basis can be re- 1G]
arranged in a special way in order to carry suitable labels
known asgoodquantum numbers. This is precisely the role while the matrixS is obtained by projecting one or more kets
of group representation theory as we next explain. |¢;) as we shortly explain. But before proceeding with this

We first identify the symmetry grougr of the system, task, we should remark that any vectd) can be expanded
which is defined as the maximum set of transformations thajh terms of the basig,, = {|q¢ F)>} which means that [11]
leaves the Hamiltonia#/ invariant [11]:

(6)

ReG

K| nr ap

[Or,H]=0; VReG. (1) 9) =3 Cors [ 0). @)

I =1
We then proceed to identify an invariamtdimensional sub- B
space of functionsC, = {|¢1),|¢2),...,|¢n)}, which ~ This equation corresponds to the expansion of a vedipr
transforms into itself under any operaty; associated with  in terms of the basi§|,:\) )}, with coordinate€,r, given
the elementR in the symmetry grougs. The maximum Dby de internal product
dimensionn corresponds to the ordéfr| of the symmetry
group and is less than the dimension of the total space carry- Cory = <q¢(yr) ’ ‘I’> ; (8)
ing the physical manifold of the system. In this contribution
we shall consider scalar functions only. In a precise mathe?here we have assumed the orthonormality property

matical language we have [14] () -
<q’¢ ’ qi/}g )> = 5qq’51“1“'5w" (9)

n

O AR . ReQG, 2
rld:) Z R) 164); @ If, in addition, the vectof¥) to be projected has been nor-

malized, therd . _ |Cyr+|? = 1. The expansion (7) justi-
where the set of matriced (™9 (R),VR € G, constitutes a fies to depict the projection as in Fig. 1. In general, we have
reducible matrix representation of G. Group representatiomn hyper-space without the possibility of being represented
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A Q' DOMQ=> ®a, DY (h); heH (12
Y

™)

where we have denoted withthe irreps of the subgroufd.
It is said that ifa, = 0,1 then the subgroup is appropriate
(canonical reduction), for in this case the components of the

Cr irrep I' can be distinguished. In Eqg. (12) we only need to
calculatea,. For our purposes it is not necessary to obtain
the Q matrix defining the change of basis. Associated with
H we have the projection operator

” > . n. JHl R
W(P)> P = \Tﬁ > X% (h) On. (13)
7 heH
The symmetry adapted functiorziér) (x) are then obtained
through the double projection
<) N )
vo / POIPO) | §) o ]wy, > : (14)

FIGURE 1. Graphical representation of the expansion (7). where again the proportionality sign means that after the pro-

. . o . jection the functions are understood to be normalized. Here
in graphical form. To avoid this problem we shall discuss . .
. . . we should stress, as it can be proved, that the operators in-
cases involving, at most, three irreps. : .
volved in (14) commute:

The question which arises is concerned with the projec-
tion approach to satisfy (9). Here we shall consigier= 0, 1 [73(7))73(1“)] — 0 (15)
in (5), because in such cases only the group characters are
needed. Otherwise more advanced methods would be negnd consequently, from the algebraic point of view, the or-
essary [17-20], as will be discussed in Section 4. Henceder of these operators may be inverted. However the order
from now on we shall takg = 0,1 and consequently this stated in expression (14) is more convenient from the effi-
index will be omitted. We should stress however that the baciency point of view as well as from a geometrical perspec-
sic ideas and the analysis we present are equally valid to th@ve, as it is next explained.

general caser > 2. From the geometrical point of view, the first projection
The projection operator, involving characters only, isin (14) is equivalent to consider the expansion of the vector
given by [11,14] | W) in the basig|y!)}:
R G| R ¥) =S Bpl|y* 16
) _ %' S XT*(R) On, (10) v) XF: vt (16)
REG

with normalized kets given by
whose action over any vectd¥) leads to a vector spanning

theT-th irrep [W7) = Ny |9 (17)
PO |\1/>o<‘<<F>>, (11) zw: 7‘ ")

where we consider normalized projected functions’ which exln this way the basis involved in the eXpanSion is orthonormal
plains the _prgpor_tlonallty sign. As we nqte this prolecpon <1/)(F’) w(r)> — oo, (18)
does not distinguish components of thah irrep. Hence it ’

is compulsory to obtain both components in order to have & . . . .
s X . . uation (17) provides the second expansiopf in terms
complete description. This goal may be achieved with the g (17p P f

e . : - . of the basis}wgr)% whose components are obtained through
projection operator involving an explicit matrix representa-
tions [14]. However it is possible, as an alternative, to extract <¢(r) w(r)> - N (19)

. v o - F"/'

the components using the characters of a subgfup G.
The first step consists in choosing an appropriate gid@s  These successive projections are illustrated in Fig. 2. The
we ngxt explqln. relation between the coefficientsy, in (7), forg = 1, is

Given an irrepD™ (G) of the groupG, the set of ma-  obtained by the substitution of (17) into (16), yielding the
trices{DT)(h); h € H} constitutes a representation spacefollowing result
of H. This representation is in general reducible and conse-
quently it can be reduced in similar form to (5): Cry = BrNry; (WL[0) = (UT (00 (0" w),  (20)
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I v

)

v (a) (b)

FIGURE 2. (a) Projection of the stat@l) over the space of ketg)™) spanning irreps of the group G, (b) Projection of the compopght
over the space of ketﬁ;E) carrying irreps of the subgroup H

provided the normalization constraints where nows labels the K subgroup irreps. From this expres-
) ) ) sion and (17), we obtain the connection between the coordi-
S IBr =Y |0 P =) NP =1 (21)  natesNy, andAgp
r Iy ¥
r _
The selection of the subgrouj is not unique. In general Z Nry Mg, = Arg, (23)

several possibilitiess > H, are available, and each chain K

defines a reference frame, as we illustrate in Fig. 3. To pOi”%hereMg is the overlap matrix between the bases:
out the idea, leG > K be a second group chain, besides K

G D H, which in turn defines the new expansion M[g/ = <CE, YLy, (24)
Iy _ A () 29 . . . . .
") 8| ) (22)  Geometrically this is the rotation matrix that establishes the
B connection between the bases. We now proceed to show an

example involving every concept before presenting an ad-
vanced projection method.

2
Y2
\C(F) A 3. Anillustrative example: HF

>89
To illustrate the concepts previously presented, we next con-
sider as an example the projection of therbitals of the hy-
drogen atoms in the moleculejH Here our representation
‘\IJ> space isC; = {|s1),]s2), |s3)}, which will be considered
to satisfy the ortho-normality conditiofs; | s;) = d;;. This
assumption is chosen in order to simplify the discussion, but
Neo, ] ‘ ‘ (F)> in any case iF is p(_)ssible to.construct qset of_IocaIized ortho-
G, normal functions isomorphic to theorbitals with the prop-

.- erty that both sets coincide in the null overlap limit [21].
Arg ‘ This molecule is invariant under thes; group. How-
— > ever, since the-orbitals are invariant under the horizontal
N ’w(r) reflection we can consider the subgrdp as the symmetry
ot g group of the system. In Fig. 4 we present the diagram of

FIGURE 3. Each chainG O H,, defines a reference frame in the Symmetry elements embedded in the reference frame of the

passive picture in such a way that the bases are connected througholecule, while in Table 1 th®; character table is given. In
a rotation. this table we have included the characters associated with
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b
C 2 TABLE Il. Vectors involved in the projection (26), considering the
y + threes-functions.

A H 3 Ca, Ce f1 f f3
R x"(R) x"(R) Orlsi) Orlss) Ogrlss)
E 1 2 |s1) |s2) |s3)
Cs 1 -1 |s2) |s3) |s1)
c3 1 -1 |s3) |s1) |s2)
cs 1 0 |s1) |s3) |s2)
C3 1 0 |s3) |s2) |s1)
Cs 1 0 |s2) |s1) |53)

Because of the linear dependence of the functions, the pro-
jected space turns out to be three-dimensional. Only for the
regular representation thé&'|-dimension corresponds to the
space involved in the projection [14]. A convenient manner
to carry out the projection is through the construction of Ta-
ble 1l. Columns 2 and 3 correspond to the possible vectors
cr, while the last three columns are associated with the kets
|s;), represented by the vectdiis The projection of the ket
|s1) is obtained in a straightforward way

FIGURE 4. Molecular system H embedded in th®; diagram of

symmetry elements. A 1
P ) [0)) = (o) + Isa) + Isa)), - (29)

TABLE |. Character table of th®3 group, as well as the charac- 5(E) e\ _ 1
ters of the reducible representation generated bythepace of P 1) = ’1/’ > = %(2 [51) = Is2) —[s3)).  (30)
s-orbitals.

In our geometric picture, this means that the veptoyin the

. 3 2. a b C
Ds E; Cs. G 2 G2 & basis{|y)(41)), [4)(F))} takes the form
A1 1 1 1
A, 1 1 -1 |s1) = Ba, 1/1(‘41)> + Bg ‘1/)(E)> ) (31)
E 2 -1
rred 3 0 1 with coordinates
1
_ /. (A) _ ot
the reducible representation generated by the sggcedJs- Ba, = <¢ ' ’ 81> V3
ing (6) we find 2
rred — 4, o FE. (25) B = <w(E) ‘ sl> =7 (32)

The projection operator (10) may be applied to any function
of the setl3, s;-orbital for instance, and the action of the op- This result is illustrated in Fig. 5. We now have to estab-
erator can be interpreted as the dot product of vectors in théish a chain of groups to carry out the second projection.
|G| dimensional space (this explains the action of projection)r'his fixes the reference frame for the components of the two-

dimensional irrep. We propose the chain
P(F)S1 — %CF . f17 (26) p prop
Ds D Cy; with C§ ={E,C{}. (33)
where
cp — (X(F)*(E), D% (Cs), xD*(C2), In Table Ill itis shown that the chain (33) is indeed canonical.
x“)*(cg), X(F)*(C’S), X(F)*(Cg)), 27) TABLE Ill. Reduction of the irreps dP; to theCs subgroup.
C3 E Cs
£ = (0 [s1). Oc, Is1), Ocg [s1). A 1 1
. . . B 1 -1
Ocgls1), Ocy Is1), Ocy Is1)) A 1 1 A
Az 1 -1 A
= (Is1)s 152 Isa). s1), ), Is2) ) (28) . , ; o p
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(A1)
Y A)

Vi)
A

&

’I/J(E)>
(&)
‘ , 5_}(1112)> 1 ‘ Wi >

(a) (b)

FIGURE 5. Graphical representation of: (a) the expansion (31) over the group and (b) the expansion (34) over the subgroup.

S

We now proceed to project the functiw(E)> to the irreps
A and B of the subgroug§. The result is
2 C(E)> ~ WEBE)>
1

P [4B)) |2
¢(E)> ~ ‘w(E)> = ‘¢E4E)> (34) = ﬁ(\sﬁ — |s3)). (39)
P(B) ‘w(E)> ~ ‘w(E)> — Ope 1/J(E)> _0 (35) Here we have selected the following phase

which means that the vectdi)(E)) is located along the <¢,(3E)’ Cs ’¢£‘E)> _ V3 (40)
‘zﬂ(AE) axis, as it is shown in Fig. 5. This result represents 2

an incomplete task since we are unable to obtain the completer the £ irrep . The components for the expansion

set of functions. To overcome this problem we may either ro-

tate the vector or the reference frame. The former is achieved |s3) = Ba, ’¢(A1>> + Bp ‘g(E)> 7 (41)
by selecting another function to be projected. The latter by

selecting another chain. We next consider both possmmtles.are again given by

20| w[) ~ 00y

+ Ocs

Rotating the vector: active picture

Ba, = <¢(A1) 82> = L5
Let us now select the kgt,) to be projected. Following 3
the previous approach, from Table Il we obtain the projected /(B 2
states Bg = <C ‘ 82> =7 (42)
. 1
(A1) ~ (A1) \
P |s2) = ’1/’ > - ﬁ“sl) +ls2) +1s3)). (38)  while for the projected function
PE) 1o ~|c®) = Lo 37 () (B) ()
js2) 2 [¢P) = —=(2lsa) — fsa) — o). 37) ¢ = Npa [p) + Nes [ug”) . @3)
Now we proceed with the projection over the subgroup Imeps, . ave
to obtain
A(A EY\ | ~(E A E)\ o | (E) 1
Pl >’<< >> ~ ]C( >> + Oy | >> ~ )% > Npa = <ng> ‘C(E)> -
1
= —(2]s1) — |s2) — 38 V3
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lagh

o
427 (a)

FIGURE 6. Graphical representation of the different choices for the projected vector. In (a) the three projected functions vectorgover the
irrep are projected over th& irreps. In (b) the projection is over viewed in a three dimensional scheme.

These numbers are the components of the new v¢(¢‘t€}> These three possible projections are depicted in Fig. 6. We
in the same reference system. The vector has been rotate@mark that these vectors are connected through a rotation

The angle is obtained through the internal product in both Fig. 4 and Fig. 6b. While in the former we have the
. - 1 o physical Euclidean space with the rotation axis located along
(BB = —5 =costh 6=, (45)  thez-direction, in the latter we have a space of functions with

the corresponding rotation axis located along|uh%41)> di-
rection, as it should be since this axis is invariant.

The presented analysis corresponds when the projected
vectors are varied, but another possibility consists in chang-
|ss) = € ‘¢(A1)> + 2 ’¢(E)> 7 (46)  ing the basis vectors as we next describe. In this way we are

V3 V6 also able to obtain the complete projected basis.

This situation is depicted in Fig. 6.
We may have been choségn) as the alternative vector.
In that case the result for the expansion (16) is

where
1
¢(E)> = %(2 |s3) —[s2) —[s1)). (47) Rotating the reference frame: passive picture
The second projection ovgs(™)) provides the full projected g previously mentioned, an alternative way to obtain the
states needed component of tiigirrep is by rotating the reference
‘¢(E)> _ _ﬁ ’wgﬁ:)> - ‘¢§3E)>- (48) frame. In such case we obtain another functi A@ > and

ajnf) spanning irreps of the new subgroup. Consider for

We may now represent the projection in the 3-dimension nstance the new chain

spaced ® E4 @ Ep through the relation (20). The states

t{T;QE?;Jt|1;?E)r;aT§(j?§}Tollowing components in the basis Dy 5 ¢ with ¢t = {B, Y, (52)
A 1Y B /YA :
2 1 keeping the kets;) as the original vectopl). The first ex-
[s1) : %’ 0, \7 ’ (49) pansion (16) takes the same form (31) with the same compo-
nents (32). The difference appears when the new subgroup is
(o1 11 considered. In this case the projected functigh®)) takes
|52> . 5 5 5 (50)
V6 V2 V3 the form
1 1 1
|s2) : (_\/6’ /2 \/g) ' (1) ‘¢(E)> = Dpa 77,(4]?)> + Dgp 771(9]?)>, (53)

Rev. Mex. Fis. 1 (2015) 113-128
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v which corresponds to a rotation e27 /3 rad.
i) i A third selection of reference frame is provided by the
chain

D3 D C5; with C5 = {E,CS}. (58)
Again, keeping the ket ) as the original vectoi) the first

expansion (16) takes the same form (31) with the same com-
ponents (32). Now the projected function'®)) takes the

form
)
) In the second projection the new projected functions are:
U <E,)>
P9 [ 051 + Oy [65))  [o2))
E) 1
W2 = @)~ s~ |, (60)
FIGURE 7. Passive picture corresponding the selection of the
chains (52) and ( 58). p(B) ¢(E)> ~ ’¢(E)> — Ocg ¢(E)> = ’psg//)>
where the new functions are obtained by the projection over 1
the irreps of the new subgrouf: = \ﬁ(|51> = |s2))- (61)
H(A) | p(B)N o |op(B) > BE)\ o |pE)
& W >N ‘d} >+0€5 v >N ‘UA’ > The components involved in the expansion (59) are then
1 given by
= %(2 |s2) — |s3) — |s1)), (54)
- R Dpar = <p(€) 1/)(E)> -3
P(B) ‘¢<E>> ~ ‘¢<E>> ~ Oy w<E>> ~ ‘ngzj>> A 2’
3
1 Dip = {p\E) | B _ V3 62
= —=(Is3) — Is1)). (55) e = (57 | 07) =3 (62)

V2
Note that for convenience we denoted &lsand B’ the ir-  The geometrical representation is depicted in Figure 7. Here,
reps of the groug@}. The components involved in the expan- the rotation matrix takes the form
sion (53) are given by

1 V3
1 _ (BE) (E _ [ T2 T2
D = (a8 | 6®) = L [ O I
2 2°
V3
Dgp = <771(3€) ‘ ¢(E)> =5 (56) corresponding to a rotation @fr /3 radians. The geometrical

The geometrical representation is depicted in Fig. 7. We havil1terpretation is displayed also in Fig. 7. He have thus shown

thus changed the reference frame (the basis states) in orderfift @ new choice of basis is equivalent to rotate the refer-

obtain a non vanishing contribution for both components. €N¢€ frame, and we have as many choices as allowed group
A point to remark is concerned with the phases involvegchains. The same interpretation can be used for the general

in the two-dimensional representatiéh The relative phases ©2S€ When multiplicity of irreps appears. The projection how-

between (54) and (55) were fixed in accordance with the congVer must be made following a different approach called the

vention (40). This correlation must be carried out in order&igenfunction approach [17-20]. _
to have consistence with the reference frames. More specif- Finally, given our example, it should be appreciated the
ically, a change in sign is equivalent to move from a right@dvantage of the ordep()7(") followed in the projection
handed to left handed reference frame. in (14) in accordance with a group chaih > H. This is

The connection between the reference frames in Fig. 1€ natural approach to see the projection in successive steps.
is given by the rotation matrix (24). Explicitly the matrix is Otherwise the projection should be viewed as an induction

given by process where the irreps éf are induced to irreps af [8].
L3 In a purely algebraic approach, however, both approaches are
M = H(U(E) w(E))H _ 2 T2 (57) equivalent. In Table IV we depicted a summary of the pro-
Aoy _@ -1 ’ jections and expansions in the different basis.
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TABLE IV. The results of the expansion for the three alternative vectors, for the active and the passive picture. Only the components of the
E contribution change.

Vector s1) |s2) |s3)
%]w“‘% l‘¢(E)> %‘w(“‘”>+%’<“ﬂ)> %’¢<A1>>+%‘¢<E)>

Basis ‘¢<E> )C(E)> ‘¢(E)>
) ARl ) )
ct -1 nfff)> 3 77,(55)> ‘77<E)> -1 77<E>> <E>>

Cs 5 |e) + 2 o) 3| - F o) ]pff??>

4. Choice of the basis: quantum numbers and of Egs. (67) is equivalent to the diagonalization of the matrix
eigenfunction approach H = [|hk;l], e.9

STIHS = A, (69)
In this section we shall discuss the procedure to obtain a ba- here A i di | trix with el ts g by th
sis. Instead of using the traditional approach based on thgnere A 1S a diagonal matrix with €lements given by the

hall h rLgenvaluesEa, andS = |[|sj.a,il|- The CSCO is con-
fr:gjgg?iﬁ;igsi;iﬁzsnmfnsnjmgerfssem an approach based cEerned with the procedure to distinguish (adding labels cor-

One of the fundamental concepts in guantum mechanrespondlng to eigenvalues of additional operators) the set of

ics is the complete set of commuting operators (CSCO). Th estsé{ohllz >l;Z _dl’ -5 ol tThe cntenton tohestatt;]hsh theh_
essence of this concept lies on the necessity of labeling with= IS based on Symmetry concepts, where the machin-
out ambiguity the eigenstates of the Satinger equation for ery of group representation theory emerges as a fundamental

. ool.
stationary states - . .
y By definition the maximum set of transformations that

leaves the Hamiltonian invariant corresponds todpmme-

It should be clear that the Hamiltonian itself can be consid4ry group G, as previously pointed out through (1). We may
ered as part of the set of the CSCO, since the engrgyo-  think that the set of operatof${, Op.; i = 1,...,|G|} is
vides a label for the eigenstatels) through (64). Ifa stands  useful to define a CSCO, but in genefélr,, Or,;] # 0,

for an index introduced to distinguish different energies, aunless the group is Abelian. This problem is solved by se-

H|U) = E|D). (64)

more precise form of expressing the Eq. (64) is lecting subsets of7,corresponding to the conjugate classes
) of the group. Aconjugate classg(; with number of elements
HIUF) = Ea|¥7); i=1,...,da; (65 |K;|is defined by the set of elemerftg”; j = 1,...| K[},

. ) . . which are connected by at least one elemestG through
where the subindex accounts for the possibility of having

several functions (in this casg, functions) associated with ¢V = 91(:) — (70)
the same energy. In practice, since the exact solutigfis !

cannot be found, they are expanded in terms of a set of The class operator for theth class is defined by

known orthonormal ketsp;)

| K|
n K=Y 0g9. (71)
|U7) = Z Sji0,i|Bj)- (66) B=1
j=1
From (1), itis clear that
The substitution of this equation into (65) leads to the system
of eigenvalues [H,K;]=0, VK; (72)

n

and since every clags; commute with any element € G,

Z(hkj ~ Batka)dsies =0, (©7) we have thafK;, u] = 0, a property followed from (70). As
= a consequence we also have the remarkable property
where -
hij = (| H| ;) (68) K, K] =0, Vij. (73)

are the matrix elements of the Hamiltonian in the basisHence the Hamiltonian together with the classes of the group
L, = {|¢:),t = 1,...,n}. The homogeneous linear set constitute a set of commuting operators and they can be di-
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agonalized simultaneously in any space of independent func- {A] A, ..., )\le}. (76)
tions. Letl,, = {|¢:),i = 1,...,n} the space to be cho-

sen, which may be given by atomic orbitals or internal co-This is a formal way to name an irrep. For two and three
ordinates. The sef|¥'®), i = 1,...,g.} given by (66) are dimensional irreps (E and F), for instance, a degeneracy still
eigenvectors off. We may now construct the representationeémains, which by the way is not broken by the Hamiltonian

matrix of the class,, in this basis since the energy¥,, only distinguish different sets with the
R same irrep. This situation is illustrated in Fig. 8.
[(ETER ) 4,5 =1,... ga- (74) The question which arises is concerned with the identifi-

cation of the new set of operators capable to distinguish the
The diagoAnaIization of this matrix provides eigenvectors ofstates associated with the degeneracy of the irreps. The an-
type{|¥,""), k=1,...,ga., }, With the property swer is given by the classes of a subgroup.
e o o o Let H be a subgroup ofi: H C G. Suppose that/ has
HIW) = Ea|W,777), Kp[®7) = Ap|W), (T5) k| classeq k. . .. , kyy } which clearly satisfy

where ), is the label that distinguishes the different eigen- [kp, kq] = 0. (77)
values of the class operatéf,, and! accounts for the de-
generacy. We may now proceed to obtain the matrix repreBut the classe$K;, i = 1,...,|K|} of the groupG com-

sentation of the next clasé*q in the new basié,\ll?’AP), to  mute with any element of the group, and consequently com-
obtain eigenvectors with the additional labe). We may  mute also with the classes of the subgroup
follow this procedure with the rest of the classes to obtain a

set of state$|\ll?’k1""’A'K‘ } characterized by the eigenvalues [Kis kp] = 0, Vi, p. (78)
{a, A1,..., Ak} This set of labels is not complete, a de- _ . . . .
generacy still remains. To see why this is the case we shoulgh'sa,fi‘ff[f’flgﬁes'[s to diagonalize the operakgrin the basis
note that the classe&k;;i = 1,...,|K|} are linearly in-  {/¥, )} to obtain a complete labeling for the com-
dependent and consequently there are as many different sgt@nents of the irreps. Indeed, this is the case as long as a
{M,--, Ak} @s number of classes. But we know that theSuitable subgroup forming a canonical chain is chosen. After
number of irreps is equal to the number of classes and consthis procedure of diagonalization thg matrix representation of
quently the set of label§\, , . . ., A } is expected to specify thel classes of the subgroup, we arrive to the complete la-
an irrep. Introducing the labelfor the possible solutions (i-- Peling scheme o
reps), a more precise labeling would be ‘\If;?l »;;%:lwm >’ (79)
A where the subindicel are defined by
o | e A\ ] g @A A
Fo| Waw o > =% ) (80)
considering tha: labels the irreps of the subgroup. This
— E, JE process of labeling is very simple and we will see that it is
not necessary to use all the classes to establish an unambigu-
ous labeling scheme. In fact, the relevant involved classes are
intended to contain the generators of the group and subgroup,
_—) S a resulting set with cardinality less than the total number of
% d classeskK|.
g Let us now turn our attention to the identification of the
K labels involved in (79) as quantum numbers. The time evolu-
tion of the expectation value of an operatbrs given by [24]
_ d, . . A DA
— E = —(V[AW) = (V|[H, A]|¥) + (W] —[¥),  (81)
dt ot
where[H, A] is the commutator of the Hamiltonian with the
— a )

E, ' operatorA. Hence, a remarkable consequence is that if the
operatorA does not depend explicitly on time and commute
with the Hamiltonian, then the expected value is constant in

»- time:
FIGURE 8. Eigenstates labeled with the energy and the irreps. A d . .. oA
degeneracy still remains due to the degeneracy of the irreps. £<‘I’\A|‘I’> =0; [H,A]=0, i 0. (82)
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Suppose now that the states are chosen to be eigenstateswdfich is a consequence of (88) and it means that the functions

the Hamiltonian together with the classes of the gréugnd
subgroupH. Then

) — ’\Dif“';f">, (83)
1o g
and the set of Egs. (82) translates into
d d
ZE. =0 —)\ =0
g P =0 A =0
D0, =1, K| p=1,.... |k, (84)
dt p_ ) - PR ) p_ AR )

when A is substituted by, K; andk,. Hence the eigenval-
ues of the set of operatofst; K1, ..., Kx|; ki, - .. ki }
are independent of time and consequentlycarantum num-
bers

For a given energy eigenvaluethere is a set ok val-

|¢f”)> are eigenvectors of the class operators with eigenvalue
AY. This remarkable result suggests to proceed in the other
way around to obtain (79): we start diagonalizing the class
operators and at the end the Hamiltonian is diagonalized tak-
ing advantage that its representation in such basis is block
diagonal. This approach leads to the eigenfunction method
of projecting functions [17].

Eigenfunction Method

Here it is convenient to point out the difference between the
approach presented here and Chen’s approach to the eigen-
function method. As the reader noticed, our approach is
based on Wigner’s theorem and the concept of CSCO to label
the eigenstates. In this way the concept of quantum numbers
is intrinsically connected with the eigenvalues of the class

ues characterizing theth irrep in accordance with (76). As  operators which in turn are related to irreps of the symmetry
mentioned before this fact suggests a connection between thgoup. In contrast, in Chen’s theory the main ingredient is

AY values and the charactexé”) of the group as we show
next. For a given irrep the representation of a class§ is
given by

| K|
D) (K;) = > DW(g). (85)
B=1
But since
D™ (K;),D¥)(R)] =0; VREe€G, (86)

it follows by Schur's Lema Il [14], thaD)(K;) must be
proportional to the unit matrix. In fact, we have [14]

DW(K;) = |KH|X(V)1 (87)
But the eigenvalues of the classes are given by
DW(K;) = AV1, (88)
and consequently
Ag:ﬂxg”% i=1,...,|K| (89)

ny

wheren,, refers to the dimension of theth irrep. A similar
relation holds for\; and the characters of the subgrotp

Note that the expression (89) basically tells us that a character
table constitutes a tabulation of quantum numbers, a remark-

that the eigenvectors in the class space are identified as pro-
jection operators, while Wigner’s theorem is discussed sepa-
rately. The whole representation theory is developed in detail

but it seems disconnected with the fundamental Wigner’s the-

orem.

We now introduce in more detail the eigenfunction ap-
proach. We start with an arbitrary set of orthonormal func-
tions {|¢:), ¢ = 1,...,n} with (¢;|¢;) = J;;. Then we
choose a subset of classes(ofas well as ofH that allows
their corresponding irreps to be distinguished [17-20]. A lin-
ear combination of the selected classes provides eigenvectors
carrying thev-th irrep. Let us consider an example to il-
lustrate this idea. Suppose we want to obtain the symmetry
projected functions from the same space previously consid-
ered: L3 = {|s1),[s2),|s3)} corresponding to the atomic
s-orbitals of the H molecule. The character table is given
by Table 1 with the classek; = {E}, K> = {C3,C3}
and K3 = {C¢,C%, Cs}. Let us now construct a table of
eigenvalues of the classes, which we call it tkie table,
by using the expression (89). The result is given in Table
2, from which we notice that the clags; by itself distin-
guishes the irreps (it contains the generators of the group)
and consequently the eigenvectors in (83) may be simplified
to
(91)

Iz W
A )\‘k‘

a,A] . LAY AV

able feature not mentioned explicitly in textbooks. Indeed,

the Eqg. (89) leads to the most efficient projection technique,

as we next explain. ’ -
The relation (89) itself suggests a projection methodTABLE V. Astablg for the grouDs obtained from the character

based on the diagonalization of class operators. This assetfEIOIe and the relation (89)

tion may be appreciated because of the following: any set of

) Ds Y A5 pVA

symmetry adapted functiongy,”’), i = 1,n,} spanning 1 1 > 3
thev-th irrep of dimensiom,, satisfies [17] !

Ao 1 2 -3

Koy =Xy i=1,.m,  (90) E 1 1 0
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where We should note that the eigenvalues correspond to the val-
] et A | aai ues3 and0 of the \'s Table V. The eigenvectors of Table VI
K3 ‘I’A%fﬂ’m> =A3! ‘PA;}’,"’,_,W> give rise to the following symmetry adapted functions
— 3w ) ©2) ) = T ([3u) +[s2) + [sa)) (98)
DU\ A \/§ 1 2 3))
A‘ a,A?2 VAo a,)\;Q \IJO _ i . 99
K3 ‘I’A;f"“’/\rk> _)‘3 \IJ/\T’W’)\#]C> |1 > \/§(|81> |S3>)7 ( )
. (©3) 0%) = = (Js2) = Isa)). (100)
= Ny /7 V3
3 AE AE ily i i
LE ‘I’iﬁ‘f.,x‘ > =y ‘I’il;,.a..,v > =0, (94) where we have temporarily introduced an arbitrary left
k| Il subindex in order to distinguish the degenerate eigenvectors

in accordance with Table V. This analysis suggests to dediSSociated with the irrefy (eigenvalue in accordance to Ta-
with the representation of the clags; in the spaceC; as a 1€ V)- We now proceed to introduce a suitable subgréip
first step to obtain the projection. Consider now the element? Order to establish the labelg associated with the classes
C$ € Dy. From Fig. 4 we obtain the transformation of the *» In (91). Let us propose the subgrodp = {£,C{}, a
s-orbitals under the rotatios: C4|s;) — |s1), C%|ss) — selection that is usually expressed in the form of the chain of

|s3), C%|s3) — |s). In matrix form subgroups

) 1 00 D3 D (8. (101)
C3(Is1), [s2), [s3)) = ([s1)[s2),[s3)) [ O O 1
010 To know whether this is a suitable chain to label the states we
= (|s1), |s2), |s3))A(CY), (95)  should obtain the irreps of the subgroCip contained in the
irrep E. To this end it is convenient to present the charac-
where we have introduced the definition for the representager table of the subgrou@?, including the characters of the

tion A(C?) associated with the operat6t; in the spacels.  jrreps of the groupDs (correlation table). This analysis is
Following the same approach for the rotatigisandCs we  displayed in Table VII, where the last three rows correspond
obtain their corresponding matrix representations to the irreps ofD; and are obtained by taking the characters
00 1 of Table | corresponding to each irrep, selecting the columns
Ach=(0 1 0|, K, and K3 where the elements of the subgrogp are lo-
100 cated.
The last column corresponds to the reduction of the irreps
0 10 of Ds into irreps ofC¢, and may be obtained either by inspec-
A(C3) = (1) 8 (1) (96) tion or using (6). We note that no repetition of irrep<éfap-

pears in the reduction df and consequently the chain (117)

These results allow the matrix representation of the digss 1S canonical We may now identify the class that determines
to be constructed in a straightforward way. In fact, the reprethe irreps of the subgroup following the same approach that

sentation is given by was used in the group. Since in the subgrégaill the irreps
are one dimensional thés table coincide with the character
A(K3) = A(CS) + A(C3) + A(CS) table and consequently we can identify in a straightforward

way the clasg, = C§ to distinguish the irreps. This means
@7) that if we diagonalize the matrix representation of the opera-
tor C§ in the basis (99-100), the corresponding eigenvalues

I
—_

1
1
1

e

The diagonalization of this matrix provides the eigensystem
given in Table VI.

TABLE VII. Irreps ofC3 contained in the irreps of the grodps.

TaBLE VI. Eigensystem associated with the matrix representation C3 E C3
of the class operatdis. A 1 1
Irrep Eigenvalue Eigenvector B 1 -1
Ay 3 (1,1,1) Ay 1 1 A
E 0 (1,0,-1) Ay 1 -1 B
E 0 (1,-1,0) E 2 0 A® B
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will be +1, —1, for irreps A and B respectively, in accor-

125

dance with Table VII. Indeed, the representation of the operTasLe VIII. Eigenvalues associated with the operatffs and

atorCg turns out to be
Ce(w*?), 12°), [29°))

= (|97?), [197), [29%)

o O =
_— o O
o = O

= (1079), (9°), [297))A(CS), (102)

where we have used (95) and (96). The representati@ry)

is a block diagonal matrix, an expected result since the oper-

atorsC‘g cannot mix functions of different irreps of the group
Ds. The diagonalization of the matrid(C§) provides the
eigenvectors

[B) = [ 0%) + [29°)

- %mm ~ I52) — Is)), (103)
00,) = [ 80) — ,[w0) = %um s, (104)

where the subindex appearing in the new functions corre:

sponds to the eigenvalues of the operaﬁ;’gr But from Ta-

bles V and VII we know the correspondence of the eigenval-
ues with the traditional labeling of the irreps. For the group

D3

+3 < A;; 0 F, (105)
while for the subgroup
+1— A; —1 < B. (106)

We may now identify the functions in the usual notation

W) =) = %asn Fls)+lss). (107)
09 = W) = %mm s~ Jsa). (108)
00, =[WE) = %us» ~Jsa)). (109)

To obtain these projected functions we have carried out

two diagonalizations, corresponding to the operafosand
ko = C§. We may simplify this procedure by diagonalizing

a unique operator obtained as a linear combination of the op-

eratorsk; andk,. To obtain the appropriate combination we

construct a table containing the possible eigenvalues accord-

ing to theX's table forDs andC§, together with the reduction
given in Table VII. The results are given the Table VIII.

ko = C%¢ corresponding to the chain of groups > C5.

D3 A3 Cs Ay 5+
Ay +3 A +1 +4
As -3 B -1 -4
E 0 A +1 +1
E 0 B -1 -1

TABLE IX. Eigensystem associated with the matrix representation
of the class operatar;;.

Irreps Eigenvalue Eigenvector

Ay +4 11,1
(E,A) +1 (2,-1,-1)
(E, B) -1 (0,1,-1)

In the last column we have included the sum of the eigen-
values. As noted all the numbers are different, a fact that
implies that we can define the operafot; as

Cr1 = Ks+ ko =205 + C + C5, (110)

whose diagonalization provides the symmetry adapted func-
tions in a straightforward way in one step. Proceeding in this
manner we obtain the representation matrix

2 1 1
ACiH)=| 1 1 2 (111)
1 21

The diagonalization of this matrix provides the eigensystem
presented in Table VI, from which we identify immediately
the symmetry adapted functions in the form

) = W) = () lsa) + ), (112)
) = [wE) = %msn s~ Jsa)).  (113)
Wty = (W) = %(Isﬁ ~Jss)). (114)

This example allows us to establish the series of steps to
obtain a basis according to a chain of groups for any molecu-
lar system:

Step 1 - From the character table of the symmetry
groupG, the X's table is generated using (89).

Step 2 - We proceed to identify the column that distin-
guishes the irreps of the grodp In general more than
one column is needed to achieve this goal. In such case
a linear combination of columns are selected in such a
way that the eigenvalues are all different. This pro-
cess defines the linear combination of classes, which
we shall identify with the operataf’.

Step 3- A subgroupH is proposed in such a way that
the irreps ofG are not contained more than oncefin
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Step 4- From the character table @f, we construct  The potential is then invariant undéi, but not anymore un-
the \'s table and identify the columns that distin- derG. The potential’4: carries the totally symmetric rep-
guishes the irreps. The columns involved define a lin-resentatiom; of K.

ear combination of classes of the subgroup which de-  Given that’ is not invariant unde€ the matrix elements
fine the operato€'(s). This operator is the equivalent take the form

of C in the groupG.

4 B
Step 5- A table of eigenvalues associated withand D) vt sV o) 10 92) = Vi 045 4150454+ (120)

H is constructed (Table V in our example). A linear

combination of\’s is identified to define a new opera- NOte that in casé” had the same symmet(y, the matrix

tor Cy;. elements would take the form

Step 6- The representation of the_operafﬁm is gen- (Y ()1 v |f/|¢n(r)mﬁ2>

erated using the space to be projected. The diagonal- -

ization of the matrix representatiah(C;;) provides = VnOrr0a; 415041 s, (121)

the symmetry adapted functions.
and the matrixyl

. Would involve kets spanning the same
We should stress that up to step 5, no dependence of trleirrep_ In contrast, the matrix elemenis,,, in (120) mix

space appears. Given a molecular system, the first 4 steps algtes of different irrep. The Ketsith, (1) -, -,) are then

general and are useful to project any representation SPaCEypected to be mixed since the lafiels no longer a good
electronic functions, rotational functions, vibrational func-

tion or spin functions. Only the last step is a function of the
space.

quantum number.

The eigenvectorsb? ") associated with the perturbed
Hamiltonian (115) are defined through

5. Symmetry Breaking H|@2(1)) = E,|@20v), (122)

In this section we show one of the advantages of labeling the .
. . . Where we assume that the degeneracy corresponds to the di-

states according to a given chain of groups [17]. For exam- : : !
e . . mension of they; irrep. The new eigenkets take thus the

ple, by establishing an appropriate group chain the analysnseneral form

of a perturbation on the system is simplified. Such perturba9

tions can be associated, for example, with the application of a(y) S,

an electric or magnetic field in the system surroundings [21]. “I)w > =) Coily™ n @) m,72)- (123)

Let us consider a time independent system with Hamilto- n(I)

nian, H, written as follows i
Here we have two remarks. Firstly, the Kronecker deltas ap-

H=Hy+V, (115)  pearing in the matrix elements (120) are a consequence of
. having labeled the states in accordance with the chain (117),
whereH) is the zeroth order Hamiltonian with eigenkets [24] anticipating the symmetry reduction, and secondly, the di-
~ mensions of the blocks associated with the Hamiltonian ma-
Ho [n)102) = Bn |y mas) (116) " yix corresponds to the number of functions,,r., . )

wheren labels the energy eigenvalue afdy;, o, are irreps ~ characterized by thE irrep, containing they, irrep.

associated with the group chain [9]
GD K D K. (117) 5.1. Example

Here H, is considered to be invariant und@rgroup, which ~ As an example we next analyze the symmetry breaking of a
exp|ain the |abe|ing scheme. The subgroﬁ’p was con- particle in a cubic box. In this case the zeroth order Hamilto-
sidered to account for the possibility that after the sym-nianH is given by
metry breaking a degeneracy still remains. The eigenkets ) ) ) )
|¢"(F)fh,’yz> are orthonormal [14]’ fj = 72 87 + i + i . (124)
0 2m \0x2  Oy?2  9z22)’°
wm(F/),’yiﬁ&¢n(1“),~/1,72> = 5mn5F’F5%m757ém~ (118)
. with the following boundary conditions:
When the perturbatiol’” is added the symmetry may be

preserved or diminished. We shall consider the latter case ( V (z,y,2) =0; 0<z<a; 0<y<a;0<z<a
with the new symmetry group given Ly : V(z,y,2) =00; 1 <0;y<0;2<0

~ o~ V(z,y,2) =00; ©>a;y>a;2>a
[OS,V} —0, VSeK. (119) (125)
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The eigenfunctions are given by A
5 E
(| Vnyn,) = fsin(m%a:/a)
a
2 . 2 .
X \/75111(7myy/a)\/;sm(wnzz/a), (126)
a
B:
with eigenvalues [24]
E
2,2
w= g (2 b ) (a27) T 5
2ma A, A,
To simplify the discussion we shall consider that the sym-
metry group of the system i9;, which corresponds to the

\ 4

the geometrical symmetry (obvious symmetry) of the cubic @h =) év D oy

box [23]. We now consider a perturbation of the form
R FIGURE 9. Level splitting according to the canonical group chain
V = GZgZ, (128) Opn D Cay D Coy.

which may correspond to the appearance of an electric field
along thez axis. After this perturbation, the system’s symme-

try group is reduced t6y,, which is a subgroup of;,, and Vgl = (W1 By VA O n(100) B )
V is invariant under this group. In general the perturbation
splits the levels but since the grodp, contains a degenerate V2 = B1, Bs, (134)

irrep, it is not expected that the electric field removes the de- ;7. _ VAL | ‘ 135
generacy completely. In this case it is convenient to establish ! (Fncri il Vo), (139)
a labeling scheme of the original functions according to thgyhere

group chain [17], Vi = Vi (136)

On D Cyy D Cay, (129)  as expected from Wigner-Eckart theorem [17]. The energies,

The projection of the functions (126) in accordance with theUp to first-order perturbation correction, are then given by

chain (129) provides the symmetry adapted basis of the form E=FEy+ VE%; o = By, Bo, (137)
Wam)v:72) = D Dy Wnnyns), (130) E=Ey+ VD, (138)
Ny Ty, Nz ’

where the sum involves states of the same energy charactefle should stress that the matrix elements are already diago-
ized byn. nal and it is not necessary to proceed with a diagonalization

The matrix elements of the interaction potential acquire®f the 3<3 dimensional matrix. This simplification is a con-
the general form (120). In this case the dimension of the maS€guénce of the appropriate labeling scheme in accordance
trix representation of the interaction turns out to be infinite. With the chain (129). N _

However, using perturbation theory it is possible to estimate e may c_on5|der the adgmon of a new perturbation. Now
the effect of the symmetry reduction. Let us consider a 3{he Hamiltonian would be given by:
dimensional level witl’;,, symmetry associated with the en-

ergy » Hiy=H+ Vs, (139)
hem ~
0=5-"3 -6, (131)  wherel; is invariant undet’s,, symmetry group. Again, the

labeling scheme provides with energy corrections in diagonal
form. In Fig. 9 we show the level splitting according to the
previous analysis.

with guantum number$l, 1,2) and permutations. The re-
duction of the representation involved is given by

Ty, = A ®E, (132)

while for the reduction of,, to Cs, we have 6. Conclusions

E =B, ® B,. (133) We have presented the basic concepts involved in group rep-
resentation theory emphasizing the geometrical point of view.

The first order correctio®") to the energyE, is given by  From a reducible representation space, a change of basis is
the eigenvalues of a block diagonal matrix, with each blockcarried out in order to reduce such space into a direct sum
labeled with they; irrep, in this case; = A1, E: of irreducible spaces labeled with irreps (eigenvalues of the
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class operators in discrete groups, and Casimir operators f@s quite important in symmetry breaking situations, like the

continuous groups). A complete labeling scheme is obtainegresence of electric or magnetic fields in the systems sur-

by establishing an appropriate (canonical) group chain. Amoundings.

additional chain is needed when multiplicity of irreps ap-  The present analysis illustrates many of the fundamen-

pears. Although the latter case is not discussed, the geometl concepts used in group representation theory. In the more

rical interpretation is not modified. general framework of algebraic methods [22], where the con-
The concept of projection is illustrated with a simple al- cept of dynamical group emerges as the basic ingredient, each

though yet remarkable rich system. The process of obtaininghain of groups defines a dynamical symmetry, which means

symmetry adapted functions is analyzed through two stepthat a Hamiltonian expanded in terms of Casimir operators

projection. The result of the second projection depends nadssociated with that chain is diagonal in the corresponding

only on the projected function but also on the selected groupasis. A more general Hamiltonian involves Casimir oper-

chain. We have shown that the change of the projected fun@tors of several chains and its matrix representation can be

tions is equivalent to carry out a rotation from an active pointobtained by using the transformation brackets, which in our

of view, while the passive perspective corresponds to choogwvork are given by the overlap matrix (24). Hence a dynam-

ing alternative group chains. The different basis associatet$al symmetry defines a reference frame which is connected

with the group chains are connected with a rotation matrix. through a multi dimensional rotation with the other possible
It has been shown that the concept of quantum numberdynamical symmetries.

in discrete groups is basically associated with the character We believe that the presented material shows a useful

tables of the groups. A remarkable consequence of lookin§0int of view to help in understanding group representation

for the invariants is that the eigenfunction method to projectn€ory, providing the basic physical ingredients of advanced

functions emerges in natural form. The projections reducérojection techniques.

to diagonalize the representation matrix of a set of commut-

ing operators. This method makes superfluous the use of thgcknowledgments

character tables in the symmetry projection process and pro-
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