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On thermal waves’ velocity: some open questions in thermal waves’ physics
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This paper presents some considerations about the truly character of thermal waves. Starting from the comparison of typical characteristic
velocities, it is shown why a limiting frequency must exists, above which the parabolic treatment of the heat transfer in presence of time
varying periodical heat sources is no longer valid due to the constancy of the speed of light in vacuum. Although it is demonstrated that this
frequency is much smaller than that at which the thermal wave velocity can become the speed of light, many questions remain open, suct
as the behavior of thermal waves at intermediary frequencies. The discussion presented here can be useful to stimulate further discussion ¢
this theme among students, teachers and scientists dealing with heat transport under non-stationary conditions.
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Thermal waves (TW) are temperature oscillations resultingf light) diffuses into its bulk by diffusion. Itis supposed here

from periodical heating of a material [1]. They are often de-that all the deposited energy is transformed into heat. From

scribed as the solutions of the parabolic heat diffusion equanow on, the operator Re() will be omitted, taking into account

tion (PHDE) in the presence of a periodical (sinusoidal forthe convention that the real part of the expressions of the tem-

a sake of simplicity) time varying heat source modulated inperature must be taken to obtain physical quantities [3].

intensity at a given frequency,[1]. The solution of the problem with interest for practical ap-
Consider an isotropic homogeneous semi-infinite solidplications [1] is the one related to the time dependent compo-

whose surface is heated uniformly (in such a way that thenent. If we separate this component from the spatial distribu-

one dimensional approach used in what follows is valid) by aion, the temperature can be expressed as:

source (light, for example) of periodically modulated inten-

sity (I,/2) Re[(1+exp(iwt))], wherel, is the intensity of the T (x,t) = 0 (x)exp(iwt). (4)

light source (energy per unit area and unit time)s the an-

gular modulation frequency, is the time,i=(-1)!/2 and Re  Substituting in Eq. (1) we obtain

denotes the real part.

The temperature distribution T(x,t) within the solid with d*0(z) 20 (z) = 0 ®)
thermal diffusivitya can be obtained solving the (parabolic) dx?
heat diffusion equation (PHDE) [1,2] where
O*T(x,t) 10T (z,t) . .
) = 9 _ . 1 _|_
522 P 0, >0, t>0 (1) a= % 144 w _ (1+1) (©)
o 2a W
with the boundary condition
and
T I
DL D e o) @ %
z =0 n= m (7)
wherek is the thermal conductivity, related to the thermal
diffusivity, o through The general solution of the above problem is then
k = apc. 3) _ lo _x d T
T (z,t) oo exp . cos m + wt + ) (8)

Here p is the density and is the specific heat at constant
pressure. wheres=ka~1/2 is the thermal effusivity.

The condition (2) express that the thermal energy gener- Expression (8) has the meaning of a plane wave. Like
ated at the surface of the solid (for example by the absorptionther waves it has an oscillatory spatial dependence of the
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form exp(igx), with a wave vectoy given by Eq. (6). Be-
cause it has several wave-like features, Eq. (8) representstasLe |. Values of thermal diffusivity, second sound veloc-
thermal or temperature wave (TW). The detection of TWs isity (Eq. (14)) and the critical frequency (Eq. (12)) for some
the basics of the so-called photothermal techniques that hawelids materials. The used value ofis 107 '? s. Thermal dif-
gained in interest since the early 1970s due to their potentidbsivities were taken from: _http://www.fiz-chemie.definfotherm/
not only for optical spectroscopy, but also for the measureservlet/infothermSearcfiownloaded March, 2015)

me_nt of thermal properties of mate_rials [1]. _Althou_gh the MATERIAL a (M?fs) f. (H2) u (m/s)
main properties of TWs have been discussed in detail by sev=
eral authors, this work will be focused on one of their main

Balsa Wood 5.00 x 107%  3.58 x 10?2 223

properties, namely the propagation velocity. Glass (non-porous) 4.00 x 107" 4.48 x 10" 632
From Eq. (8) it is easy to see that TW’s wave-length is Steel 370 x107° 484 x10*° 1923
given by = 27 so that they propagate with phase velocity, Gadolinium 5.47 x 107%  3.27 x 10%° 2339
V. given by: Brass 3.00x 107 597 x 10" 5477
V, = Af = wp = V20w ) Tah.talum 568x107°  3.15x 10" 7536

Silicon 9.38x 107° 191 x 10" 9685

As in other wave phenomena, the phase velocity is de-
fined as the velocity of points of constant amplitude in a wavefrequency,f., exists above which heat cannot be modulated,
of the form given by the above expression. Since Eq. (5) istherwise relativity theory can be violated. This is a result
a linear ordinary differential equation describing the motionthat contradicts any experience because there is not a techni-
of a thermal wave, then the superposition of solutions will becal upper limit for the modulation frequency. In other words,
also a solution of it (we have approximated the temperaturérequencies given by Eq. (12) can be easy exceeding in prac-
distribution by just the first harmonic of that superpositiontice. Therefore, for these frequencies Fourier treatment of
because the higher harmonics damp out more quickly due theat transport becomes inadequate.
the damping coefficient increase with frequency). This super-  An explanation to this paradoxical result can be given
position represents a group of waves with angular frequencieis we look at the hyperbolic heat diffusion equation
in the intervalw, w + dw travelling in space as “packets” with (HHDE) [3-5]
a group velocity:

VT - —— —— — =0 (13)

w

which considers that a build-up time, must exists for the
whereqR = Re(q) = 1/u. This velocity is the phase veloc- onset of the thermal flux after a temperature gradient is sud-
ity of the envelopei.e. the velocity at which thermal energy denly imposed on the sample [2-7]. This time is also called
propagates. In other words, it is the velocity of points of con-the relaxation time. Here
stant amplitude in a group of waves and is calculated from N
the dispersion relation (Eq. (6)) as usual. U= (9> 2 (14)

The group velocity is twice the wave’s phase velocity [2]. T
If TW are truly waves, then this velocity must be smallerthan  For the same case study described above of periodic exci-

the light speed in vacuung x 10° m/s, otherwise one of tation in the form given by Eq. (2). we obtain from Eq. (13)
the postulates of the special relativity theory will be violated. gfter a variables separation (Eq. (4))

Therefore, in order to keep

d*0(x)
V,<c (11) T 40(@) =0 (15)
the following condition must be achieved an expression similar to Eq. (5) but with the “new” complex
) wave numbey,. given by
f < 16 = fc (12)
yye:; T . fL
L . o . qC:27Tf\/7 = —1 (16)
which is obtained after substituting Eq. (10) into Eq. (11). al\ 2nf
The frequencyf. will be called here the critical frequency.
Values off, for different materials (with different val- ~ and
ues) are given in Table I. For example, for a poor heat con-
ductor such as balsa wood & 0.5 x 10~7 m?/s) the max- fo=— (7)

imal available frequency is about 20Hz. For frequencies
values higher tharf, the group velocity becomes larger than It is well-known [4] that for modulation frequencies such
c. Thus, it can be concluded that for each material a criticathat f <« f;, the HHDE reduces to the PHDE.
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e T Figure 1 shows in a logarithmic plot the group velocity as
" Z a function of the modulation frequency for different solid ma-
10° y . terials (Eqg. (10)). Note that the frequency range at which this
e=3x10%mis T T T T T T T T T T T T T T 2 ] velocity approaches the light speed in vacuum lies approxi-
mately between 18 and 162 Hz, much above the value of

w10 - -
é’ si the limiting frequencyfy..
~ ilicon ] . . . i
T Tantalum | Thus, several questions remain open in TWs physics:
gf‘?sl_ ) What is the TWs behavior at frequencies in the vicinity of
3 el 1 fr? At which frequency does the TWs velocity actually
10° - g Glass 1 change fromV,, to u, thus becoming independent on mod-
Wood (Balsa)

(;,L ulation? Although part of this topic has been discussed be-
0 fore [3-5], the debate is not settled, and new experiments
100100 100 M0m d0m A0 40T 10T 10 and theoretical analysis are needed to understand it better

f{Hz) and to shine light on some open questions in the analysis of
FIGURE 1. Group velocity as a function of frequency for the mate- heat transfer phenomena, in particular those taking place in
rials shown in Table I. The critical frequency range is shown with the presence of periodical heat sources, and to motivate fur-
the horizontal arrow. The speed of light in vacuum is shown with ther analysis and discussion on this topic not only between
the horizontal line. Values of the second sound velocity for eaChstudents and teachers, but also among researchers dealing

?{?;er(i%)a; ds?fd\,,;lr:h\gtit;s;zpe ?ggte; ditno tt:Z g?{;‘ljs'vell\i)%tifytgmewith heat propagation problems under time varying period-
evaluated at the frequengy — f1 — 1/, namelyv, (f.), by ical heating conditions. In the past, hyperbolic non-Fourier

w = vy (f1)/(472) ~ vy (f1)/7. cpnducpon _has_ strlgtly been stl_Jdled f_rom a mathfamancal
viewpoint with insufficient attention to its practical impor-

But for frequencies such thgt > f; the general solu- tance. Non-Fourier effects have long been known to exist

tion for the temperature field differs strongly from that of the in the form of second-sound thermal waves in superfluid he-
PHDE [5] being lium [7]. More recently, they have been observed in a variety

o7 - w of phenomena involving ultrafast heating such as supernovae
T(x,t) = 0 exp (——) cos (—:z: - wt) (18)  explosions [14], ultrafast laser heating [15] and complex flu-
(A

. 2e 2a . ids (e.g colloidal suspensions of nanometer sized particles in
Accordingly, the thermal waves will propagate at the ve-

loci hich fini d of : Tbasic fluids, where heat transfer times can be substantially re-
ocity w, which represents a (finite) speed of propagation Ojuced due to the reduced dimensions pf the particles) [16,17].

the thtgrma:c sgnoal, and diverges only for the unphysical STherefore, the existence of non-Fourier heat transfer is a topic
sumption ofr = 0. of importance to be introduced in modern physics courses.

.With the exception of liquid Helium [.7]' there are not ex- Finally, it is worth mentioning that the hyperbolic heat dif-
perimental data reported for the relaxation time [8]. Theoret?usion equation is one of the possible solutions to avoid the

|ca_llared|ctlons give values fot this parameter ranging fro.minconsistence of the parabolic approach, which violates the
10~** s for some metals to some seconds for materials wit

h ) truct h as q :]iﬁ)ecial relativity theory at very high modulation frequencies.
non-nomogeneouis Inner structure such as Ussues and granya,ever, some authors [16] suggest that the hyperbolic ap-
lar materials [9]. As mentioned by several authors [10-12], in

roach also violates the second law of thermodynamics in the
many cases the values reported have generated great cont

X icular for the last tioned materials. Th ry high modulation frequency regime, since heat can flow
Versy, In particuiar for the fast mentioned materials. 1nerey,, ihe colder region to the hotter in the sample, against the
fore, experimental measurements of the relaxation time ar

femperature gradient. It is sure that this subject is not closed
necessary, which have been remained elusive [3,9,13]. | etlp g )

this work it will be supposed that the relaxation time is of*

the order of about0~'2? s, a good assumption for most ma-

terials at room temperature [6-9], so that tigt~ 10'2 Hz

andu takes typical values of about of 200* m/s (see Ta- Acknowledgments
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