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On thermal waves’ velocity: some open questions in thermal waves’ physics
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This paper presents some considerations about the truly character of thermal waves. Starting from the comparison of typical characteristic
velocities, it is shown why a limiting frequency must exists, above which the parabolic treatment of the heat transfer in presence of time
varying periodical heat sources is no longer valid due to the constancy of the speed of light in vacuum. Although it is demonstrated that this
frequency is much smaller than that at which the thermal wave velocity can become the speed of light, many questions remain open, such
as the behavior of thermal waves at intermediary frequencies. The discussion presented here can be useful to stimulate further discussion on
this theme among students, teachers and scientists dealing with heat transport under non-stationary conditions.
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Thermal waves (TW) are temperature oscillations resulting
from periodical heating of a material [1]. They are often de-
scribed as the solutions of the parabolic heat diffusion equa-
tion (PHDE) in the presence of a periodical (sinusoidal for
a sake of simplicity) time varying heat source modulated in
intensity at a given frequency,f [1].

Consider an isotropic homogeneous semi-infinite solid,
whose surface is heated uniformly (in such a way that the
one dimensional approach used in what follows is valid) by a
source (light, for example) of periodically modulated inten-
sity (Io/2) Re[(1+exp(iωt))], whereIo is the intensity of the
light source (energy per unit area and unit time),ω is the an-
gular modulation frequency,t is the time,i=(-1)1/2 and Re
denotes the real part.

The temperature distribution T(x,t) within the solid with
thermal diffusivityα can be obtained solving the (parabolic)
heat diffusion equation (PHDE) [1,2]
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wherek is the thermal conductivity, related to the thermal
diffusivity, α through

k = αρc. (3)

Here ρ is the density andc is the specific heat at constant
pressure.

The condition (2) express that the thermal energy gener-
ated at the surface of the solid (for example by the absorption

of light) diffuses into its bulk by diffusion. It is supposed here
that all the deposited energy is transformed into heat. From
now on, the operator Re() will be omitted, taking into account
the convention that the real part of the expressions of the tem-
perature must be taken to obtain physical quantities [3].

The solution of the problem with interest for practical ap-
plications [1] is the one related to the time dependent compo-
nent. If we separate this component from the spatial distribu-
tion, the temperature can be expressed as:

T (x, t) = θ (x) exp(iωt). (4)

Substituting in Eq. (1) we obtain
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The general solution of the above problem is then
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whereε=kα−1/2 is the thermal effusivity.
Expression (8) has the meaning of a plane wave. Like

other waves it has an oscillatory spatial dependence of the
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form exp(iqx), with a wave vectorq given by Eq. (6). Be-
cause it has several wave-like features, Eq. (8) represents a
thermal or temperature wave (TW). The detection of TWs is
the basics of the so-called photothermal techniques that have
gained in interest since the early 1970s due to their potential
not only for optical spectroscopy, but also for the measure-
ment of thermal properties of materials [1]. Although the
main properties of TWs have been discussed in detail by sev-
eral authors, this work will be focused on one of their main
properties, namely the propagation velocity.

From Eq. (8) it is easy to see that TW’s wave-length is
given byλ = 2πµ so that they propagate with phase velocity,
Vp, given by:

Vp = λf = ωµ =
√

2αω (9)

As in other wave phenomena, the phase velocity is de-
fined as the velocity of points of constant amplitude in a wave
of the form given by the above expression. Since Eq. (5) is
a linear ordinary differential equation describing the motion
of a thermal wave, then the superposition of solutions will be
also a solution of it (we have approximated the temperature
distribution by just the first harmonic of that superposition
because the higher harmonics damp out more quickly due to
the damping coefficient increase with frequency). This super-
position represents a group of waves with angular frequencies
in the intervalω, ω+dω travelling in space as “packets” with
a group velocity:

Vg =
1

dqR
dω

= 2
√

2αω = 2Vp (10)

whereqR = Re(q) = 1/µ. This velocity is the phase veloc-
ity of the envelope,i.e. the velocity at which thermal energy
propagates. In other words, it is the velocity of points of con-
stant amplitude in a group of waves and is calculated from
the dispersion relation (Eq. (6)) as usual.

The group velocity is twice the wave’s phase velocity [2].
If TW are truly waves, then this velocity must be smaller than
the light speed in vacuum,3 × 108 m/s, otherwise one of
the postulates of the special relativity theory will be violated.
Therefore, in order to keep

Vg < c (11)

the following condition must be achieved

f <
c2

16πα
= fc (12)

which is obtained after substituting Eq. (10) into Eq. (11).
The frequencyfc will be called here the critical frequency.

Values offc for different materials (with differentα val-
ues) are given in Table I. For example, for a poor heat con-
ductor such as balsa wood (α = 0.5 × 10−7 m2/s) the max-
imal available frequency is about 1022 Hz. For frequencies
values higher thanfc the group velocity becomes larger than
c. Thus, it can be concluded that for each material a critical

TABLE I. Values of thermal diffusivity, second sound veloc-
ity (Eq. (14)) and the critical frequency (Eq. (12)) for some
solids materials. The used value ofτ is 10−12 s. Thermal dif-
fusivities were taken from: http://www.fiz-chemie.de/infotherm/
servlet/infothermSearch(downloaded March, 2015)

MATERIAL α (m2/s) fc (Hz) u (m/s)

Balsa Wood 5.00× 10−8 3.58× 1022 223

Glass (non-porous) 4.00× 10−7 4.48× 1021 632

Steel 3.70× 10−6 4.84× 1020 1923

Gadolinium 5.47× 10−6 3.27× 1020 2339

Brass 3.00× 10−5 5.97× 1019 5477

Tantalum 5.68× 10−5 3.15× 1019 7536

Silicon 9.38× 10−5 1.91× 1019 9685

frequency,fc, exists above which heat cannot be modulated,
otherwise relativity theory can be violated. This is a result
that contradicts any experience because there is not a techni-
cal upper limit for the modulation frequency. In other words,
frequencies given by Eq. (12) can be easy exceeding in prac-
tice. Therefore, for these frequencies Fourier treatment of
heat transport becomes inadequate.

An explanation to this paradoxical result can be given
if we look at the hyperbolic heat diffusion equation
(HHDE) [3-5]

∇2T − 1
α

∂T

∂t
− 1

u2

∂2T
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= 0 (13)

which considers that a build-up time,τ , must exists for the
onset of the thermal flux after a temperature gradient is sud-
denly imposed on the sample [2-7]. This time is also called
the relaxation time. Here

u =
(α

τ

) 1
2

(14)

For the same case study described above of periodic exci-
tation in the form given by Eq. (2). we obtain from Eq. (13)
after a variables separation (Eq. (4))

d2θ(x)
dx

− q2
cθ(x) = 0 (15)

an expression similar to Eq. (5) but with the “new” complex
wave numberqc given by

qc = 2πf

√
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α

√
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and

fL =
1
τ

(17)

It is well-known [4] that for modulation frequencies such
thatf ¿ fL the HHDE reduces to the PHDE.
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FIGURE 1. Group velocity as a function of frequency for the mate-
rials shown in Table I. The critical frequency range is shown with
the horizontal arrow. The speed of light in vacuum is shown with
the horizontal line. Values of the second sound velocity for each
material are shown with open circles in the figure. Note from
Eqs. (10) and (14) that they are related to the group velocity value
evaluated at the frequencyf = fL = 1/τ , namelyvg(fL), by
u = vg(fL)/(4π1/2) ∼ vg(fL)/7.

But for frequencies such thatf À fL the general solu-
tion for the temperature field differs strongly from that of the
PHDE [5] being

T (x, t) =
I0
√

τ

2ε
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(
−xu
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)
cos
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u
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)
(18)

Accordingly, the thermal waves will propagate at the ve-
locity u, which represents a (finite) speed of propagation of
the thermal signal, and diverges only for the unphysical as-
sumption ofτ = 0.

With the exception of liquid Helium [7], there are not ex-
perimental data reported for the relaxation time [8]. Theoret-
ical predictions give values fot this parameter ranging from
10−14 s for some metals to some seconds for materials with
non-homogeneous inner structure such as tissues and granu-
lar materials [9]. As mentioned by several authors [10-12], in
many cases the values reported have generated great contro-
versy, in particular for the last mentioned materials. There-
fore, experimental measurements of the relaxation time are
necessary, which have been remained elusive [3,9,13]. In
this work it will be supposed that the relaxation time is of
the order of about10−12 s, a good assumption for most ma-
terials at room temperature [6-9], so that thatfL ∼ 1012 Hz
andu takes typical values of about of 102-104 m/s (see Ta-
ble I), well below thec-value, thus becoming independent on
the modulation frequency. This value is of the same order
of magnitude that the sound’s speed in solids. This is one of
the reasons why, historically,u is called second sound veloc-
ity [7].

Figure 1 shows in a logarithmic plot the group velocity as
a function of the modulation frequency for different solid ma-
terials (Eq. (10)). Note that the frequency range at which this
velocity approaches the light speed in vacuum lies approxi-
mately between 1019 and 1022 Hz, much above the value of
the limiting frequencyfL.

Thus, several questions remain open in TWs physics:
What is the TWs behavior at frequencies in the vicinity of
fL? At which frequency does the TWs velocity actually
change fromVp to u, thus becoming independent on mod-
ulation? Although part of this topic has been discussed be-
fore [3-5], the debate is not settled, and new experiments
and theoretical analysis are needed to understand it better
and to shine light on some open questions in the analysis of
heat transfer phenomena, in particular those taking place in
the presence of periodical heat sources, and to motivate fur-
ther analysis and discussion on this topic not only between
students and teachers, but also among researchers dealing
with heat propagation problems under time varying period-
ical heating conditions. In the past, hyperbolic non-Fourier
conduction has strictly been studied from a mathematical
viewpoint with insufficient attention to its practical impor-
tance. Non-Fourier effects have long been known to exist
in the form of second-sound thermal waves in superfluid he-
lium [7]. More recently, they have been observed in a variety
of phenomena involving ultrafast heating such as supernovae
explosions [14], ultrafast laser heating [15] and complex flu-
ids (e.g. colloidal suspensions of nanometer sized particles in
basic fluids, where heat transfer times can be substantially re-
duced due to the reduced dimensions pf the particles) [16,17].
Therefore, the existence of non-Fourier heat transfer is a topic
of importance to be introduced in modern physics courses.
Finally, it is worth mentioning that the hyperbolic heat dif-
fusion equation is one of the possible solutions to avoid the
inconsistence of the parabolic approach, which violates the
special relativity theory at very high modulation frequencies.
However, some authors [16] suggest that the hyperbolic ap-
proach also violates the second law of thermodynamics in the
very high modulation frequency regime, since heat can flow
from the colder region to the hotter in the sample, against the
temperature gradient. It is sure that this subject is not closed
yet!
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