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In this work we discuss the way in which, in principle, the nonzero elements in the second-order susceptibility tensor are calculated in a
crystal. Group Theory predicts which one of these elements will be zero based on the symmetry of the crystal. However, the position of these
zeros in the tensor are intrinsically associated to a fixed system of reference cagséni” for a particular crystal.
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1. Introduction In the vector formalism, we can write the nonlinear

. ) ) ] _second-order polarization as
Usually, studying nonlinear optics, one finds tables which

have lists of the nonzero coefficients for the second-, third-

and even fourth-order susceptibility tensors. A classic text P(w) = Y™ o E(w) + Y oo ( E(w) ® E(w))
book example regarding this topic is Nonlinear Optics by R.
Boyd [1], where it is mentioned that the nonzero coefficients + %G eoe (E(w) QEW ®Ew))+... ()

in the tables are calculated using group theory. However,

there is no explanation there about the procedure to calcu-

late these coefficients, the author says that such procedure@§ writing the last equation in terms of the components
beyond the scope of the book and refer to the lector to more
specialized books in this subject [2,3].

Mathematically, the optical nonlinear response is ex-
pressed as a relationship between the polarizafin) and
the electric fieldE(w). In the linear case, the polarization is
simply expressed using a proportionality relation

P =xYE, + X\ E B + O BB E + ... (4)

1
17 17 1]

So the second term in the above equation will be exten-
sively discussed in this manuscript. It is the second-order
P(w) = xW(w)E(w), (1)  nonlinear susceptibility and is a third-rank tensor denoted by

: . . ) three subscriptsi”, and “k”.
where, the proportionality constant), is the first-order Pt oJ

susceptibility and it is an scalar (times the identity tensor),  In order to describe the procedure that is required to cal-
whereas the polarization and the electric field are vectors. culate the nonzero coefficients in tié€?) tensor for a given
Instead,P(w) in the nonlinear case can be modeled as &€t of symmetry operations, a revision of basic concepts is
power series of the field(w) and is writing in a short form necessary. Therefore, we present in Sec. 2 a brief review
as: of the rotation matrix and also mirror and inversion matrices,
with respect to a chosen plane and to one point, respectively.
P(w) = xM(w)E(w) Section 3 discusses the theoretical foundation of group the-
+x(2)(w)E2(w) +X(3)(w)E3(w) ... @ ory. Last part, Sec. 4,' explains the procedure to determine
the nonzero elements in(® for a particular system of ref-
The quantities(? andy® are known as the second- and erence using group theory. Furthermore, we discuss how to
third-order susceptibilities, respectively. In contrast, whenrotate a tensor a general angle around an arbitrary Cartesian
the electric field is described in a full vectorial way, then in axis of rotation, comparing the number of nonzero elements
generaly™, x(?) andx(®) are the second, third and fourth in the tensor in a rotating system of reference with a fixed
rank tensors, respectively. one. Finally, the conclusions are given.
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2. Rotation, mirror and inversion matrices a)

The standard definition of a rotation matrix in three dimen-
sions, is given by

cos¢p sing 0

R.(¢)=| —sing cos¢ 0 (5)
0 0 1

where the subscript in the matfikmeans that the axis of ro-
tation is thez direction and the quantity between parenthesis
¢, is the angle of rotation. Most of the time, this is the chosen
axis of rotation but there are some cases, where a different
axis of rotation is used. We are going to give one example of
the latter.

In general, according to the symmetry of the crystals and
in order to keep the lattice unchanged after a rotation, there
are only four possible angles (27 /3, 7/2 andx/3) and of b)
course the identity 2 The reason is that the crystal must
fill all the space with the periodic repetition of a fundamental
building block, therefore only two-, three-, four- and six-fold
axis of symmetry exist. However, in the case of molecules or
other objects, additional angles of rotation are possible [3].

For a mirror plane, it is understood a reflection using a
plane in the same way that a mirror works in real world.
Mathematically, this can be expressed in the form of a ma-
trix. For example, when the mirror plane is in the plane,
it has the form

oo=|0 -1 0 © ©) 5

The minus sign in the matrix elemefat, )22 implies a reflec-
tion trough thex axis in two dimensions [where the last row i
and last column in Eq. (6) are inexistent] and in the case of ™. b
three dimensions; it implies a reflection through theplane. ).“:7' — o

In the same way a mirror plane in thexis will have, ex- \ &x
actly the same form as the matrix shown in Eq. (6) but now /
the elemento, ), is the one negative. As the reader may e
have guessed, for a mirror plane perpendicular to:thgis
(in the planery), the elemenfo . )33 now becomes negative.

Graphically, the geometrical meaning of the mirror planes isg, 5 ra 1. Different mirror planes. ay., b) o,
shown in Fig. 1. It is worth to note that for the latter case

(Fig. 1)), there is not a mirror plane in the plane ) be- In the next section we will discuss the way in which all
cause in one side there are cubes and in the other one spherggse matrices are related to each other and with the nonzero

As a rule of thumb, there is a mirror plane if whatever thing coefficients in the susceptibility for a particular crystal or
in one side of the plane exists exactly equal in the other sidesrycture.

as an image in a mirror.

An inversion matrix, is defined as the minus of the iden-
tity matrix. Also, this is the result of the combined action of 3.  Fundamentals of group theory
the three matrices that described the mirror planes mentioned
above. Physically, at least one of the two situations must exGroup theory is a branch of mathematics, it is a general the-
ist for an object to have inversion symmetry. Either it has allory that can be applied to many situations, physics and other
the mirror planes simultaneously (see Fig. 2 a)) or there ifields of mathematics. In essence, there are three necessary
a “mirror image” directly diametrically opposed trough the properties that must be fulfilled by a set of matrices to form
origin but the individual mirror planes are not present, as dea group under a particular operation, in this case the usual
picted in Fig. 2 b). product of matrices. Therefore, the product of any two ele-

-

and ¢)o .,
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FIGURE 3. After two successive rotations of 18@8n object returns
to its original position.

FIGURA 2. Different cases where inversion is present. a) Inver-
sion is composed by three perpendicular mirror planes, each one
exist by itself. b) There is inversion but not the independent mirror
planes.

ments of the group generates also an element of the sami
group. The identity elementH) is always in the group as
well as the inverse element or the reciprocal element for
each element of the group is also in the group. For exam-
ple, if a matrixA is inside a group, must be also inside this
group its inverse element denotedAy ' in such a way that
A-AT'=E

Now we are going to discuss two particular examples of
a rotation group:Ce andCj3,. In the first case, the explicit
matrix is given by

3,

-1 0 0 FIGURE 4. Three successive rotations of £2@ill generate the
Cy=R,(m) = 0 -1 0 |, (7)  original configuration.
0 0 1

this is a rotation of 180around the:-axis. Thus, the product Position. ThereforeCs = E, which is easy to prove doing

of this element by itself generatés - C, = C2, which as directly the product of matrices. Also, from this fact we can
it is well known, two times a successive rotation of 189 ~ deduce that; is its own inverseC; = C5’ 1-_ This kind of

a full rotation of 360 and the object returns to its original rotation can be represented geometrically in two dimensions

L L L L
1 1 1 1
L L L L

FIGURE 5. Right, a two-dimensional crystal withl; symmetry. Left, a possible unit cell with a particular system of reference.
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as can be seen in Fig. 3, where the numbers 1 and 2 are ontpordinate system. When we now apply a symmetry opera-
labels to follow the rotations but both sides are indistinguish+ion to the crystal, mathematically this is described as a linear
able. transform through the relation,

A more complicated example is the groap,, here the
rotations are done by 12@nd also there is an additional ele- iik = RuRim RinX! @)
ment, there are mirror planes. Mirror planes are labeled here " wimAtm Almn

with a sigmao; (i = 1, 2, 3), which means that a reflec- \hich mixes the original coefficients. In general, this is
tion around the dotted lines generates exactly the same objeg{e way for transforming a third-rank tensor. HeRe, is
(See Fig. 4). These mirror planes are planes perpendiculgy matrix and the subscripts j and k are running from 1
to the plane of the figure and actually can be imagined as & 3 in stance of ther, y and z coordinates. However,
two-dimensional object in a plane. physics/Neumann's principle then requires:

In a similar way, if we take three tim&sg, the resultis the
object in the original position as can be seen in Fig. 4. Math-
ematically this isC3 = E, which implies thatC2 = C; . Xijk = R Rjm Rn Xtmn, ©)
All this can be verified directly doing the product of matrices
using Eq. (5) with¢ = 2n/3. For the mirror planes, two
times the same reflection brings back to the same object, th
meanss; - o; = E. Moreover, different combinations of mir-

and nowR,;, is a particular symmetry operation matrix in

the group and the tensor after the transformation must be
the same tensor which is going to be transformed, this is
. . ijk = Ximn. This procedure generates a system of equa-
ror plane products generate the remaining mirror planes ar?t(?ons which must be solved in order to get the nonzero ele-

the product of a mirror plane for a rotating matdx will . -
. ; ments in the susceptibility tensor and also as there are more
give as a result another element of this group. One can con- . . .
. : equations than variables, consistency must be checked.
struct a table with all the possible products of two elements

of this group and verify that each result will be an element of A general third rank tensor can be represented as [4]
the group.

We are not going to discuss further higher groups of sym- di11 di21  disp
metry but we are going to show how this is related to the cal- di12 dizz  diss
culation of the susceptibility tensors that describe the atomic di13  diog  diss
crystals response in nonlinear optics interactions. Therefore, d d d
the next section is devoted to this topic. — 211 f2el 023l

d = do12  daza  das2 (10)
do13  dazz  dass

4. Neumann’s principle and second rank ten- dzi1 dz21 ds3

i d d d
sor transformation 312 d322  dss2
d313  dzaz  d3sz

. . hered;;, can be understood in the following way. First
The relation between the matrices and the nonzero elements,~ "7,
. - o . .. Index ‘" is related to the external column vector and deter-
in the susceptibility tensors is given via the Neumann'’s prin-__. A ; .
ciple 2] mines a row in it, second indexj™ and the third one k

are associated with the columns and rows in the interr@l 3

“The symmetry elements of any physical property of awatrlces.
crystal must include the symmetry elements of the point Now, we can calculate the resulting susceptibility tensor
group of the crystal for a crystal with group of symmeti§/,. To avoid extra com-
plications and keep this as clear as possible, we are going to
This means that, after applying a symmetry operation betake only a two-dimensional crystal or this could be thought
longing to a particular crystal, a particular property of thisonly as the surface of the crystal. For doing this we need to
should remain the same, for instance the tensorial elemengpecify a system of coordinates, in particular a possibility is
of the susceptibility (which is a physical property) must fulfill shown in Fig. 5, where to the left an example of a crystal with
this condition. In our case, depending on the crystal we cai’; symmetry is shown and to the right there is a possible unit
apply the rotations or mirror planes or other symmetry opercell with a fixed system of coordinates is displayed.
ation belonging to the point group of the crystal to the sus-
ceptibility tensor and after these transformations, Neumann’§0r
principle implies that it must remain the same.

Therefore, to calculate the susceptibility third-rank tensor

a crystal withCy; symmetry, Eq. (9) is applied, wherg,,

is now the matrix given in Eq. (5) and the third-rank tensor is
Let’s start with a third-rank tensagy;,,,,,, Which is nothing  given by Eq. (10). Thus, after contracting the matrices with

else that a set of numbers (coefficients) provided on a givethe tensor to the right side of the Eq. (9) gives

Rev. Mex. Fis. 62 (2016) 5-13



ABOUT THE CALCULATION OF THE SECOND-ORDER SUSCEPTIBILITY(2) TENSORIAL ELEMENTS FOR CRYSTALS. .. 9

di1n dizr dizg —diin —di21  diz

di12 diza dis2 —di12  —dig2  diz

di1s  digs  diss di1z disg  —diss

do11 doo1  dozy —do1n  —doo1  daz1

do12  dago  das2 = —da12  —doa2  dazo , (11)
do13  daoz  dass da13  dpoz  —das3

ds11 ds21 ds3i dsi1 dga1  —dssi

ds12 dzza  ds32 d312  dgzz  —dss2

d313  dzaz  ds33 —d313 —dz23  d333

this system of equations shown above is very easy but in general could be more complicated. It is straightforward to think that
for an element to be the same as its negative implies that it must be zero. Therefore after solving it the final tensor is

0 0 d131
0 0  diz
di13 diogs 0
0 0 dann
X P(Cy) = 0 0 doso , (12)
do1z daaz O
dsin dsar O
dsi2 ds2 O
0 0 ds333

which, as mentioned before, it is the susceptibility third-rank tensor for a crystallitymmetry and the subscriptmeans
that thez direction is used as the twofold rotation axis. However, this form of tensor is different when compared with the one
given in general group theory literatueeg Powell's book [4], which is reproduced below:

dior 0 dis2
dair 0 dagy
NP(Cr) = 0 dae O ; (13)
dazi 0 dass
0 dsax O
dsor 0 dss2
0 dsszo 0

Clearly, this tensor is totally different to the one shown in Eq. (12) but for the number of nonzero tensorial elements.
Additionally, Powell assumes symmetry along the tensor diagonal.diffezencebetween both tensors has its origin in the
different system of reference chosen to calculate the nonzero elements according to the symmetry of the crystal in that systenr
In our case, the symmetry group is the same as in Powell’s but the latter uses a rotation apeaxishélence, the matrix of
rotation used by Powell is the following

~1.0 0
Co=Rym=[ 0 1 0 |. (14)
0 0 -1

After using this matrix with Eq. (9), yields

Rev. Mex. Fis. 62 (2016) 5-13
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dii1 dizi diz —di1n dizn —diz

di12 dize  di32 diiz  —dia2  dize

di13s  dizz  diss —di1s  dizz  —dis3

do11  do21 dast do11 —da21  dosi

do12  daga  daso = —do12  doz2  —da3o , (15)
do13  daoz  dass do13  —daos  dass

ds11 ds21 ds3i —ds1n ds21 —ds3i

ds12  dsza  ds32 d312  —dsa2  dss2

d313  dz2z  dass —dziz  dszz  —das3

which immediately leads to Eq. (13), reproduced again below:

0 dizn O
diiz 0 dis2
0 diaz O
doin 0 das
X (Co) = 0 dp O : (16)
da1z3 0 doass
0 dza1 O
dsiz2 0 ds32
0 dzz O

where subscripy means that thg direction is used as the twofold rotation axis.

We now move our discussion around g, symmetry group and explain how one can get both possibilities enlisted in
the tables from classic books [1,2]. Moreover, we will show how to obtain from one configuration the other one and a general
disposition of the nonzero elements in the tensor.

In this case, the rotation matrix will be defined with the rotation axis aradaxis and from Eq. (5), we get

1L V3
_r () = i 17
0 0 1

Now, we are going to consider the configuration given in Fig. 6, where an objecOyitsymmetry is sketched. Of course,
there are also crystals with this symmetry but just for pedagogical illustration we are going to use this simple two-dimensional
object.

In this case, there is a mirror plane over thaxis, the matrix that described it is given by

1 0 0
owz=| 0 =1 0 (18)
0 0 1

The others mirror planes, labeled ando!/, can be obtained by applying a rotation of°6@lockwise and anticlockwise
direction) to this “principal” mirror plane. Using this mirror plane matrix Eq. (18) with Eq. (9) and the general tensor in
Eq. (10), yields

din dizi dizt diin —diz1  dis

dii2 diza  dis2 —diiz  dizz  —diz

di1z  digz  diss di1z  —di2z  diss

do11 do21 dast —do11  do21  —da3i

do12  daga  das2 = doi2  —daza  daso , (19)
do13  do2z  dass —do13  daaz  —das3

d311  dz21  dssi d31n  —dszor  —ds3:

d312  dz2z  dssz2 —dzi2  dzz2  —daz2

d313  dsgz  d333 d313  —dso3  dass

Rev. Mex. Fis. 62 (2016) 5-13
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which is a trivial system of equations with solution
diin 0 diz
diiz 0 diss
- 0 do1 O
d;= doi2 0 das2 ; (20)
0 dys O
dsin 0 dsz;
0 dz2 O
dsi3 0 dss3
and again, using Eq. (9) but now with thg, matrix given in Eq. (17) and this “intermediate” tensor, yields
diin 0 diz
0 diza O
diiz 0 diss
0  doo 0
d212 0 das2
dzin 0 dsz
0 d32 O
dzi3 0 dss3
_%(dlll + 3[d122 + da12 + da21]) ?(—Chn + di22 — 3do12 + do21]) i(d131 + 3d232)
?(*dlll + dy22 + d212 — 3da21) %(*3d111 — d122 + 3[d212 + da21]) %(dwl — da32)
1 (d113 + 3das3) ?(dnz& — da23) —3d133
g(*dnl —3diz + do1a + dan1)  §(—3di11 4 3[diz2 + do1o] — daan) %(dlb‘l — da32)
= 1(—3d111 + 3dy122 — d212 + 3d221) —§(3d111 + dig2 + do12 + da21)  (3diz1 + das2) (21)
@(dnz’, — da23) 1(3d113 + daa3) —§d133
1(ds11 + 3dsa2) @(3(1311 —ds22)  —3dsst
%(d:m —dsz2)  1(3ds11 + d3a2) —§d311
—1d313 *@dsw d333
The above system of equations is harder to solve than the
one in Eq. (19), still it has a solution and it is consistent with
all the equations (there are more equations that variables).
When solved, the final tensor has the form: 22 _23222 d1031
di11 0 d131 _d 222 0 0
0 —din O 131
d113 0 0 —d222 0 0
0 —din 0 NP (Cs) = 0 dao diz (23)
NP(Cs0,0,) = —din 0 di (22) 0  diz;n O
0 d113 0 d311 0 0
ds3i1 0 0 0 dsyy O
0 dsin O 0 0 dsss
0 0 dss3

Again, this tensor is different to the one given by Powell [4], = The discrepancy occurs because the system of reference
which is reproduced below (please note that in the book ofised to derive the tensor has not been defingdasi. Here,
Powell, the coefficient “2” multiplying the elements;> and  in this paper, it is chosen thg-axis as a principal mirror
X121 IS wrong): plane, as illustrated in Fig. 7, where the matrix is given by

Rev. Mex. Fis. 62 (2016) 5-13
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\
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FIGURE 6. Object withC'3, symmetry, in a fixed system of coor-

dinates.o,, is the principal mirror plane ir-axis.

-1.0 0
o= 0 1 0
0 0 1

v Oy

dinates.o, is the principal mirror plane ig-axis.

FIGURE 7. Object withCs,, symmetry, in a fixed system of coor-

above, together with Eq. (9), yields the correct tensor for the
system of reference shown in Fig. 7:

(24)

(As a side comment we mention that in solid state physics
and especially X-ray diffraction each crystallographic group
and its atoms are described in a given coordinate system, and<>(2) (¢, | 0,) =
afterwards the symmetry elements are deduced in this prede- '

fined coordinate system, seay Ref. 5).

This time, using this matrix Eq. (24) and the rotation
matrix given in Eq. (17) as well as the procedure described

0
—da22
di13

—da22
0
0

ds11
0
0

—do22
0
0

0
dago
di13

0

d311
0

di31
0

0

0

di31
0

0
0

d333

(25)

The tensor given in Eq. (22) and the last one obtained in Eq. (25) are related and as mentioned before the position of
the nonzero elements in the tensor is going to change in accordance with the system of reference used to derive the nonzero
independent elements in the tensor in agreement with group theory. To show this, we are going to use Eq. (8) again and
transform the tensor given by Eq. (22) to a general rotating frame using the matrix from Eq. (5). Thus, after contracting the

tensor, yields

NP (Cs,R.(9))

d111 COS(3¢)
d111 SiIl(3¢)
dl 13

d111 SIH(3¢)
—d111 COS(?)(ZS)
0

d311
0

0

d111 5111(3(;5)
—d111 COS(S(i))
0

—d111 COS(3¢)
—d111 sin(3¢)
di13

0 0

dsin 0
0 dsss

di31
0
0

0

dy31
0

(26)

Here, it is clear that the number of nonzero elements is bigger than before but still the number of independent elements
remains the same. Moreover, wheén= 0 the original tensor is recovered [Eq. (22)] and for the cas¢ of 7/2 the tensor
given in Eqg. (25) will be obtained only changidgy; — d222. Therefore, somehow the tensor still has some “memory” of the
fixed system of reference used to calculate the nonzero elements due to its intrinsic symmetry.

Rev. Mex. Fis. 62 (2016) 5-13
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For additional examples and discussion regarding the inwhere,R is a matrix of the symmetry group for the crystal
teraction of these tensors with the electromagnetic fields, thender studyd is the general third-rank tensor from Eq. (10)
interested reader can consult Refs. 6 and 7. and “Transpose” command interchange the indices with re-
spect to the original ord€fl,2,3}.

Now, let's explain how Eq. (A1) works. The procedure is
a little bit complicated because the restriction in the contrac-
The number of nonzero elements in a tensor associate to ti@n of the indices. First, we start from Eq. (8) again
susceptibility in a crystal strongly depends on the original ,
system of reference in which the symmetry elements were Sijk = RitRjm Rin Sty (A.2)

defined. However, even if the relative position of the nonzero dt ing the last mat d tracti Iso th
tensor elements change, the number of independent elemejiﬂ ransposing the last mati;,, and contracting also the

remains the same under any transformation by a rotation m rstone, yields
trix defined by an arbitrary an
y y angle Sijk = RiRjm TransposgRi,]Smn

5. Conclusions

Appendix = Rjm R Siyn Bk = RjmSipn - (A3)
The contraction of tensors can be done easily using a com- Aftér that, we can transpose the tensor, second imdex
mercial software as for exampMathematic®. Still, this  © the first place and contract with the last matrix, then one

is a little tricky because, this software only contracts the lastVill have

index from the tensor to the left with the first index on the ,,

tensor to the right, from Mathematica'’s help and documenta- Sijk = RjmTransposgs;,,, .., {2, 1, 3}]

tion: = RjmSmix = Sjix - (A.4)
“a.b gives an explicit result whem andb are lists with
appropriate dimensions. It contracts the last index in

with the first index inb.”

Therefore, for doing the transformation given by Eq. (8), Si;x = Transposgs”,., {2,1,3}] = S, (A5)
the command used is: J J

Finally, we need to transpose back the tenSff, inter-
changing again indices ong)@nd two ¢):

The last step, is just to solve the system of equations and find
the zeros or relations between the tensor elements. This pro-
cedure should be done again for every matrix in the symmetry
group for the crystal under analysis.

FullSimplify [Transpos@R.Transpose

[R.d.TransportéR], {2,1,3}], {2, 1, 3}}} (A1)
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