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The Einstein nanocrystal
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We study the simplest possible model of nanocrystal consisting in a simple cubic lattice with a small number of\atoms ( — 10°),

where each atom is linked to its nearest neighbor by a quantum harmonic potential. Some properties (entropy, temperature, specific heat)
of the nanocrystal are calculated numerically but exactly within the framework of the microcanonical ensemble. We find that the presence
of a surface in the nanocrystal modifies the thermostatistic properties to a greater extent than the small number of atoms in the system.
The specific hea€’, behaves similarly to the Einstein solid, with an asymptotic value for high temperatures that differs from that of the
Dulong-Petit law by a term of the order (N;l/?’ and that can be explained easily in terms of the surface. The entropy is non-additive,

but this is due to the presence of the surface and we show that the additivity is recovered in the thermodynamic limit. Finally, we find that,
when calculations follow the canonical ensemble, results differ little for small systdms=£ 27) and are inexistent for larger systems

(N4 = 1000).
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Introduction 1. Model

Due to the current boom of physics at a nanoscale, in thighe Einstein solid, a well-known example for any advanced
work we study a simple nanocrystal model inspired in theyndergraduate student [1-4], is the starting point of our model.
well-known Einstein model of solids [1-4]. The use of highly we intend to model a nanocrystak. a crystal formed by a
idealized models is a common practice in physics becauseew tens or hundreds of atoms. Therefore, we assume it is a
even thOUgh they do not allow for precise quantitative prediCSimp|e cubic lattice witm; atoms per side, Spaced by a dis-
tions, their SImp'lClty enables a clear qualitative UnderStandtanceaO_ Each atom is linked to its nearest neighbors through
ing of a problem. The nanocrystal model proposed can be ang quantum “spring” (oscillator) -see Fig. 1. It is assumed that
alyzed exactly, thus showing clearly which factors contributeg|| the oscillators have the same characteristic frequegcy

to its differing behavior from that of the macroscopic solid. Then, the total number of atom¥ 4, the volumeV of the

In a previous paper [5] we analyzed the Einstein solid anchanocrystal and the number of oscillatd¥sare:
the two-level system with few elements (10-100); here, we

want to analyze the effect of a surface. Therefore, we first Ny =n? (1)
need to compare the few-particle effect and the surface ef- o
fect. Also, certain conceptual concerns should be taken into v=(ng— 1)a(3) (1b)

account, such as the additivity of the entropy and the equiv-
alence between results obtained with the microcanonical and
canonical ensembles. It is known that both ensembles lead
to the same results in the thermodynamic limit, but not when It should be noted that the inner and surface atoms have
dealing with finite systems. An introduction to this issue cana different number of neighbors, so that the number of quan-
be found in [6] and suitable teaching examples in Ref. 5. tum oscillators is not simpl$.V 4. A little thought shows that
This article continues in Sec. 2, which introduces theEd. (1c) gives the right number of oscillators. When dealing
model and the equations that will be used throughout thigvith the Einstein solid, textbooks are interested in the ther-
paper. Section 3 presents the results: first we compare th”godynamic limit and, therefore, the surface is not considered
few-particle and surface effects; then, we show how the speand the number of oscillators is simgw 4.
cific heat converges to the value of the thermodynamic limit  The calculations will follow the microcanonical ensem-
when the nanocrystal size is increased; the additivity of théle. The reason for this is that the nanocrystal is considered
entropy is dealt with next; and finally, we show how the re-to be isolated and its energy constant. Using the canonical
sults of the microcanonical ensemble differ from those of theensemble, the system would be connected to a reservoir at a
canonical ensemble. Last, Sec. 4 summarizes the results. constant temperature. However, it should be noted that, given

N =3(nj —nj) (1c)
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For this reason it is necessary to calculate the factorial ex-

= actly. On the other side, a central result of quantum physics
‘ is usually forgotten and the energy of a system of oscilla-
‘ } - ; tors is taken as a continuous variable. Such assumption is
\ W \ incorrect since it is known since the early twentieth century
/ ' ‘ that the energy of an oscillator is quantized, that is, there are
(. § M, M +1,...etc. energy quantd being an integer given by
= - M = E/hyy. Strictly speaking one should deal with finite
differences, the®S — AS = S(N,M + 1) — S(N, M)y
OF — AE = (M + 1) — M = 1. Consequently, the tem-
n, atoms perature T and the specific hed} need to be computed as
follows:
T = (0S/0F)™' — T(N, M)
<>
a, =[S(N,M +1) — S(N,M)]~* (3a)
FIGURE 1. The Einstein nanocrystal analyzed in this article is a C, = (8E/8T)—1 — Cy(N, M)
simple cubic structure witm — L atoms per side (in this case,
nz = 3). The spacing between atomsds. Atoms interact with =[T(N,M +1) - T(N,M)]* (3b)

each other through a quantum harmonic potential with a frequency . .
vo, which is the same for all oscillators. The total number of atoms ~ Note that (3a) and (3b) are not approximations, but rep-
is Na = n} while the number of oscillators & = 3(n? — n2). resent reality; only when working with large numbers idr

The fact that surface atoms are associated to fewer oscillators thathe discrete nature of energy can be disregarded, taking en-
the inner atoms, have measurable consequences on the thermophyargy as a continuous variable and using derivatives.
ical properties of the crystal. One improvement of the model would be to consider dif-
ferent frequencies for the oscillators on the surface and for
the size of the nanocrystal, such interaction would get thengse inside the crystal. This assumption certainly makes
system continuously out of equilibrium. Let us imagine thesense since it remarks the difference between the surface and
nanocrystal is in contact with a gas at room temperaturefne volume inside the crytal; however this modified model
each impact of a gas molecule with the few-hundred-atomannot be studied in the microcanonical ensemble. Suppose
nanocrystal is a major event that would keep the system pefnat the surface oscillator frequency 6. Therefore two
manently out of equilibrium. This is why the proper way 10 kinds of energy quanta should be considered:tHequanta
study the nanocrystal is within Fhe m|_crocanon|cal ensembleyiip energyhy’ and theM ones with energyivg. In the mi-
The frequency of each oscillator ig, thus, the entropy  crgcanonical formalism the system is isolated afiind M/’
5 of a cubic crystal withV oscillators and a total energy E are constant, consequently the volume and surface tempera-
energy is [1,3,4]: tures would be different but the system cannot reach thermal
S(N.E) =k equilibrium ;ince the energy qL_lanta of the surface os_cil!ators
’ B are not equivalent to those inside the crystal. If one is inter-
x In[(N =1+ E/hip)! /(N — D)I(E/hp))]  (2) ested in analyzing this modified model, the canonical formal-
ism has to be used: the nanocrystal is in contact with a heat
Notice that §/huy ) is the total number of energy quanta reservoir that provides energy quanta of both frequencies and
and it is an integef/. A detailed derivation of Eq. (2) is a the surface and the inside volume can reach the same temper-
standard topic in any statistical mechanics course. The usuature.
trick is to evaluate how many different ways there are to put
M balls in N boxes and the problem can be reduced to calcu2 Results
late the number of permutations d¥ (— 1 + M) objects (/ '
balls andV. — 1 rods) taking into account that balls (rods) 2 1. Few particle (FP) and finite size (FS) effects
are indistinguishable. The usual treatment of the problem
in textbooks consider&V = 3N,4, uses Stirling’s approx- We must distinguish now between two types of effects oc-
imation with factorials, and then applies the usual thermo-curring when doing statistical mechanics with few elements.
dynamic equations for temperature/{’ = 0S/0F) and We analyzed a few-particle model in Ref. 5 without taking
specific heat @, = OFE/0T). However, a previous pa- into account the surface, so that the number of oscillators
per [5] showed that, when working with few particles, fac- was considered to be simply three times the number of atoms
torials must be treated exactly and derivatives replaced byN = 3N,4). The difference between these results and those
finite differences to account for the discrete nature of energyobtained in the thermodynamic limit are due exclusively to
On one side, Stirling’s approximation is valid fo¥ large  the small number of particles in the system, so accordingly
but it is not obvious that it is also right for small systems. we will call this the few-particle (FP) effect. Now that we are
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FIGURE 2. This figure shows how the nanocrystal is affected by having few particles (FP) -figures (a) and (b)- and a finite size (FS) including
the small number of particles and the surface -figures (c) and (d). The entropy -(a) and (c)- and the specific heat -(b) and (d)- have been
calculated exactly, according to the equations of the microcanonical ensemble, and the relative difference between those results and the
thermodynamic limit values have been evaluated for the FP and FS cases. Results are expressed in relation to the energyf patgtom (

In the FP case, the exact results coincide with the thermodynamic values for the large system10), except at very low energies.
Conversely, in the FS case, the difference with the thermodynamic values is significant even for the large system. This demonstrates that the
presence of the surface affects the system properties more than the small number of particles.

considering the surface, the number of oscillators must be Once the entropieS?? and S5 are known, it is possi-
carefully recorded and, for this, the value firis that given  ble to find the temperaturés”” and 7%, and the specific
by Eqg. (1c). Thus, we can speak of the finite-size (FS) effectheatsC* andCI'S using Egs. (3a) and (3b). It is interest-
which includes the few-particle the surface effects. The firsing to compare these results to those of the classical Einstein
guestion that arises is, then, which effect is more relevantsolid in the thermodynamic limit [1-4]. According to the no-
that due to the few particles or the one due to the presence tdition used in this article]** andC*" turn out to be:
a surface?

To answer this question, we evaluated numerically but ex- .
actly, i.e. without any approximations, the entropy given by T"(3N4, E) = vy [ln <1 + 3NAhVo>]

Eq. (2). In one case, we considdr = 3N4 and obtain an B E
entropyS¥'” that only includes the few-particle effect. In the k 2\2 3N B
other case, the number of oscillatdysis taken from Eq. (1c) C!M™(3N4, E) = 373 (h) (1 + %0) (5)
and we obtain an entropgy’”® that includes both the few par- A\
ticles and the surface. The difference between both entropies 3Nahvo\ 1
gives the surface effect. The reference value is the entropy X {ln (1 + E)} (6)
Sth of the classical Einstein solid in the thermodynamic limit
[1.4]:
oh Now, we can define the relative effect for each of the ther-
S (3Na, E) = 3NakpIn |1+ 3N shvo modynamic quantities. 1K represents the quantity of inter-
est(S, T, C,), the relative effect associated with the few parti-
+ EkB In [1 + ?’NAhVO} 4) cles AX*")and that associated with the finite sizeX **)
hug E can be defined as follows:
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AXTP =100« (XTP — xthy/ xth (7a) ’ '
AXFS =100 (XF5 — Xy /Xt (7b) e o

Thus, it is clear which is the impact due to the small num- |
ber of particles and that due to the surface. The results can bt | RS Ll |
seen in Fig. 2. -

Figure 2a shows the difference in entropy for two sizes
of the few-particle systemn( = 3 andn; = 10). Con- e firs”
sistently with the findings of [5], there is no discernible dif- i 7 - fﬁfi";’gy"“mfc it |
ference between the exact value and that of the thermody- | =l =5
namic limit for the system with 1000 atoms. On the con- | e
trary, Fig. 2b considers the surface and its effect is consider-
able in the small system\(S© ~ 22%) as well as in the & ¢ g, "
large systemAS*S ~ 5%). This demonstrates the impact 9 ‘
of the presence of the surface in the thermodynamics of the S~
nanocrystal. S,

The question arises of how this effect is shown in exper- 25l S _
imentally observable quantities. The answer is in Figs. 2c o
and 2d. Figure 2c shows the impact on the specific heat due tc i S
the few particles effect. For the system with 1000 atoms, the
specific heat is not different from the thermodynamic value.
On the contrary, when considering the surface -Fig. 2d-, the iy
specific heat is lowerXCFS ~ 10%) than the thermody- 15k x
namic value, even for the larger system. For the system with
ny, = 3, the difference between the specific heat and the ther-
modynamic value is even greatex('/> ~ 30%). 15 5 = = o s

In conclusion, the surface plays a much more important g
role that the finite number of particles in the thermophysical
properties of the nanocrystal. FIGURE 3. (a) The specific heat of the nanocrystal, evaluated ex-

One may ask whether it makes sense to evaluate the progetly within the microcanonical ensemble, is plotted as a function
erties of a system using the exact approach used in this worlef the temperature fqr the plifferent sizes. The curve corresponding
The answer is: it depends on the size of the system undédp the thermodynamic limit has also been included fo_r rgferem_:e.
study. For atomic clusters with tens of atoms, the calculatior]t ¢2" b€ observed that the nanocrystal behaves qualitatively sim-

. . . .__llarly to the solid and that the specific heat reaches an asymptotic
should be made exactly with the microcanonical formalism

. . . . .value approaching the Dulong-Petit law. (b) The asymptotic value
as there is a noticeable difference with the thermodynamig o szgcific heagt is shown ﬁl} termsN';l(/B). tis cleyar Ft)hat the

values. Conversely, if one has a system with thousands Qfpecific heat converges to the value of the Dulong-Petit law in the
atoms,. the conventional results obtained with the canonicghermodynamic limit. Its special relation witN 4 is explained in
formalism can be used. the text.

= 15 20 -
-~
$)

Cy/ kgN,
%3
I
|

2.2. Specific heat scaling This scaling is caused by the presence of the surface in

the crystal. In fact, Egs. (1a) and (1c) give that the num-
Figure 3a illustrates the atomic specific heat of the nanocrys; y as. (1a) (1) g :

. ) ; ber of oscillators can be written @§/NA = 3 — 3N, /%,
tal as a function of temperature for the different sizes, and ItI'he surface atoms are associated with fewer oscillators than

the nanocrystal behavior is qualitatively similar to that of thed
macroscopic solid: with high temperatures, the specific heat
reaches a constant value approaching the Dulong-Petit law.
It should be highlighted that, in the units used in this article,2.3. Non-additivity of the entropy

C,/N4 goes to 3 for the solid in the thermodynamic limit.

Quantitatively, the specific heat of the nanocrystal is lowerThe entropy in the thermodynamic limit is an extensive prop-

than that of the solid. It is interesting to illustrate the asymp-erty; however, this may not be so at a microscopic scale
totic value reached by th@, of the nanocrystal as a function since the range of interactions is comparable to the size of
of its size. As seenin Fig. 3b, it can be inferred the followingthe system. To verify if the entropy is additive or not in our

ifference in the specific heat of the solid and the nanocrystal.

scaling relationship: nanocrystal model, we carried out the following numeric ex-
1/3 periment -see Fig. 4a-: we took a nanocrygtabdf side2ny,
Cy/Na=3-3Ny (8) (atoms per side) and divided into 8 nanocrystalsf siden, .
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FIGURE 5. The specific heat is shown in relation to the energy per
atom for a nanocrystal with;, = 3. It has been calculated exactly

in the microcanonical (superscript mic) and canonical (superscript
can) ensembles, for the FP and FS cases. As it can be seen, both
ensembles lead to similar results, except at low energies. The pres-
ence of the surface has a much greater impact than the ensemble
chosen for the calculations.

1000

AS/ky

500

L larger surface and, therefore, increases the number of surface
% 20 a0 60 50 100 atoms with fewer oscillators associated than the inner atoms.

o . . . 2.4. Microcanonical and canonical ensembles
FIGURE 4. (a) This figure illustrates the numerical experiment per-

formed to verify the additivity of the entropy: a cube of sitle;, is The calculations performed so far have followed the mi-

partitioned into 8 small cubes of side nL. The question is whether .., o nical ensemble. As stated above, this is the proper
the addition of the entropies of the small cubes is equal to the en'method for analvzing svstems with a few hundred atoms. If
tropy of the large cube. (b) This shows the difference in entropy yzing Sy '

between the large cube and the 8 small ones. It can be seen that m’aesystem of this size is connected to an energy r.e_se_rv0|r, their
difference increases %2/3_ Clearly, the entropy is non-additive, interaction would get the nanocrystal out of equilibrium. Be-

which can be explained by the effect of the surface. Besides, theSides, itis usually claimed in any statistical mechanics course
quantity to take into account is the entropy per atom and, in thatthat the results obtained using either the canonical or micro-
case, the difference of entropies is expreslsfgjd“, anditiscon-  canonical ensembles coincide in the thermodynamic limit.

sequently zero in the thermodynamic limit. The question that arises is, then, whether this also happens
o o when working with very few particles.
Similarly, the energy quanta/ of the original nanocrystal In our notation, Z¥'S is the partition function of the

were distributed evenly among the 8 new nanocrystals. Thﬁanocrystal of sider;, and with 3¢3 — n2) oscillators,
question is whether the initial and final entropies are equalyhereasz?” is the partition function of a set ofid oscil-
and the answer is no. We find thie¢3) > 85(A). Figure 4b  |ators. The Einstein temperature is defined@s= hvy/kp
shows the difference in entrops’ = S(B) — 85(A) @@  and considering that the partition functienof a quantum
function of the size of the system. It is clear that the differ-ggcillator is: z — (1 — e ©/T)~1 itis a simple exercise of
ence increases a; *. Naturally, what makes sense is the staistical mechanics to obtaiff’” andZ*S, and from these
entropy per atom and, therefor®$/N, ~ N21/3 reaches to compute the specific heats:

zero in the thermodynamic limit.

2 _
Fitting numerically the straight line shown in Fig. 5, re- cevr —3 <9> e O (10)

sults in a slope of approximately 12 which can be understood kpNa T) (1—e®/T)2

easily. The difference in the number of oscillatér€, . be- (AP 1 o\ 2 _e/T

tween the large cube and the 8 small ones is: v =3 ) (2) £ (112)

kiBNA nr T (1—69/T)2
_ 3 2\\1 _ 3 2
ONose = [3((2n2)" = (2n2)"))] = 8[3((n2)” — (n2)")] In Egs. (8) and (9), the superscriptan’ indicates that

=12n2 = 12Nf/3 9 the specific heats are obtained using the canonical ensemble

-in contrast to our work so far following the microcanonical
The non-additivity of entropy is generated by the parti-ensemble. By comparing (8) and (9), it can be seen that the
tion of the initial cube into 8 smaller cubes, which creates asurface introduces a correctionbfn, to the specific heat.
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Do the specific heat values computed with both ensemthe difference is~30% in the first case and10% in the sec-
bles coincide? The answer is in Fig. 5 and it shows a verynd. This means that the presence of the surface has a greater
good agreement between both results, even for the small sysnpact than doing statistical mechanics with few particles.
tem (o, = 3). The specific heats graphed have been calcu- It is clear for what sizes one has to use the exact micro-
lated within the microcanonical (superscript mic) and canoni-canonical calculation and when the usual thermodynamic re-
cal (superscriptan) ensembles, for the FP and FS cases. Thesults can be employed. For systems formed by dozens of par-
energy per atomN//N 4), which is the natural variable in the ticles, itis justified to proceed in the meticulous way followed
microcanonical ensemble, was used as independent variable.this article. For systems with several thousand atoms, usual
For the case of the specific heats (8) and (9), Eq. (6) allowthermodynamic results are good enough.
to replace the temperature with the energy per atom. For the The entropy of the nanocrystal is non-additive, apparently
case ofny = 10, there is no discernible difference between contrary to a basic principle of thermodynamics. However,
the results from the canonical and microcanonical ensemblésis is not so; the non-additivity can be explained by the pres-
and has, therefore, not been illustrated. ence of the surface, and it can be clearly shown that it is re-

covered in the thermodynamic limit.

Finally, our work confirms that the results obtained in

3. Conclusions the canonical and microcanonical ensembles are equal for

systems withV, > 103. This is relevant because calcu-
As in Ref. 5, the first point to highlight is the strength of the lations are always easier in the canonical ensemble. Thus,
results in statistical mechanics: even with systems formed bpeople working with nano-systems can use the calculation
27 elements, the thermostatistical properties are not essetechniques of the canonical ensemble even when the problem
tially different from the results found in the thermodynamic under analysis is isolated and calls for the microcanonical en-
limit. In this sense, the usual approximations of statisticalsemble.
physics are reassuring; one may trust them. In a nutshell: one can use statistical mechanics even for

Related to this point, the surface is clearly important forsystems with tens of particles but should be aware of the ef-
the properties of the studied systems. For the system witfects of the surface.

27 atoms, when there is no consideration for the surface, the Financial support from Universidad Nacional de Cuyo
specific heat differs by approximately 1% from the thermo-through Proyecto SECTyP 06/M072 is acknowledged. One
dynamic value, while there is no difference for the systemof the authors (ENM) thanks Diego Molina for helping in the
with 1000 atoms. However, when the surface is consideredast stage of this project.
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