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We study the simplest possible model of nanocrystal consisting in a simple cubic lattice with a small number of atoms (NA ∼ 10 − 103),
where each atom is linked to its nearest neighbor by a quantum harmonic potential. Some properties (entropy, temperature, specific heat)
of the nanocrystal are calculated numerically but exactly within the framework of the microcanonical ensemble. We find that the presence
of a surface in the nanocrystal modifies the thermostatistic properties to a greater extent than the small number of atoms in the system.
The specific heatCv behaves similarly to the Einstein solid, with an asymptotic value for high temperatures that differs from that of the
Dulong-Petit law by a term of the order ofN

−1/3
A and that can be explained easily in terms of the surface. The entropy is non-additive,

but this is due to the presence of the surface and we show that the additivity is recovered in the thermodynamic limit. Finally, we find that,
when calculations follow the canonical ensemble, results differ little for small systems (NA = 27) and are inexistent for larger systems
(NA = 1000).
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Introduction

Due to the current boom of physics at a nanoscale, in this
work we study a simple nanocrystal model inspired in the
well-known Einstein model of solids [1-4]. The use of highly
idealized models is a common practice in physics because,
even though they do not allow for precise quantitative predic-
tions, their simplicity enables a clear qualitative understand-
ing of a problem. The nanocrystal model proposed can be an-
alyzed exactly, thus showing clearly which factors contribute
to its differing behavior from that of the macroscopic solid.
In a previous paper [5] we analyzed the Einstein solid and
the two-level system with few elements (10-100); here, we
want to analyze the effect of a surface. Therefore, we first
need to compare the few-particle effect and the surface ef-
fect. Also, certain conceptual concerns should be taken into
account, such as the additivity of the entropy and the equiv-
alence between results obtained with the microcanonical and
canonical ensembles. It is known that both ensembles lead
to the same results in the thermodynamic limit, but not when
dealing with finite systems. An introduction to this issue can
be found in [6] and suitable teaching examples in Ref. 5.

This article continues in Sec. 2, which introduces the
model and the equations that will be used throughout this
paper. Section 3 presents the results: first we compare the
few-particle and surface effects; then, we show how the spe-
cific heat converges to the value of the thermodynamic limit
when the nanocrystal size is increased; the additivity of the
entropy is dealt with next; and finally, we show how the re-
sults of the microcanonical ensemble differ from those of the
canonical ensemble. Last, Sec. 4 summarizes the results.

1. Model

The Einstein solid, a well-known example for any advanced
undergraduate student [1-4], is the starting point of our model.
We intend to model a nanocrystal,i.e. a crystal formed by a
few tens or hundreds of atoms. Therefore, we assume it is a
simple cubic lattice withnL atoms per side, spaced by a dis-
tancea0. Each atom is linked to its nearest neighbors through
a quantum “spring” (oscillator) -see Fig. 1. It is assumed that
all the oscillators have the same characteristic frequencyν0.
Then, the total number of atomsNA, the volumeV of the
nanocrystal and the number of oscillatorsN are:

NA = n3
L (1a)

v = (nL − 1)a3
0 (1b)

N = 3(n3
L − n2

L) (1c)

It should be noted that the inner and surface atoms have
a different number of neighbors, so that the number of quan-
tum oscillators is not simply3NA. A little thought shows that
Eq. (1c) gives the right number of oscillators. When dealing
with the Einstein solid, textbooks are interested in the ther-
modynamic limit and, therefore, the surface is not considered
and the number of oscillators is simply3NA.

The calculations will follow the microcanonical ensem-
ble. The reason for this is that the nanocrystal is considered
to be isolated and its energy constant. Using the canonical
ensemble, the system would be connected to a reservoir at a
constant temperature. However, it should be noted that, given
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FIGURE 1. The Einstein nanocrystal analyzed in this article is a
simple cubic structure withn − L atoms per side (in this case,
nL = 3). The spacing between atoms isa0. Atoms interact with
each other through a quantum harmonic potential with a frequency
ν0, which is the same for all oscillators. The total number of atoms
is NA = n3

L while the number of oscillators isN = 3(n3
L − n2

L).
The fact that surface atoms are associated to fewer oscillators than
the inner atoms, have measurable consequences on the thermophys-
ical properties of the crystal.

the size of the nanocrystal, such interaction would get the
system continuously out of equilibrium. Let us imagine the
nanocrystal is in contact with a gas at room temperature:
each impact of a gas molecule with the few-hundred-atom
nanocrystal is a major event that would keep the system per-
manently out of equilibrium. This is why the proper way to
study the nanocrystal is within the microcanonical ensemble.

The frequency of each oscillator isν0, thus, the entropy
S of a cubic crystal withN oscillators and a total energy E
energy is [1,3,4]:

S(N, E) = kB

× ln[(N − 1 + E/hν0)!/((N − 1)!(E/hν0)!)] (2)

Notice that (E/hν0 ) is the total number of energy quanta
and it is an integerM . A detailed derivation of Eq. (2) is a
standard topic in any statistical mechanics course. The usual
trick is to evaluate how many different ways there are to put
M balls inN boxes and the problem can be reduced to calcu-
late the number of permutations of (N − 1 + M ) objects (M
balls andN − 1 rods) taking into account that balls (rods)
are indistinguishable. The usual treatment of the problem
in textbooks considersN = 3NA, uses Stirling’s approx-
imation with factorials, and then applies the usual thermo-
dynamic equations for temperature (1/T = ∂S/∂E) and
specific heat (Cv = ∂E/∂T ). However, a previous pa-
per [5] showed that, when working with few particles, fac-
torials must be treated exactly and derivatives replaced by
finite differences to account for the discrete nature of energy.
On one side, Stirling’s approximation is valid forN large
but it is not obvious that it is also right for small systems.

For this reason it is necessary to calculate the factorial ex-
actly. On the other side, a central result of quantum physics
is usually forgotten and the energy of a system of oscilla-
tors is taken as a continuous variable. Such assumption is
incorrect since it is known since the early twentieth century
that the energy of an oscillator is quantized, that is, there are
M, M +1,. . . etc. energy quantaM being an integer given by
M = E/hν0. Strictly speaking one should deal with finite
differences, then∂S → ∆S = S(N, M + 1) − S(N,M) y
∂E → ∆E = (M + 1) −M = 1. Consequently, the tem-
perature T and the specific heatCv need to be computed as
follows:

T = (∂S/∂E)−1 → T (N, M)

= [S(N,M + 1)− S(N, M)]−1 (3a)

Cv = (∂E/∂T )−1 → Cv(N, M)

= [T (N, M + 1)− T (N,M)]−1 (3b)

Note that (3a) and (3b) are not approximations, but rep-
resent reality; only when working with large numbers forM ,
the discrete nature of energy can be disregarded, taking en-
ergy as a continuous variable and using derivatives.

One improvement of the model would be to consider dif-
ferent frequencies for the oscillators on the surface and for
those inside the crystal. This assumption certainly makes
sense since it remarks the difference between the surface and
the volume inside the crytal; however this modified model
cannot be studied in the microcanonical ensemble. Suppose
that the surface oscillator frequency isν′. Therefore two
kinds of energy quanta should be considered: theM ′ quanta
with energyhν′ and theM ones with energyhν0. In the mi-
crocanonical formalism the system is isolated andM andM ′

are constant, consequently the volume and surface tempera-
tures would be different but the system cannot reach thermal
equilibrium since the energy quanta of the surface oscillators
are not equivalent to those inside the crystal. If one is inter-
ested in analyzing this modified model, the canonical formal-
ism has to be used: the nanocrystal is in contact with a heat
reservoir that provides energy quanta of both frequencies and
the surface and the inside volume can reach the same temper-
ature.

2. Results

2.1. Few particle (FP) and finite size (FS) effects

We must distinguish now between two types of effects oc-
curring when doing statistical mechanics with few elements.
We analyzed a few-particle model in Ref. 5 without taking
into account the surface, so that the number of oscillators
was considered to be simply three times the number of atoms
(N = 3NA). The difference between these results and those
obtained in the thermodynamic limit are due exclusively to
the small number of particles in the system, so accordingly
we will call this the few-particle (FP) effect. Now that we are
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FIGURE 2. This figure shows how the nanocrystal is affected by having few particles (FP) -figures (a) and (b)- and a finite size (FS) including
the small number of particles and the surface -figures (c) and (d). The entropy -(a) and (c)- and the specific heat -(b) and (d)- have been
calculated exactly, according to the equations of the microcanonical ensemble, and the relative difference between those results and the
thermodynamic limit values have been evaluated for the FP and FS cases. Results are expressed in relation to the energy per atom (M/NA).
In the FP case, the exact results coincide with the thermodynamic values for the large system (nL = 10), except at very low energies.
Conversely, in the FS case, the difference with the thermodynamic values is significant even for the large system. This demonstrates that the
presence of the surface affects the system properties more than the small number of particles.

considering the surface, the number of oscillators must be
carefully recorded and, for this, the value forN is that given
by Eq. (1c). Thus, we can speak of the finite-size (FS) effect,
which includes the few-particle the surface effects. The first
question that arises is, then, which effect is more relevant:
that due to the few particles or the one due to the presence of
a surface?

To answer this question, we evaluated numerically but ex-
actly, i.e. without any approximations, the entropy given by
Eq. (2). In one case, we considerN = 3NA and obtain an
entropySFP that only includes the few-particle effect. In the
other case, the number of oscillatorsN is taken from Eq. (1c)
and we obtain an entropySFS that includes both the few par-
ticles and the surface. The difference between both entropies
gives the surface effect. The reference value is the entropy
Sth of the classical Einstein solid in the thermodynamic limit
[1,4]:

Sth(3NA, E) = 3NAkB ln
[
1 +

E

3NAhν0

]

+
E

hν0
kB ln

[
1 +

3NAhν0

E

]
(4)

Once the entropiesSFP andSFS are known, it is possi-
ble to find the temperaturesTFP andTFS , and the specific
heatsCFP

v andCFS
v using Eqs. (3a) and (3b). It is interest-

ing to compare these results to those of the classical Einstein
solid in the thermodynamic limit [1-4]. According to the no-
tation used in this article,T th andCth turn out to be:

T th(3NA, E) =
hν0

kB

[
ln

(
1 +

3NAhν0

E

)]−1

Cth
v (3NA, E) =

kB

3NA

(
E

hν0

)2 (
1 +

3NAhν0

E

)
(5)

×
[
ln

(
1 +

3NAhν0

E

)]2

(6)

Now, we can define the relative effect for each of the ther-
modynamic quantities. IfX represents the quantity of inter-
est (S, T, Cv), the relative effect associated with the few parti-
cles (∆XFP ) and that associated with the finite size (∆XFS)
can be defined as follows:
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∆XFP = 100 ∗ (XFP −Xth)/Xth (7a)

∆XFS = 100 ∗ (XFS −Xth)/Xth (7b)

Thus, it is clear which is the impact due to the small num-
ber of particles and that due to the surface. The results can be
seen in Fig. 2.

Figure 2a shows the difference in entropy for two sizes
of the few-particle system (nL = 3 andnL = 10). Con-
sistently with the findings of [5], there is no discernible dif-
ference between the exact value and that of the thermody-
namic limit for the system with 1000 atoms. On the con-
trary, Fig. 2b considers the surface and its effect is consider-
able in the small system (∆SFS ∼ 22%) as well as in the
large system (∆SFS ∼ 5%). This demonstrates the impact
of the presence of the surface in the thermodynamics of the
nanocrystal.

The question arises of how this effect is shown in exper-
imentally observable quantities. The answer is in Figs. 2c
and 2d. Figure 2c shows the impact on the specific heat due to
the few particles effect. For the system with 1000 atoms, the
specific heat is not different from the thermodynamic value.
On the contrary, when considering the surface -Fig. 2d-, the
specific heat is lower (∆CFS

v ∼ 10%) than the thermody-
namic value, even for the larger system. For the system with
nL = 3, the difference between the specific heat and the ther-
modynamic value is even greater (∆CFS

v ∼ 30%).
In conclusion, the surface plays a much more important

role that the finite number of particles in the thermophysical
properties of the nanocrystal.

One may ask whether it makes sense to evaluate the prop-
erties of a system using the exact approach used in this work.
The answer is: it depends on the size of the system under
study. For atomic clusters with tens of atoms, the calculation
should be made exactly with the microcanonical formalism
as there is a noticeable difference with the thermodynamic
values. Conversely, if one has a system with thousands of
atoms, the conventional results obtained with the canonical
formalism can be used.

2.2. Specific heat scaling

Figure 3a illustrates the atomic specific heat of the nanocrys-
tal as a function of temperature for the different sizes, and it
also shows the curve of the usual Einstein solid. It is clear that
the nanocrystal behavior is qualitatively similar to that of the
macroscopic solid: with high temperatures, the specific heat
reaches a constant value approaching the Dulong-Petit law.
It should be highlighted that, in the units used in this article,
Cv/NA goes to 3 for the solid in the thermodynamic limit.
Quantitatively, the specific heat of the nanocrystal is lower
than that of the solid. It is interesting to illustrate the asymp-
totic value reached by theCv of the nanocrystal as a function
of its size. As seen in Fig. 3b, it can be inferred the following
scaling relationship:

Cv/NA = 3− 3N
1/3
A (8)

FIGURE 3. (a) The specific heat of the nanocrystal, evaluated ex-
actly within the microcanonical ensemble, is plotted as a function
of the temperature for the different sizes. The curve corresponding
to the thermodynamic limit has also been included for reference.
It can be observed that the nanocrystal behaves qualitatively sim-
ilarly to the solid and that the specific heat reaches an asymptotic
value approaching the Dulong-Petit law. (b) The asymptotic value
of the specific heat is shown in terms ofN

−1/3
A . It is clear that the

specific heat converges to the value of the Dulong-Petit law in the
thermodynamic limit. Its special relation withNA is explained in
the text.

This scaling is caused by the presence of the surface in
the crystal. In fact, Eqs. (1a) and (1c) give that the num-
ber of oscillators can be written asN/NA = 3 − 3N

−1/3
A .

The surface atoms are associated with fewer oscillators than
the inner atoms, and those missing oscillators account for the
difference in the specific heat of the solid and the nanocrystal.

2.3. Non-additivity of the entropy

The entropy in the thermodynamic limit is an extensive prop-
erty; however, this may not be so at a microscopic scale
since the range of interactions is comparable to the size of
the system. To verify if the entropy is additive or not in our
nanocrystal model, we carried out the following numeric ex-
periment -see Fig. 4a-: we took a nanocrystalB of side2nL

(atoms per side) and divided into 8 nanocrystalsA of sidenL.
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FIGURE 4. (a) This figure illustrates the numerical experiment per-
formed to verify the additivity of the entropy: a cube of side2nL is
partitioned into 8 small cubes of side nL. The question is whether
the addition of the entropies of the small cubes is equal to the en-
tropy of the large cube. (b) This shows the difference in entropy
between the large cube and the 8 small ones. It can be seen that the
difference increases asN2/3

A . Clearly, the entropy is non-additive,
which can be explained by the effect of the surface. Besides, the
quantity to take into account is the entropy per atom and, in that
case, the difference of entropies is expressedN

−1/3
A , and it is con-

sequently zero in the thermodynamic limit.

Similarly, the energy quantaM of the original nanocrystal
were distributed evenly among the 8 new nanocrystals. The
question is whether the initial and final entropies are equal;
and the answer is no. We find thatS(B) > 8S(A). Figure 4b
shows the difference in entropyδS = S(B) − 8S(A) as a
function of the size of the system. It is clear that the differ-
ence increases asN2/3

A . Naturally, what makes sense is the
entropy per atom and, therefore,δS/NA ∼ N

−1/3
A reaches

zero in the thermodynamic limit.
Fitting numerically the straight line shown in Fig. 5, re-

sults in a slope of approximately 12 which can be understood
easily. The difference in the number of oscillatorsδNosc be-
tween the large cube and the 8 small ones is:

δNosc = [3((2nL)3 − (2nL)2))]− 8[3((nL)3 − (nL)2)]

= 12n2
L = 12N

2/3
A (9)

The non-additivity of entropy is generated by the parti-
tion of the initial cube into 8 smaller cubes, which creates a

FIGURE 5. The specific heat is shown in relation to the energy per
atom for a nanocrystal withnL = 3. It has been calculated exactly
in the microcanonical (superscript mic) and canonical (superscript
can) ensembles, for the FP and FS cases. As it can be seen, both
ensembles lead to similar results, except at low energies. The pres-
ence of the surface has a much greater impact than the ensemble
chosen for the calculations.

larger surface and, therefore, increases the number of surface
atoms with fewer oscillators associated than the inner atoms.

2.4. Microcanonical and canonical ensembles

The calculations performed so far have followed the mi-
crocanonical ensemble. As stated above, this is the proper
method for analyzing systems with a few hundred atoms. If
a system of this size is connected to an energy reservoir, their
interaction would get the nanocrystal out of equilibrium. Be-
sides, it is usually claimed in any statistical mechanics course
that the results obtained using either the canonical or micro-
canonical ensembles coincide in the thermodynamic limit.
The question that arises is, then, whether this also happens
when working with very few particles.

In our notation,ZFS is the partition function of the
nanocrystal of sidenL and with 3(n3

L − n2
L) oscillators,

whereasZFP is the partition function of a set of 3n3
L oscil-

lators. The Einstein temperature is defined as:Θ = hν0/kB

and considering that the partition functionz of a quantum
oscillator is:z = (1 − e−Θ/T )−1, it is a simple exercise of
statistical mechanics to obtainZFP andZFS , and from these
to compute the specific heats:

CcanFP
v

kBNA
= 3

(
Θ
T

)2
e−Θ/T

(1− eΘ/T )2
(10)

CcanFP
v

kBNA
= 3

(
1− 1

nL

) (
Θ
T

)2
e−Θ/T

(1− eΘ/T )2
(11)

In Eqs. (8) and (9), the superscript “can” indicates that
the specific heats are obtained using the canonical ensemble
-in contrast to our work so far following the microcanonical
ensemble. By comparing (8) and (9), it can be seen that the
surface introduces a correction of1/nL to the specific heat.
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Do the specific heat values computed with both ensem-
bles coincide? The answer is in Fig. 5 and it shows a very
good agreement between both results, even for the small sys-
tem (nL = 3). The specific heats graphed have been calcu-
lated within the microcanonical (superscript mic) and canoni-
cal (superscriptcan) ensembles, for the FP and FS cases. The
energy per atom (M/NA), which is the natural variable in the
microcanonical ensemble, was used as independent variable.
For the case of the specific heats (8) and (9), Eq. (6) allows
to replace the temperature with the energy per atom. For the
case ofnL = 10, there is no discernible difference between
the results from the canonical and microcanonical ensembles
and has, therefore, not been illustrated.

3. Conclusions

As in Ref. 5, the first point to highlight is the strength of the
results in statistical mechanics: even with systems formed by
27 elements, the thermostatistical properties are not essen-
tially different from the results found in the thermodynamic
limit. In this sense, the usual approximations of statistical
physics are reassuring; one may trust them.

Related to this point, the surface is clearly important for
the properties of the studied systems. For the system with
27 atoms, when there is no consideration for the surface, the
specific heat differs by approximately 1% from the thermo-
dynamic value, while there is no difference for the system
with 1000 atoms. However, when the surface is considered,

the difference is∼30% in the first case and∼10% in the sec-
ond. This means that the presence of the surface has a greater
impact than doing statistical mechanics with few particles.

It is clear for what sizes one has to use the exact micro-
canonical calculation and when the usual thermodynamic re-
sults can be employed. For systems formed by dozens of par-
ticles, it is justified to proceed in the meticulous way followed
in this article. For systems with several thousand atoms, usual
thermodynamic results are good enough.

The entropy of the nanocrystal is non-additive, apparently
contrary to a basic principle of thermodynamics. However,
this is not so; the non-additivity can be explained by the pres-
ence of the surface, and it can be clearly shown that it is re-
covered in the thermodynamic limit.

Finally, our work confirms that the results obtained in
the canonical and microcanonical ensembles are equal for
systems withNA > 103. This is relevant because calcu-
lations are always easier in the canonical ensemble. Thus,
people working with nano-systems can use the calculation
techniques of the canonical ensemble even when the problem
under analysis is isolated and calls for the microcanonical en-
semble.

In a nutshell: one can use statistical mechanics even for
systems with tens of particles but should be aware of the ef-
fects of the surface.
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