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Chua’s circuit from the linear system perspective
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This paper analyzes the Chua’s circuit, considering it linear by parts in its internal representation model. This approach allows graduate
students to develop skills in matrix algebra and linear systems, using physics as a fundamental tool to model and simulate dynamic systems.
Through this approach, the student will understand the importance of the knowledge of state equations to form the matrices that represent the
circuit, where the main matrix dictates its values and eigenvectors, as well as its similar matrix. A physical simulation of the Chua’s circuit

is carried out, along with the corresponding experiments. The electric circuit is composed by resistors, capacitors, inductance, diodes and an
operational amplifier.
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Este trabajo analiza el circuito de Chua tomado lineal por partes en su modelo de repi@sentamia. Este enfoque permite a los
estudiantes de ciencias desarrollar sus competencias en algebra matricial y sistemas lineales, con el iscadeotad herramienta
fundamental para modelar y simular sistemasadiitos. El estudiante aprendeque esta herramienta necesita del conocimeinto de las
ecuaciones de estado para formar las matrices que representan dicho circuito. Donde la matriz principal dicta sus valores y vectores propios,
ad como su matriz similar. Posteriormente se proca@esimular fsicamente el circuito de Chua y finalmente se redizdos experimentos
correspondientes. El circuitoéadtrico esta constituido por resistencias, capacitores, bobina, diodos y amplificador operacional.

Descriptores: Sistemas lineales; retrato de fase; elatita anabgica; ecuaciones diferenciales ordinarias; circuito de Chua.
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1. Introduction In the last two decades, the study of chaos theory has been
of great interest in mathematics, physics and engineering ar-
As students pass through their education at the undergraduz@s; the erratic behavior represented by mathematical models
and graduate level, there is a need to develop skills in variougnd their implementation across physical systems are studied.
disciplines; for instance, physics and mathematics are indissenerally, these systems are modeled by a set of nonlinear
pensable tools to address and generate practical solutions @dinary differential equations. In particular, one of the most
current problems. Therefore, students must be able not onNyidely studied systems is the Chua’s circuit [1,2], considered
to analyze theoretical and technical solutions, but also to obas the transition from practice to theory. In other words, this
serve their relation to the context and other aspects of prasystem was the one that first hooked the attention of many
fessional fields. Within this context, a linear systems courséesearchers because in terms of theoretical development, it is
is presented as an excellent opportunity to integrate the a¢elatively easy to physically implement different types of os-
quired skills in the areas of physics and mathematics in ordegillators. One example is that different authors have shown
to design, model and simulate linear systems. A topic of highihat for linear systems attractors parts can be generated with
importance is the concept of state space resulting from thgwltiscroll, as is the case of Suykens and Vandewalle [3, 4],
use of matrices. where they introduced a family of n-scroll attractors. We de-

Itis important to use software tools that allow us to modeICided to study the Chua’s circuit because it gives us the ease

and simulate such systems. Also, it is well known that theOf having a linear piecemeal approach, where each part is a

use of software as an alternative in the search of a particulfﬂne""r system.

numerical solution from a mathematical expression, is very  To carry out the objectives mentioned above, some defini-
convenient. Once we have used the concepts of physics aitiéns and explanations (grounded mathematically) are given,
mathematics, as well as the technological resources through understand what is happening physically and theoretically.
software, it is essential to continue all the way to the experiAfter being in context follows the study in detail of the
mental realization; which leaves an unforgettable impressio©hua’s circuit from the equations of state, also we will show
on students. that it is easier to study this circuit with a similar matrix than

In this paper, we take a chaotic system that has the partic¥ith the original matrix.
ularity of being linear in sections. The study of chaotic phe-  Once the mathematical system is understood and solved,
nomena using tools from linear systems, gives students gre#tie next step consists in making the correspondent simula-
skill in handling the matrix language, and on the other handion with the help of a computer package. Later, details of
gives them the opportunity to deal with nonlinear systems. the performed experiments are given, where the behavior of
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this circuit is documented [5]. This work is structured as fol-
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Theorem 2.4Let A, B € M, x,(F). If A is similar to B,

lows: in Sec. 2 definitions and theorems are given with theithen A and B have the same characteristic polynomial
demonstrations. In Sec. 3, the mathematical model of ChuaBroof: If we show that similar matrices have the same deter-

circuit is developed through Kirchhoff’'s laws. In Sec. 4,
the numerical solutions using the software Mathematica ar
shown as well as experimental results of the circuit, discus
sion and conclusions are exposed in Sec. 5.

2. Definitions and Theorems

In this section definitions of terms such as square matrix
eigenvalues, eigenvectors, matrix transformation, similar m
trix, and some others are given, as well as theorems involvin
them. A good part of these definitions are developed nume
ically in Sec. 4.
Definition 2.1 We say that a square matrikn x n is invert-
ible (not singular) if4 othern x n square matrix B such that
AB = BA = I. B s called the inverse matrid, denoted
by A=1.
Theorem 2.1If the matrix A is invertible, then its inverse is
unique.
Proof: Supposé is invertible. B and C' are inverses matri-
ces of A, thenB = IB = (CA)B = C(AB) = CI = C.
As it demonstrated by the uniqueness of the inversé. of
Definition 2.2 be a matrixA4,,«,,. ThenKer(A) = {z €
Fm: Az =0}
Theorem 2.2If A, ., is invertible, thenKer(A4) = {0}.
Proof: Letx € Ker(A), thenAxr = 0. Now A~ 1Axr =
A~10, thenz = 0. It follows that in the kernel of4 only can
find theO.
Definition 2.3 We say that a matrix is similar to a matrix
Bif 3 @ an invertible matrix such thatd = Q~!BQ where
A, B,Q € Myxn(F)
Definition 2.4 A matrix A € M,,x,(F) is said diagonaliz-
able if this is similar to a diagonal matri.
Definition 2.5 be A € M, «,(F), an element non zero
x € F™is called eigenvector of matriX if 3 an scalar\
such thatAxz = Az. Scalar A is called eigenvalue corre-
sponding to the eigenvectar
Theorem 2.3Let A € M, «,(F), then an scalar\ € F'is
an eigenvalue of4 if and only if det(A — AT) = 0.
Proof: (=) Suppose thak is an eigenvalue of4, it follows
that3 « € F™ nonzero such that

Az = Az (by definition of eigenvalyethen

Ax — Az = 0 (subtracting both sides A\x)

(A — ATz = 0 (distributive upside down on the right

It follows that(A — A\I) = 0 (becausex is not zerd
det(A — AI)xz = 0 (applying determining both sidgs

(<) Supposedet(4 — Az 0, it follows that the
matrix (A — AI) is not invertible and thusl = (honzerg
€ Ker(A — M) such that(A — AI)xz = 0, clearly Az = A\x
and then) is an eigenvalue ofd associated with eigenvec-
tor z.
Definition 2.6 if A € M,x,(F), the polynomial
f(t) = det(A— \I) is called characteristic polynomial ol

a

r_

minant, then the test is reduced to demonstrate tHat A1)
& similar (B — \I).

Firstis A € M, «.(F) similar to B € M, «,(F), then
3 Q € M, x,(F) suchthatd = Q=1 BQ.

Now the determinant of A is to be det(A)
detQ'BQ) = det@Q')det(B)det@) = det(B) (since
det@~')=1/detQ)).

We conclude that similar matrices have the same deter-
minant Let f(t) the characteristic polynomial off and g(t)

the characteristic polynomial of the matrix. Then consider
BB -A)Q=Q 'BQ -\ =A— .

It appears thatd — \I is similar to the matrixB — A1,
thereforedet(A— AI)=det(B— \I) this proofs that ifA is sim-
ilarto B, thenA and B have the same characteristic polyno-
mial.

Theorem 2.5Let A be a square matrix and f(t) its character-
istic polynomial. So

(a) A scalar A is an eigenvalue of A if and only X is a
root of f(t).

(b) A has as maximum n different eigenvalues
Proof:(a) (=) Suppose\ is eigenvalue of A, thef = € ™
nonzero suctdz = Az. Then(4A — \I)z = 0, it follows
that (A — AI) is not invertible and that x is non-zero so
det(A — AI) = 0 = f()\) and thus\ is the root of f(t)

(<) Suppose it is a root of f(t), thenf(\) = det{ A —

M) 0. It follows that (A — AI) is not invertible so
3z € F™ nonzero such thatd — AI)z = 0. ThenAxz = Az.
That is ) is an eigenvalue ofd.

(b) f(¢) is a polynomial of degree n, by tlk@indamental
Theorem of Algebraf(¢) has n roots. It follows that A has
at most n distinct eigenvalues.

Theorem 2.6be A,,«,, and be) an eigenvalue ofd. A vec-
tor € F' ™ is eigenvector of A corresponding aif and only

if £ 0andzx € Ker(A — A\I).

Proof: (=) Suppose that x is an eigenvector of A corre-
sponding to the eigenvalue then by definition x is not null
and Az = Az. Then(A — M)z = 0, it follows thatz €
Ker(A — ).

(<) Suppose x is not zero and € Ker(A — \I), then
(A— M)z =0, it follows that Az = AIz and thereforer is
an eigenvector ofd corresponding to\.

Definition 2.7 be A,,«,», and is\ an eigenvalue of AE) =
{z € F" : Az = Az} = Ker(A — A\I). E, is called the
eigenspace of A correspondingXo

Given a linear transformation W — V, where V is
a dimensionally finite vector space over a fidtd this lin-
ear transformation is a matrix representation, and this ma-
trix representation is obtained by applying the transformation
vectors to a fixed base. Suppose that the basis of the vector
space is3, and the matrix representing the transformation on
that basis denoted ¥ 3, is a matrix in which the operations
are not so simple. The problem lies in finding another basis
(1 of V such thatT] g, itis diagonal or block diagonal.
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tors decompose in grade 1 there is a badisr V such that V2

Any linear operator whose characteristic polynomial fac-

e | IX
T

J 0 - 0

0 Jo 0
Tlg=1&...0Jk .

R
.. ),
. . .. . (1) = c2 —.- c1 Diodo de Chua
whereJ; is a square matrix even if it isx 1 in case the matrix

0 0 Jk
is diagonal this matrix is called a block of Jordan, the matrix
[T)g=J1®...® Jyis called Jordan canonical form [6].
This is introduced because it is easier to work with diago-
nal matrices, if the matrix is known, it is implied that the lin-
ear transformation is also known and can be modified through >

FIGURE 1. Chua’s circuit.

this transformation matrix as carried out in modeling. ;

+ -

R3
D1

3. Modeling Chua’s circuit . vm
Chua’s circuit (the simplest electronic circuit where a double V2 i
scroll appears) is modelled in this section through the state
equations:

x(t) = Ax(t) + Bu(t)
y(t) = Cx(t) + Du(t),

() o
FIGURE 2. Chua’s diode.

Which form the internal representation, understanding _ . _
that ¢ is always present in the variables and for simplicity, Diode 1 is on; when both diodes are not working and when
transformed in thredl,;, wherei = 1,2, 3.

b = Az + Bu
_(G+Gm=G1) G 0
y=Czx+ Du, 3) A = Ay = a4 %%
ca co co ?

WhereA, B, C andD are matrices and letbe the vector 0 % 0
column. Now it is time to introduce Chua’s circuit (shown in _ (G+Gm—Go) G 0
Fig. 1). Awv,, input was added to the circuit anql taking as Ay = e R B ©6)
its output the potential,, the system can thus be interpreted cz e c2
through its state equations. 0z 0

The Chua’s diode has the skeleton shown in Fig. 2.
Now applying the laws of Kirchhoff of current and volt-
age, an internal representation model is obtained:

For example, if matrix4; is chosen, it's obtained:

U1
G+ Gy, G Gm 1 = ;
U1 = —ym + —vy+ —vy — — 1, x v2
C1 C1 C1 C1 I,
G G 1 _
Uvp = —wvp — —vp — —Ip —(G+GC"1” G1) g vy
(6] Co (6] _ g _CG2 —é Vg
. 1
I, = —uy (4) 0o 1+ I,
L
G
where n 10 V..
—Gvp — (Go — Gl)vD, VY v >wvp 0
Iz = —Go’l)l A |Ul‘ < UD (5)
) — 1 -~ 7
—G1U1 + (Go — Gl)UD, A v1 < Up Y (O O)x + (O)V ( )

The latter equation gives the possibility of interpreting the

Here it becomes clear that the matridesC' and D are
Chua’s circuit as three systems, which are obtained when thilne same in all three cases, the only changing matrik is
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TABLE |. Values used in the Chua’s circuit.

element value

Ry 10k

Ro 1.2k

Ry 75002

R2 2209

Rs 2200

R 1.8k

L 18 mH

C 10 nF

Co 100 nF

Go R?§3 ) o
G o FIGURE 4. Experimental circuit of Chua.
G %

Vb 0.7 \Volts

Mathematica 10

Untitled-1 * - Wolfram Mathematica 10.0

<l ®

— } ) -
Lol (-15555-6 55555.6 0 E
‘ 5555.56 -5555.56 -1.x107
,. 0 55.5556 0 - Q. .
s5 #1000 EEE RN
ﬁ Eigenvalues[A;] - =
(-22974.840. i, 931.832+19372.24, 931.832-19372.21} 1 -
- -
@ Eigenvectors[a;]
B ((-0.991240.1, 0.132371+0. i, -0.000320087 + 0. i}, i
Wl (-0.505216 0. i, -0.269831-0.317043 i, -0.000944253 + 0.0007284 i}, Risihee
{-0.909216+0. i, ~0.269831+0.317043 i, -0.000944253 - 0.0007284 i}} -
P = MatrixForm[Transpose [Eigenvectors[A;]]]
aticom
é ~0.9912.40. i -0.909216+0. i -0.90921640. i
‘ 0.132371+0. i -0.269831-0.317043 i -0.269831+0.317043 &
i -0.000320087 +0. i -0.000944253 +0.0007284 i -0.000944253 -0.0007284 i >
— B [Inverse It [E1 [A:111-2s. [Ei [a:111 ]
E_é] -22974.8-1.00974x1072% i -3.63798x107%% +3.63798x107*2 i -3.63798x107% -3.63798x1072 i 1
b=l | 3.63798x10712-9.09495x107 i 931.832+19372.21i 1.81899x1071% +3.75167x1077 i
BPSl |5 1632301017 .5.09495 %10 & 3.63738x10- — 4.66116x 10 & 931.832-19372.24 g
- 1 [an

FIGURE 3. Computed values using Mathematics 10.0.

FIGURE 5. Phase portrait of dissipation Ball.

4. Numeric and Experimental Results Theorem 4.1 Two state equations{A,B,C,D} and

r{A,B,C’,D} are equivalent zero state or have the same

Th ilibri ints that describe th t found i . = g
e equilibrium points that describe the system are foun I?ransfer functions D= D, CA"B=C A" B, m = 0,1,2, ..

this section, as well as the description of the two basins o

attraction experimentally observed in Chua’s circuit. Before  See dem§r].
providing the numerical results, some definitions are cited, Chua’s circuit is constructed with the parameters given in
which will be validated by experimental results. Table |

Definition 4.1 A pair (M, ) where f! satisfies the proper-

ties of group and M is almost always a metric space is said It should be specified that the below presented analysis
dynamic system. consists on Diode 1 working (that is, only fdr ), since the
Definition 4.2 The setU® ___ f'x, is called path or orbit for ~ Process is similar to the other two cases. The software Math-
a given pointz,. ematics 10.0 running on the Ubuntu-Linux platform was used

Definition 4.3Letz € M, F € C! (differentiablg we assume 0 obtain the numerical values of the matrly, its eigenval-
that S is a topological sphereD is called dissipation ball if ~ U€S, €igenvectors, the transformation maffiand the simi-
a) Grad o, F(z)) < OV z € S, ¢ is a differentiable func- lar matrix. The obtained results are shown in Fig. 3.

tion from M to the fieldK.
b)Vvze M3t ft x € D.

Note that using this software you can obtain the similar
matrices by applying:
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n!'n I’m

FIGURE 6. Phase portrait with two attractors. FIGURE 8. One atractor.

On the other hand, as a complement to the theory of lin-
ear systems, it is shown that the model used in this work is
a chaotic circuit (see Fig. 4). In order to analyze this kind
of systems, we have to find the equilibrium points of the dy-
namical system. Equilibrium points are obtained by equaling
to zero the system (4) and replacing parts of the Eq. (5) con-
cerned; it is assumed that the system has no enty (in
Fig. 1,V,, = 0. If the calculations are carried out, the fol-
lowing equilibrium points are obtained:

it
|

'il il
i
15'“‘

le H‘

ﬂ‘l‘ i h

PE = {(—3.09,0,—1.8),(0,0,0), (3.09,0,1.8)}  (10)

Figure 5 illustrates the ball of dissipation of the system,
in this case it is a topological circle. In other words: for any
given pointzq in the zy plane there exists a number> 0
such thatd?(zg) = A(A(A(...(A(z0))))) forms a path that
goes into the ball of dissipation. Once inside it, it cannot go
out and it is confined to oscillate between the points of bal-
ance, whered is the matrix system. See demonstration [8].

Figure 6 depicts a phase delay of the equilibrium points,
FIGURE 7. Phase portrait fot — oo. which behave as attractors and repulsors. Even if the number
of oscillations is enormous, the system will never leave the
dissipation ball. Mathematically, this situation has a starting
point and the number> 0 is small.

r

A=PApP~! For Fig. 7 the numbet > 0 is large enough to generate

_ sufficient oscillations.

B=PB Figure 8 illustrates the case when the system is only able
C=cp-! (8)  to orbitin one attractor, and it does not have the necessary
5—b amount of energy to leave one attractor and go to the other.

. . . _ 5. Conclusions
This way you are able to work with the similar system in

its internal representation. Different software tools can be used to find the solution of
the matrix equations. In this paper, we used Mathematics

# = AZ + Bu, 10.0 running on the Ubuntu-Linux platform. Matlab can also
_ _ be used to solve this sort of problems, however, neither Math-
y =07+ Du (®)  ematics 10.0 nor Matlab are open access utilities, hence their
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purchase requires an investment, making it difficult for stufact is very appealing to students, since the application of

dents to use on their simulations and models. Luckily, freelytheory on real-life problems adds great value to their devel-

distributed options are available, packages like Octave andpment as professionals.

Scilab software can be used as auxiliaries in teaching physics As future work, we will attempt to mask an information

and mathematics. signal through this circuit using the potentig), marked in
Another important point of this work is the agreement of Fig. 1, which could be used on signal-processing related is-

the experimental results with the theoretical predictions. Thisues.
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