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1. Introduction wherez = R — {0} = Q. The operatot: is, essentially, self-

) _ adjoint on the domaitD (k) formed by functions) such that
As is well known, the problem of a quantum particle mMoV-y, e H = £2(Q) (i.e., || < oo in Q, with the usual defi-
ing on a real Iing with a_point interaction (o_r a singula_r Per-nitions of the norm and the scalar produft|| = +/{(¥, 1)
turbation) at a single point, can be treated in two equivalengng(y, y) = Ji, dz <, the bar meaning the complex conju-
modgs: 0 by consujermg an alternative free sy;tem W't,hOUtgation). Moreoverhiy) also belongs té{ and+ must satisfy
the singular potential.e., V(x) = 0) and excluding the sin- g6 of the following general boundary conditions:
gular point, in which case the interaction is encoded in proper
boundary conditions, andi) by explicitly considering the P (04) =AY’ (04) _0 D(0+)+iNy’ (0+) )
singular interaction by means of a local singular potential. ( P (0—=)+iry' (0-) > - ( »(0—) =iy’ (0-) > - ()
Seee.g Ref. 1 and references therein.

The principal aim of this paper is to study and The parameteh is inserted for dimensional reasons and the
analyze some representative examples of nonrelativisti8 x 2 matrix U is unitary (and therefore, Eq. (2) is a 4-
(Schibdinger) point interactionsi.e., boundary conditions parameter family of boundary conditions) [2]. We use the
and singular potentials, and their corresponding bound stategptations(0+) = lin% 1 (xe), and the same for the deriva-
In this iqtroduction, we extra_cF these examples from a 9€Nsive /. We write thee_) matrixt’ as follows:
eral family of boundary conditions for the system described
in the caseif, and from a general singular potential written . ) mo —ims —mg — imy
in terms of the Dirac delta and derivativégdz for the sys- U = exp(ig) ( ) S
tem described inii(). The introduction of the present paper is
an abridged (and also complementary) version of Refe], Where¢ < [0, 7], and quantitiesny € R (A = 0,1,2,3.)
it is a survey of point interactions with examples. In Sec. 2,satisfy(mg)? + (m1)? + (m2)? + (m3)? = 1.
we obtain and discuss the bound states for all these exam- Another 4-parameter family of boundary conditions can
ples. The conclusions are given in Sec. 3. In the Appendix Aalgebraically be obtained from Eq. (2) [1]:
we study some general aspects related with the eigenvalues
and eigenvectors of the Hamiltonian operator corresponding <)\W(O+)—)\W(O—)> -g ( ¥(0+)+¢(0-) ) )
to the casei}. Finally, in the Appendix B we explicitly solve ¥(0+)—¢(0-) A (0+)+Ay'(0-) )7
the Schoédinger equation for a potential that is the first deriva- .
tive of the Dirac delta, but we do not use the same definitioyvhere the matrixs'is:

mo — im1 mo + im3

of §'(x) that was used throughout the article. o 1 (—mo+ cos(¢)  —ma—ims ) )
1.1. Casei): point interactions as boundary conditions mitsin(9) \ mg—imy - —mo—cos(¢)
Note thatS;; andS,, are real, andby; = —S15. This fam-

In this case, one considers the lifi®) (vith the origin ¢ = 0)

excluded (a hole or a single defect). The Hamiltonian operai—Iy of boundary conditions was also mentioned and related
tor is to others families in Ref. 3. It is worth mentioning that,

in principle, we do not have within (4) all of the boundary
S (1)  conditions included in (2). For example, we do not have the

= . .
2m dz?’ cases where; +sin(¢) = 0in (4); nevertheless, if we have
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s
in Eg. (5) could be conveniently avoided, and the respectivéhus,(0+) = (0—) andy)’(0+) = ((—o0) x ¥(0—)) +
boundary condition could thus emerge from Eq. (4) [1]. ¥’ (0—) = ¢¥(0—) = 0, and therefore)(0+) = ¥(0—) =0
The following boundary conditions are included in Likewise, boundary condition (f) is obtained from boundary
Egs. (2) and (4). Some of the names that identify theseondition (d) by noticing that-2mq/m; = —2cot(¢)

a boundary condition wherma, = —sin(¢), the singularity — —2mg/m; +2cot(¢p) = —oo (becausep — w—),

boundary conditions are obvious but others will be justified—co (because — 0+), soy’(0+) = ¢'(0—) andy(0+) =
by studying their respective singular potentials:
(a) The Dirac delta interaction

¢(0+) 1 0 1/)(0*) (6)

A (04) —27e 1 A(0-) )
which is obtained by settingny, = — cos(¢), m; = sin(¢)
andmgy = ms 0. Note that, by makingp = /2
(= mo/my = 0)in Eq. (6), we obtain the periodic boundary

condition,»(0+) = ¥ (0—) andy’(0+) = ¥'(0—).
(b) The first derivative of the Dirac delta interaction

() (F 2 (%)

which is obtained by settingmg = mg = 0 = ((1 —
ms)/m1) = my1/(1 + mg), cos(¢) = 0 andsin(¢) = 1 =
p=m/2.

(c) The quasi-periodic interaction

(o) = ("5 oy i) () @

which is obtained by makinging = ms = 0 = (mq)? +
(m2)? 1, cos(¢) = 0 andsin(g) 1= ¢ =mx/2
Note that, by makingn; = +1 andmsy = 0 in Eq. (8),

we obtain the periodic boundary conditian((+) = ¥ (0—)
andvy’(0+) = ¢'(0—)). Likewise, by makingm; = —1
¥ (04) = —1p(0—) andy’(0+) = —¢'(0-).
(d) The so-called “delta-prime” interaction

X/(0+) X/(0-) ) - ©
which is obtained by settinging = cos(¢), m; = sin(¢)
dition (a), the case = n/2 (= my/m; = 0) leads to the
periodic boundary condition.

andmy = 0, we obtain the antiperiodic boundary condition,
¥(0+) 1 —20 ¥(0-)
0 1
andms = mg = 0. As in the example of the boundary con-
(e) The Dirichlet boundary condition

¥(0+) =¢(0-) =0, (10)
which is obtained by settinging = +1, mas = m3 = 0
(= my =0)and¢ = 7.
(f) The Neumann boundary condition
P'(0+) = ¢'(0-) = 0, (11)
which is obtained by settingimg = +1, my = m3z = 0

(= m1 =0)and¢ = 0.
It is worth mentioning that, boundary condition (e)

is obtained from boundary condition (a) by noticing that

»(0—) + ((—o0) x ¢'(0=)) = ¢/(0—) = 0, and therefore
Y'(0+) = ¢'(0—) = 0.

1.2. Caseif): point interactions as singular potentials

In this case, one considers the lifi®) vith a singular poten-
tial at the origin ¢ = 0). The Hamiltonian operator is,
. K2 42 .
“omanz V@
wherexz € R. A plausible formal expression for a general
singular potential”(z) in terms of the Dirac delta and deriva-
tivesd/dx is the following:

V() = 926(2) — (92— ig3)3(a) -
d

A COP- NS

.. d
+ (g2 + 193)@5(93) g Ly
wheregp € R (B = 1,2,3,4.) [1,4]. In this paper, the
derivative of the Dirac delta is written a8(z) = dd/dz,

that is, with the prime on the delta. The operatbiis for-
mally self-adjoint and depends on four real parameters [1]. It
has also been proved that eveywith the singular poten-

tial (13) coincides with a certain self-adjoint extensiomof
see Ref. 5 and references therein. In other words, any point
interaction encoded in the general boundary condition given
by Eq. (2) can be described by an operator with a singular
potential.

The singular potentieﬂ’(a:) can be written in a more sym-
metric way. For this, one uses the formulaf) = (0, v)
andy’(0) = —(§,¢). In essence, the latter formulas can
be obtained by using the (symbolic) sifting property for the
Dirac delta:

6(z)y(x)

(12)

5(2)y(0) = 6(x)(6, ) (14)

+o00 +oo
[:» / 6z ()= (0) / dx6<x>=w<o>=<5,w>],

and
5y (x) = 5z’ (0) = —6(x)(0' ) (15)
+oo
[:» / da 6(x) () = ' (0)
“+oo
x / Az b(x) = ¥(0) = —(&', ),
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becausey’ (z)y(z) = (d/dz)(6(x)y¥(x)) — §(z)y¥'(x) =  to+e and taking the limit — 0 again, one obtains a second
8 (x)(0) — d(z)y’(0) boundary condition:
+o0 +o0 1 .
= = — 525 (0 (04) + M (0-)) (19
“+o0
—'(0) / dzd(x) = 1&’(0)] where the relations
(the common delta function properties / dyd(y) = O(x)
+00 -L
/da? é(z) =1 (©(z) is the Heaviside function:©(z < 0) = 0 and
oo O(x > 0) = 1) and
and x
+oo [avsw =
/ dzd'(x) =0 L
- should be used. Note that Egs. (18) and (19) precisely con-

were also used above)_ Because fUnCtiWQS) and l//(l) stitute the fam"y of bOUndary conditions (4), Where, in this
are not generally continuous at= 0, ¢ (0) and+’(0) may ~ case, the matri%'is

be written as the average at the discontinuity (this is certainly ] \ —(go — igs)
only a plausible choice for discontinuous test functions): S=-a ( g1 g2 193 ) . (20)
2 92 + 193 -5
_ %(0+) +4(0-) . .
¥(0) = - 9 By comparing the matrixs in Eq. (5) with the matrixS
5O W (04) + 4/ (0—) 16 in Eq. (20), one obtains the following relations:
2 Ly, = —Mot cos(¢) 21)
(see Ref. 6 for a discussion about situations in which the 2 9 my + sin(¢)
latter definitions do not hold). Thus, one can also write ex-
pression (13) as follows: 1 ms
) Qg = —— 7, (22)
V(x) = g1(8,)8(x) + (ga — igs) (', - )o(x) 2 my + sin(¢)
+ (92 —|—ig3)<5,->5/($) +g4<5’,~>5/(9c), (17) 1 m
— 172
where(F, 1) (with F = é or §') also denotes the actioi[v/] 2% = T T sin(e) (23)
of the distribution (or linear functionalf’ on the test func-
tion 4. Note that, if one defines the quantitieg = ¢,
to1 = g2 —igs, t1io = g2 +1ig3 = to1 andéy; = g4, then these lagi _ Mo+ COS((b)' (24)
coefficients{t,, } define & x 2 hermitian matrix [5]. 2 A mi+sin(9)

Due to the presence of(z) and &'(z) in V(z), the
Schibdinger equation can yield boundary conditions. In ef-
fect, one can use a procedure introduced earlier by Griffith
for then-th derivative of a delta function potential in the fol-
lowing way [7]: integratingl+y) = E1) from —e to +¢ and
taking the limite — 0 gives the following first boundary con-
dition:

A (04) = M/ (0-) = S hagy ((0+) + $(0-))

Thus, if we use Egs. (21)-(24), we can relate boundary con-
ditions included in (4) with potentials dependent of deltas in-
Bluded in (13) (or (17)). The following potentials correspond
respectively to the examples of boundary conditions that were
introduced above:

(a) The Dirac delta potential

V(z) = gi16(), (25)

1 which is obtained by setting:my = —cos(¢), m; =
- 504(92 —igs) (M (0+) + A (0-)), (18)  sin(¢) andms = ms = 0, thus, (from relations (21)-(24))
g1 = 2cot(¢)/ar andgs = gs = g4 = 0. Therefore, (from
wherea = 2m/k2. Similarly, integratingHy = E4 first  Eq. (13)) we obtain the result given in Eq. (25). Note that, by
fromz = —L (with L > 0) to z, then once more from-e  making$ = /2, we obtaing; = 0, and thereford’ () = 0.
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Also, by makingyp — 7m—, we obtaing; — —oo (this is the  delta potential with infinite strength, and it can (heuristically)

case (e), which is presented below). be written in the form/ (z) = —4(0)d(x) = —(5(x))2.
(b) The first derivative of the Dirac delta potential (f) The Neumann potential
V(w) = g20'(), (26) (1) = lim —au S (6(2)- L
Vig)= lim —gs | 0(@) |, (30)

which is obtained by settingmo = my = 0 = ((1 — o i )

ms)/m1) = ma/(1 + ms), cos(¢) = 0 andsin(g) = 1 = which is obtained by settingmg = +1, my = m3 = 0
¢ = /2, thus, (from relations (21)-(24)) = 2ms/a(1 + and¢ = 0, thus, (from relations (21)-(24)), = 4\/am;
my) andg; = g3 = g« = 0. Therefore, (from Eq. (13)) adg1 = g2 = g3 = 0. Also, m; = 0 and there-
we obtain the result given in Eq. (26). Note that, by makingfore g4 = +oo (in fact, m; — 0+ = g1 — +o0, and
ms = 0 = m? = 1, and taking the solutiom;, = 1, we ™1 — 0= = g1 — —o0). Therefore, (from Eq. (13)) we

obtaing, = 0, and thereforé/(a:) —0. obtain the result given in Eq. (30). Note that the Neumann
(c) The quasi-periodic (or quasi-free) potential potential is the “delta-prime” interaction potential with infi-
nite strength.
- d
V) =i (2400 - 0@) . @)
r 2. Bound States

which is obtained by settinging = ms = 0 = (m1)? +
(m2)? = 1, cos(¢) = 0 andsin(¢) = 1 = ¢ = 7/2,
thus, (from relations (21)-(24); = —2ms/a(1 + m4) and

g1 = g2 = g4 = 0. Therefore, (from Eqg. (13)) we obtain
the result given in Eqg. (27). Itis worth noting that, by mak-
ingm; = —1 andmy = 0, we obtaings = 0/0. However,

in this case we can writea; = —/1 — (m32)?, and there-
fore g3 = —(2/a) [(2/m2) — (m2/2) + O((m2)*)], which

In this section, we present the (normalized) bound state
eigenfunctions and their respective energy eigenvalues cor-
responding to the examples of point interactions that were
introduced above.

(@) For the Hamiltonian with the Dirac delta poten-
tial (25), V(z) = ¢16(x), there exists a single bound state
with energyFE < 0:

implies thatgs — —oco whenms — 0 (= m; — —1). Pre- 1 1

cisely, the latter case corresponds to the antiperiodic bound- ¥(z) =/ —5a0 exp <2a91 |z ) ;

ary condition (see the paragraph that follows Eq. (8)). Like-

wise, if m; = +1 andmy, = 0, we obtainV(z) = 5 —la(g1)2, (31)
0 (becausegs = 0). Incidentally, the Hamiltonian op-

erator (12) with the potential (27) can also be written aswhereg, < 0. This eigenfunction satisfies the boundary
H = (—i(d/dz) - g30(x))* — g3(d(x))* (" = 2m = 1)  condition (6): ¥(0+) = ¥(0—) = ¥(0) and Ay’ (0+) —

[5.8]. MY (0—) = 2cot(¢)¥(0), whereg, = 2cot(¢)/a). A nice
(d) The so-called “delta-prime” interaction potential discussion of the Dirac delta potential, which includes the
. d d scattering states, can be found in the book by Griffiths [9].
Viz) = —9ig; ( (z)d> , (28)  For studies on the completeness of the eigenfunctions in this
t r problem, see Refs. 10 and 11.

which is obtained by settinging = cos(¢), m; = sin(¢) (b) For the Hamiltonian with the potential first deriva-

and ms = ms = 0, thus, (from relations (21)-(24)) tive of the Dirac delta (26),V(z) = g26'(z), there

gs = 2\cot(¢)/a andgy = go = g5 = 0. Hence, (from exists the trivial bound state solutiony() = 0)

Eq. (13)) we obtain the result given in Eq. (28). Note that, bywith zero energyE = 0, i.e, there is no a non-

making¢ = 7/2, we obtaing, = 0, and thereford’ (z) = 0.  trivial square integrable solution that satisfies the bound-
Moreover, by makingy — 0+, we obtaing; — +oo (this ~ ary condition (7): ¥(0+) = ((1+ m3)/m1)+(0—) and

is the case (f), which is presented below). It is worth noting?’ (0+) = (m1 /(1 + m3)) ' (0—), whereg, = 2m3/a(1 +
that, the general singular potentia(z) in Eq. (13)is exactly 1) and(m1)* + (m3)* = 1. For a concise discussion of

the sum of the four potentials (25)-(28) [1]. this potential, which includes the scattering states, we rec-
(e) The Dirichlet potential ommend Ref. 12. For a study that considers the potential

R —ad(x) + bd'(z), see Ref. 13. It should be noted that differ-

V(z) = . limDo q10(x), (29) ent definitions of the derivative of the delta interaction exist

in the literature; see.g Refs. 6 and 14 and other references
which is obtained by makingny = +1, my = m3 = 0and  quoted therein. Finally, another article that presents a very
¢ = m, thus, (from relations (21)-(24)y = —4/a m; and  particular study that involves the same potendidl) used

g2 = g3 = g4 = 0. Also, m; = 0 and thereforg;; = —c¢ by us throughout the article can be found in Ref. 15. In the
(in fact,m; — 0+ = ¢y — —o0, andm; — 0— = g; —  Appendix B, we treat precisely with a different but very nat-
+00). Therefore, (from Eqg. (13)) we obtain the result given ural definition of this potential. However, we do not get a
in Eq. (29). Note that the Dirichlet potential is the Dirac nontrivial bound state in this case either.
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(c) For the Hamiltonian with the quasi-periodic poten- oo
tial (27), V() = igs (2(d/dz)d(z) — &’'(x)), there also ex- V] =, f) = / dz ¢ (z) f(x)
ists the trivial bound state solution with zero eneigy= 0, oo
where(0+) = (mq — img)y(0—) along with’(04) = oo
(mq — im2)1y’'(0—) is the corresponding boundary condition )
(formula (8)), andgs = —2my /(1 4+ my) with (m4)2 + =, Jm [ ded(gr,2)f(2),
(m2)? = 1. We have not found a complete discussion of the —o0

scattering states for this potential (withy # 0 andms # 0) is precisely zero. In fact,
in the literature. However, see Refs. 5 and 8 where various

aspects related to the boundary condition associated with this 1
potential are discussed. Yif]= lim 2, /—— / 5 (—0@1)
g1——© ag
(d) For the Hamiltonian with the “delta-prime” interac- '
tion potential (28)V (z) = —g4(d/dz) (6(z)(d/dx)), there 1
exists a single odd-parity bound state with eneftyy: 0: X exp ( 3091 |« |) f(z)
2 2 Y f(0)=o0 (34)
0@) =\ sl exp (- 211 P ‘
ags g4
4 In the last step we used the representation of the Dirac delta
E= —W, (32) thatwas used to derive Eq. (33), and also the property
4
+oo
whereg, > 0 andsgn(z) is the sign functionsgn(z > 0) = / daé(z) f(z) = f(0).
+1 andsgn(xz < 0) = —1). This eigenfunction satisfies the “o0

boundary condition (9)(0+)—v(0—) = —2 cot(¢)>\w ( )
andy’ (04) = v/(0—) = ¢/(0), wheregs — 2\ cot () Thus we conclude that the eigenfunction is really triviial,

Scattering states arising from this boundary condltlon Weréb = 0 everywhere ofi, and it satisfies the boundary con-

obtained, for example, in Ref. 16 and the most |mportanfiltlon (10): 9(0+) = 9(0—) = 0 (of course, to the system

spectral properties associated with the free Hamiltonian foForrespondlng to the cas fhere the origin is excluded). A

this boundary condition (as well as with others) were ana2'&'}'?;65ucitr:?etha;?]';lleﬁ IQrqur(wgst)o?nmelrgterilltnc:eept:woebletthe
lyzed in [3]. In Ref. 17, it was shown that the boundary he-dimensi yarog n S S

condition defining this interaction arises precisely from thew.( ). corresponds to the (nonexistent) ground state of infinite
potential (28). binding energy [19, 20]. . _ _

(f) Because the Neumann potential (30) is obtained from

(e) Because the Dirichlet potential (29) is obtained fromthe “delta-prime” interaction potential (28) by setting the

the Dirac delta potential (25) by setting the limit ¢ —  |imitto g, — o, the eigenfunction and the respective energy
—o0, the eigenfunction and the respective energy eigenvalugigenvalue for the Hamiltonian with the Neumann potential
for the Hamiltonian with the Dirichlet potential can be ob- can be obtained from (32) by taking the same limit. Thus, we
tained from (31) by taking the same limit. Thus, we obtaingptain the following results:
the following formal results:

Y(z) =0, E=0. (35)
[ 1 is | ivi i it ob-
P(z) = lim —Zagy exp <a91 |z > T_h|s is the_trl_vlal bound state with zg_ro energ/y, and it ob
g1——00 2 2 viously satisfies the boundary condition (119/(0+) =
'(0—) = 0.
= tim_(gr0) = |9 = 8(a), v
E = —o0, (33) 3. Conclusion

We have presented and examined the bound states for a num-
where we have used the following representation of the Dirager of representative examples of (Sitinger) point inter-
delta [18]: 6(x) = lim (n/2)exp(—n|z|). Clearly,¢(z)  actionsj.e., boundary conditions and singular potentials, that
looks like a highly localized state with infinite energy, in fact, were introduced, related and also discussed, throughout the
it is essentially the square root of the Dirac delta. Despiterticle. As we have seen, the (attractive) Dirac delta function
these results, itis easy to show that the scalar produgtof  potential provides an even-parity bound state; this is a well-
with a square integrable functiofi,c H = £?(R), vanishes. known fact. If this potential has infinite strength it becomes
The latter result implies that the distribution (or linear func-the Dirichlet potential, and therefore the state must satisfy the
tional) associated witkp(x), Dirichlet boundary condition. Thus, the bound state becomes

Rev. Mex. Fis. 2 (2016) 117-124
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trivial in this latter case. Likewise, the labelled as “delta- given in Eq. (A2), we find the following homogeneous sys-
prime” interaction potential (this is not the first derivative tem of equations (for the constamsand B):
of the Dirac delta potential) also provides a bound state (an
odd-parity state). If this potential has infinite strength it be- B = (a+ Arb) exp(ip)A,
comes the Neumann potentiak., the state must satisfy the .

o : . AkB = — Akd A. A8
Neumann boundary condition. However, this state is equal " (c+ And) exp(ip) (A8)

to zero. On the other hand, in our model, the potential firSiyote that, it follows from the equation that is on the left in

trivial bound state. If we change the definition&{x) for a

more natural, we do not obtain a nontrivial bound state either.
It is worth mentioning that this new potential is also a legit-
imate point interaction because it corresponds to a boundary
condition included in the domain of the (self-adjoint) Hamil- + (a + Akb) exp(ip) exp(—Kx)O(x) |. (A9)
tonianh (in fact, it is the Dirichlet boundary condition).

(x) = A| exp(kz)O(—z)

Moreover, from Eqg. (A8) we obtain the equation for the en-
ergy eigenvalues:

Appendix A
2 —

In this appendix we study some general aspects that have to bAR)™+ (a+d)dn + e =0, (AL0)

do with the eigenvalues and eigenvectors of the Hamiltoniagyhich has the following solutions:

operator given by Eq. (1). More technical details can be
C

found, for example, in Ref. 21. A = — . (b=0);

The Schédinger equation for the eigenvalues with nega- a+d
tive energyE = —h?x?/2m < 0 and eigenfunctions)(x) (a + d) (a + d)% — dbe
is: hip(z) — Ep(z) = 0 = " (x) — x2p(z) = 0, in the A =———0p— & 5% , (b#0). (Al1)
region2 = R — {0}. The solution of this equation has the ) ) . )
general form Let us suppose that the eigenfunctions have definite parity,

i.e., (i) if ¥ is an even function, thert(0+) = ¥ (0—) and
¥(z) = Aexp(rz) O(—z) + Bexp(—kz) O(z), (A1)  alsoy’(0+) = —4’(0-); (ii) if ¢ is an odd function, then
¥(04) = —(0—) and alsoy’(0+) = ¢'(0—). These two
wherex = /2m(—FE)/h, ©(z) is the Heaviside function, conditions imply the following relations:
and the constantd andB are related by imposing boundary
conditions. We will consider the following four parameters

grgoemneErzl) (f;)r?rlijoeffbigndary conditions, which was ObtalnedWhich allow us to rewrite the results given in (A11) as fol-

a=d, exp(ip) =1, (A12)

lows:
— c
(o) et (& 0) (il )+ @2 M= (b=0);
where m=—22Ll o) (A13)
mg + sin(¢) b b
a= , (A3) . .
(m1)2 + (mg)? (in the last expression we also use the fact that ad — 1).
Note that, by taking the limit — 0 in the latter results, we
p— Mo —cos(d) (aq)  obtain the relation: = 0 (see Eq. (A10)). The latter is the
(m1)2 + (mg)?’ necessary condition for the existence of the eigenvalue zero;
however, in the case at hand the eigenfunction is trivial (or it
= Mo + cos(o) (A5) is not square integrable).
(m1)2 + (m2)?’ For example, for the Dirac delta interaction (a) (see
. Eq. (6)), we have that = d = 1, b = 0 and
J= _—Ms+sin(9) , (A6) €= —2mo/mi = alg (and alsop = 0); therefore (from
(m1)? + (m2)? Eg. (A9) and Eq. (A13) witth = 0) we obtain the results

given by Eg. (31) (we also have to normalize the eigenfunc-
m tion). Likewise, for the “delta-prime” interaction (d) (see
_ -1 1 m
¢ = tan <m> — 5 (A7) Eq. (9)), we have that = d = 1, b = —2mg/m; =
2 —agy/A, ¢ = 0 (and alsop = 0); hence (from Eq. (A9) and
with (mg)2+(m1)%+(m2)%+(ms3)?=1 (becaus@d—bc=1).  Eq. (A13) withb # 0) we obtain the results given by Eq. (32)
By imposing on the solution (A1) the boundary conditions (again, we also have to normalize the eigenfunction).

and
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Appendix B and

In this appendix we explicitly solve the Sdtinger equation
for the eigenvalues with negative enetgy= —h2x2/2m < P(N+) = p(N=) = p(N),

0 and eigenfunctions(z) in the potentiall’ (z) = g0’ (x), , Ny Qg2
whore P WN4) = ¥/(N-) = —S20(N),  (B4)
¥(@) = lim (z+ )2;v =N (g -
in the regionf2 = R. That s to say, whgr@(xi) = 213% Y(x+e) (and the san-w? definition for the
. 9 derivativey’). Notice that boundary conditions (B3) and (B4)
Hip(z) — Ep(z) =0 = ¢"(z) tend to the Dirichlet boundary condition(0+) = ¢(0—) =
2 — oV 36 ¥(0) = 0, when N — 0. Thus, this confirms that we
(@) = Vi) (r) (36) are using a different definition of the first derivative of the
= ¢ (z) — %p(z) = lim @92 Dirac delta interaction to that presented in Sec. | (compare
N—0 2N the Dirichlet boundary condition with boundary condition (b)

x [6(z+ N)—d(z— N)]v(z), (B2) givenin Eq. (7).

wherea = 2m/h? ( is given by Eq. (12)). As discussed The solution of Eq. (B2) has the general form
below, the potentiaf/(ac) defined in this appendix is not ex-

actly the same as that used throughout the article (see poten+)(z) = A exp(kz) O(—N—z)+B exp(—rz) O(x — N)
tial (b) in Eq. (26)).

Due to the presence of two Dirac deltas in Eq. (B2)) + [Cexp(rz) + D exp(—rz)]
must satisfy the following boundary conditionszaat= — N % [6(z+ N)—O(z — N)] (B5)
andz = N, letting N — 0 at the end: ’
P((=N)+) = ((=N)-) =9(=N), wherex = /2m(—FE)/h, ©(z) is the Heaviside function.
re(_ oAy Qg2 The following homogeneous system of equations to the con-
V((=N)H) =9 (=N)=) = 5o (=N) (B3) stantd, B, C andD is obtained after imposing the boundary
| conditions (B3) and (B4) on solution (B5), witki — 0:
exp(—xN) 0 —exp(—k&N) —exp(kN) A
(kN + 222) exp(—kN) 0 —kNexp(—kN) &Nexp(kN) B | 0 (B6)
0 exp(—kN) —exp(kN) —exp(—kN) c |
0 (292 — kN) exp(—kN) —rkNexp(kN) kN exp(—£N) D

The cancellation of the determinant of the square matrix
in (B6) provides the following equation for the energy eigen-Using the two equations in (B6) that are independent of

values: ago/2, we obtain the constanésandD in terms ofA and 3,
1 2
(kN)? + 1 (%) [exp(—4kN) — 1] =0, (B7) o A — Bexp(2kN)
- 1—exp(4sN) ’
whereN — 0 is understood. Therefore, . B — Aexp(26N) 10
1 —exp(4sN)

4kN = —1In [1 —4 (2)2 (kN)?

Oégg

For example, substituting these relations into the second

9 \2 equation of (B6), the following relation is obtained:
= — [—4 (O[g> (HN)Q + O(RN)4] y
2 _ _
BeA {1+ 1 — exp( 4/{N)}
N ()’ (88) 2VRN
PNooNU ) T

—A [1 +2VkN + 26N + O(KN)Q} ,

Finally, the energy corresponding to the bound state is
= B — A. (B11)

2 1 4
E=lim -~ = lim — (%) — —s. (B9)

N=0 «a N—0 aNZ\ 2 Therefore, the eigenfunction that corresponds to the eigen-

value of infinite energy has the form:
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Y(x) = lim Aexp(kz), for x<0; (B12)
Y(x) = lim Aexp(—kz), for x> 0; (B13)
. - —4exp(kN)sinh(kN)
’l/J(ZC)—Kh_)HOlC ]1{1210 alcl—>mo A [ 1—exp(4kN)

x cosh(kz) = lim }/imoA
K— 00 —

1
[1 — kN + g(/@N)B

+ O(/{N)E’] = lim A, foraz=0. (B14)
That is to say,
$(e) = lim Aexp(—r|z]),
for — oo < x < o0 (B15)

S. DE VINCENZO AND C. $NCHEZ

whereA=./k if (x) is normalized. Also note that, because
§(z)= lim rexp(~2x|z|) [18], then [¢(x)|* =d(x).
However, (1), f) = 0 for all square integrable functiof,
thereforey) = 0 in R. These results are not unexpected since
the potential/’ (z) = g, (z), with &' (x) given by Eq. (B1),
leads to the Dirichlet boundary condition (e). That is, these
results are consistent with those for the Dirichlet potential (e).
The procedure made in this appendix is close to that made in
Ref. 22. Likewise, a very nice and also recent study that dis-
cusses the difficulties surrounding the definition of the delta
prime potential can be seen in Ref. 23.
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