
EDUCATION Revista Mexicana de Fı́sica E62 (2016) 117–124 JULY–DECEMBER 2016

One-dimensional point interactions and bound states

S. De Vincenzoa and C. Śancheza,b
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1. Introduction

As is well known, the problem of a quantum particle mov-
ing on a real line with a point interaction (or a singular per-
turbation) at a single point, can be treated in two equivalent
modes: (i) by considering an alternative free system without
the singular potential (i.e., V (x) = 0) and excluding the sin-
gular point, in which case the interaction is encoded in proper
boundary conditions, and (ii ) by explicitly considering the
singular interaction by means of a local singular potential.
Seee.g. Ref. 1 and references therein.

The principal aim of this paper is to study and
analyze some representative examples of nonrelativistic
(Schr̈odinger) point interactions,i.e., boundary conditions
and singular potentials, and their corresponding bound states.
In this introduction, we extract these examples from a gen-
eral family of boundary conditions for the system described
in the case (i), and from a general singular potential written
in terms of the Dirac delta and derivativesd/dx for the sys-
tem described in (ii ). The introduction of the present paper is
an abridged (and also complementary) version of Ref. 1,i.e.,
it is a survey of point interactions with examples. In Sec. 2,
we obtain and discuss the bound states for all these exam-
ples. The conclusions are given in Sec. 3. In the Appendix A
we study some general aspects related with the eigenvalues
and eigenvectors of the Hamiltonian operator corresponding
to the case (i). Finally, in the Appendix B we explicitly solve
the Schr̈odinger equation for a potential that is the first deriva-
tive of the Dirac delta, but we do not use the same definition
of δ′(x) that was used throughout the article.

1.1. Case (i): point interactions as boundary conditions

In this case, one considers the line (R) with the origin (x = 0)
excluded (a hole or a single defect). The Hamiltonian opera-
tor is,

ĥ = − }
2

2m

d2

dx2
, (1)

wherex = R−{0} ≡ Ω. The operator̂h is, essentially, self-
adjoint on the domainD(ĥ) formed by functionsψ such that
ψ ∈ H ≡ L2(Ω) (i.e., ‖ψ‖ < ∞ in Ω, with the usual defi-
nitions of the norm and the scalar product,‖ψ‖ ≡

√
〈ψ, ψ〉

and〈ψ, χ〉 ≡ ∫
Ω

dx ψ̄χ, the bar meaning the complex conju-
gation). Moreover,̂hψ also belongs toH andψ must satisfy
some of the following general boundary conditions:
(

ψ(0+)−iλψ′(0+)
ψ(0−)+iλψ′(0−)

)
=Û

(
ψ(0+)+iλψ′(0+)
ψ(0−)−iλψ′(0−)

)
. (2)

The parameterλ is inserted for dimensional reasons and the
2 × 2 matrix Û is unitary (and therefore, Eq. (2) is a 4-
parameter family of boundary conditions) [2]. We use the
notationψ(0±) = lim

ε→0
ψ(±ε), and the same for the deriva-

tive ψ′. We write the matrixÛ as follows:

Û = exp(iφ)
(

m0 − im3 −m2 − im1

m2 − im1 m0 + im3

)
, (3)

whereφ ∈ [0, π], and quantitiesmA ∈ R (A = 0, 1, 2, 3.)
satisfy(m0)2 + (m1)2 + (m2)2 + (m3)2 = 1.

Another 4-parameter family of boundary conditions can
algebraically be obtained from Eq. (2) [1]:

(
λψ′(0+)−λψ′(0−)

ψ(0+)−ψ(0−)

)
=Ŝ

(
ψ(0+)+ψ(0−)

λψ′(0+)+λψ′(0−)

)
, (4)

where the matrix̂S is:

Ŝ=
1

m1+sin(φ)

(−m0+cos(φ) −m3−im2

m3−im2 −m0− cos(φ)

)
. (5)

Note thatS11 andS22 are real, andS21 = −S̄12. This fam-
ily of boundary conditions was also mentioned and related
to others families in Ref. 3. It is worth mentioning that,
in principle, we do not have within (4) all of the boundary
conditions included in (2). For example, we do not have the
cases wherem1 +sin(φ) = 0 in (4); nevertheless, if we have
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a boundary condition wherem1 = − sin(φ), the singularity
in Eq. (5) could be conveniently avoided, and the respective
boundary condition could thus emerge from Eq. (4) [1].

The following boundary conditions are included in
Eqs. (2) and (4). Some of the names that identify these
boundary conditions are obvious but others will be justified
by studying their respective singular potentials:

(a) The Dirac delta interaction
(

ψ(0+)
λψ′(0+)

)
=

(
1 0

−2m0
m1

1

)(
ψ(0−)

λψ′(0−)

)
, (6)

which is obtained by setting:m0 = − cos(φ), m1 = sin(φ)
and m2 = m3 = 0. Note that, by makingφ = π/2
(⇒ m0/m1 = 0) in Eq. (6), we obtain the periodic boundary
condition,ψ(0+) = ψ(0−) andψ′(0+) = ψ′(0−).

(b) The first derivative of the Dirac delta interaction
(

ψ(0+)
λψ′(0+)

)
=

( 1+m3
m1

0
0 1−m3

m1

)(
ψ(0−)

λψ′(0−)

)
, (7)

which is obtained by setting:m0 = m2 = 0 ⇒ ((1 −
m3)/m1) = m1/(1 + m3), cos(φ) = 0 andsin(φ) = 1 ⇒
φ = π/2.

(c) The quasi-periodic interaction
(

ψ(0+)
λψ′(0+)

)
=

(
m1 − im2 0

0 m1 − im2

)(
ψ(0−)

λψ′(0−)

)
, (8)

which is obtained by making:m0 = m3 = 0 ⇒ (m1)2 +
(m2)2 = 1, cos(φ) = 0 and sin(φ) = 1 ⇒ φ = π/2.
Note that, by makingm1 = +1 andm2 = 0 in Eq. (8),
we obtain the periodic boundary condition (ψ(0+) = ψ(0−)
andψ′(0+) = ψ′(0−)). Likewise, by makingm1 = −1
andm2 = 0, we obtain the antiperiodic boundary condition,
ψ(0+) = −ψ(0−) andψ′(0+) = −ψ′(0−).

(d) The so-called “delta-prime” interaction
(

ψ(0+)
λψ′(0+)

)
=

(
1 −2m0

m1

0 1

)(
ψ(0−)

λψ′(0−)

)
, (9)

which is obtained by setting:m0 = cos(φ), m1 = sin(φ)
andm2 = m3 = 0. As in the example of the boundary con-
dition (a), the caseφ = π/2 (⇒ m0/m1 = 0) leads to the
periodic boundary condition.

(e) The Dirichlet boundary condition

ψ(0+) = ψ(0−) = 0, (10)

which is obtained by setting:m0 = +1, m2 = m3 = 0
(⇒ m1 = 0) andφ = π.

(f) The Neumann boundary condition

ψ′(0+) = ψ′(0−) = 0, (11)

which is obtained by setting:m0 = +1, m2 = m3 = 0
(⇒ m1 = 0) andφ = 0.

It is worth mentioning that, boundary condition (e)
is obtained from boundary condition (a) by noticing that

−2m0/m1 = +2 cot(φ) = −∞ (becauseφ → π−),
thus,ψ(0+) = ψ(0−) andψ′(0+) = ((−∞) × ψ(0−)) +
ψ′(0−) ⇒ ψ(0−) = 0, and thereforeψ(0+) = ψ(0−) = 0.
Likewise, boundary condition (f) is obtained from boundary
condition (d) by noticing that−2m0/m1 = −2 cot(φ) =
−∞ (becauseφ → 0+), soψ′(0+) = ψ′(0−) andψ(0+) =
ψ(0−) + ((−∞) × ψ′(0−)) ⇒ ψ′(0−) = 0, and therefore
ψ′(0+) = ψ′(0−) = 0.

1.2. Case (ii ): point interactions as singular potentials

In this case, one considers the line (R) with a singular poten-
tial at the origin (x = 0). The Hamiltonian operator is,

Ĥ = − ~
2

2m

d2

dx2
+ V̂ (x), (12)

wherex ∈ R. A plausible formal expression for a general
singular potential̂V (x) in terms of the Dirac delta and deriva-
tivesd/dx is the following:

V̂ (x) = g1δ(x)− (g2 − ig3)δ(x)
d
dx

+ (g2 + ig3)
d
dx

δ(x)− g4
d
dx

(
δ(x)

d
dx

)
, (13)

wheregB ∈ R (B = 1, 2, 3, 4.) [1, 4]. In this paper, the
derivative of the Dirac delta is written asδ′(x) ≡ dδ/dx,
that is, with the prime on the delta. The operatorĤ is for-
mally self-adjoint and depends on four real parameters [1]. It
has also been proved that everŷH with the singular poten-
tial (13) coincides with a certain self-adjoint extension ofĥ;
see Ref. 5 and references therein. In other words, any point
interaction encoded in the general boundary condition given
by Eq. (2) can be described by an operator with a singular
potential.

The singular potential̂V (x) can be written in a more sym-
metric way. For this, one uses the formulasψ(0) = 〈δ, ψ〉
andψ′(0) = −〈δ′, ψ〉. In essence, the latter formulas can
be obtained by using the (symbolic) sifting property for the
Dirac delta:

δ(x)ψ(x) = δ(x)ψ(0) = δ(x)〈δ, ψ〉 (14)

⇒

+∞∫

−∞
dx δ(x)ψ(x)=ψ(0)

+∞∫

−∞
dx δ(x) = ψ(0) = 〈δ, ψ〉


 ,

and

δ(x)ψ′(x) = δ(x)ψ′(0) = −δ(x)〈δ′, ψ〉 (15)

[
⇒

+∞∫

−∞
dx δ(x)ψ′(x) = ψ′(0)

×
+∞∫

−∞
dx δ(x) = ψ′(0) = −〈δ′, ψ〉,
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becauseδ′(x)ψ(x) = (d/dx)(δ(x)ψ(x)) − δ(x)ψ′(x) =
δ′(x)ψ(0)− δ(x)ψ′(0)

⇒
+∞∫

−∞
dx δ′(x)ψ(x) = ψ(0)

+∞∫

−∞
dx δ′(x)

− ψ′(0)

+∞∫

−∞
dx δ(x) = −ψ′(0)

]

(the common delta function properties

+∞∫

−∞
dx δ(x) = 1

and

+∞∫

−∞
dx δ′(x) = 0

were also used above). Because functionsψ(x) andψ′(x)
are not generally continuous atx = 0, ψ(0) andψ′(0) may
be written as the average at the discontinuity (this is certainly
only a plausible choice for discontinuous test functions):

ψ(0) ≡ ψ(0+) + ψ(0−)
2

,

ψ′(0) ≡ ψ′(0+) + ψ′(0−)
2

(16)

(see Ref. 6 for a discussion about situations in which the
latter definitions do not hold). Thus, one can also write ex-
pression (13) as follows:

V̂ (x) = g1〈δ, · 〉δ(x) + (g2 − ig3)〈δ′, · 〉δ(x)

+ (g2 + ig3)〈δ, · 〉δ′(x) + g4〈δ′, · 〉δ′(x), (17)

where〈F, ψ〉 (with F = δ or δ′) also denotes the actionF [ψ]
of the distribution (or linear functional)F on the test func-
tion ψ. Note that, if one defines the quantitiest00 ≡ g1,
t01 ≡ g2− ig3, t10 ≡ g2 +ig3 = t̄01 andt11 ≡ g4, then these
coefficients{tpq} define a2× 2 hermitian matrix [5].

Due to the presence ofδ(x) and δ′(x) in V̂ (x), the
Schr̈odinger equation can yield boundary conditions. In ef-
fect, one can use a procedure introduced earlier by Griffiths
for then-th derivative of a delta function potential in the fol-
lowing way [7]: integratingĤψ = Eψ from −ε to +ε and
taking the limitε → 0 gives the following first boundary con-
dition:

λψ′(0+)− λψ′(0−) =
1
2
λαg1 (ψ(0+) + ψ(0−))

− 1
2
α(g2 − ig3) (λψ′(0+) + λψ′(0−)) , (18)

whereα ≡ 2m/~2. Similarly, integratingĤψ = Eψ first
from x = −L (with L > 0) to x, then once more from−ε

to +ε and taking the limitε → 0 again, one obtains a second
boundary condition:

ψ(0+)− ψ(0−) =
1
2
α(g2 + ig3) (ψ(0+) + ψ(0−))

− 1
2

αg4

λ
(λψ′(0+) + λψ′(0−)) , (19)

where the relations

x∫

−L

dy δ(y) = Θ(x)

(Θ(x) is the Heaviside function:Θ(x < 0) = 0 and
Θ(x > 0) = 1) and

x∫

−L

dy δ′(y) = δ(x)

should be used. Note that Eqs. (18) and (19) precisely con-
stitute the family of boundary conditions (4), where, in this
case, the matrix̂S is

Ŝ =
1
2
α

(
λg1 −(g2 − ig3)

g2 + ig3 − g4
λ

)
. (20)

By comparing the matrix̂S in Eq. (5) with the matrixŜ
in Eq. (20), one obtains the following relations:

1
2
αλg1 =

−m0 + cos(φ)
m1 + sin(φ)

, (21)

1
2
αg2 =

m3

m1 + sin(φ)
, (22)

1
2
αg3 =

−m2

m1 + sin(φ)
, (23)

1
2
α

g4

λ
=

m0 + cos(φ)
m1 + sin(φ)

. (24)

Thus, if we use Eqs. (21)-(24), we can relate boundary con-
ditions included in (4) with potentials dependent of deltas in-
cluded in (13) (or (17)). The following potentials correspond
respectively to the examples of boundary conditions that were
introduced above:

(a) The Dirac delta potential

V̂ (x) = g1δ(x), (25)

which is obtained by setting:m0 = − cos(φ), m1 =
sin(φ) andm2 = m3 = 0, thus, (from relations (21)-(24))
g1 = 2 cot(φ)/αλ andg2 = g3 = g4 = 0. Therefore, (from
Eq. (13)) we obtain the result given in Eq. (25). Note that, by
makingφ = π/2, we obtaing1 = 0, and thereforêV (x) = 0.
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Also, by makingφ → π−, we obtaing1 → −∞ (this is the
case (e), which is presented below).

(b) The first derivative of the Dirac delta potential

V̂ (x) = g2δ
′(x), (26)

which is obtained by setting:m0 = m2 = 0 ⇒ ((1 −
m3)/m1) = m1/(1 + m3), cos(φ) = 0 andsin(φ) = 1 ⇒
φ = π/2, thus, (from relations (21)-(24))g2 = 2m3/α(1 +
m1) andg1 = g3 = g4 = 0. Therefore, (from Eq. (13))
we obtain the result given in Eq. (26). Note that, by making
m3 = 0 ⇒ m2

1 = 1, and taking the solutionm1 = 1, we
obtaing2 = 0, and thereforêV (x) = 0.

(c) The quasi-periodic (or quasi-free) potential

V̂ (x) = ig3

(
2

d
dx

δ(x)− δ′(x)
)

, (27)

which is obtained by setting:m0 = m3 = 0 ⇒ (m1)2 +
(m2)2 = 1, cos(φ) = 0 and sin(φ) = 1 ⇒ φ = π/2,
thus, (from relations (21)-(24))g3 = −2m2/α(1 + m1) and
g1 = g2 = g4 = 0. Therefore, (from Eq. (13)) we obtain
the result given in Eq. (27). It is worth noting that, by mak-
ing m1 = −1 andm2 = 0, we obtaing3 = 0/0. However,
in this case we can writem1 = −

√
1− (m2)2, and there-

fore g3 = −(2/α)
[
(2/m2)− (m2/2) + O((m2)3)

]
, which

implies thatg3 → −∞ whenm2 → 0 (⇒ m1 → −1). Pre-
cisely, the latter case corresponds to the antiperiodic bound-
ary condition (see the paragraph that follows Eq. (8)). Like-
wise, if m1 = +1 and m2 = 0, we obtain V̂ (x) =
0 (becauseg3 = 0). Incidentally, the Hamiltonian op-
erator (12) with the potential (27) can also be written as
Ĥ = (−i(d/dx) − g3δ(x))2 − g2

3(δ(x))2 (~2 = 2m = 1)
[5,8].

(d) The so-called “delta-prime” interaction potential

V̂ (x) = −g4
d
dx

(
δ(x)

d
dx

)
, (28)

which is obtained by setting:m0 = cos(φ), m1 = sin(φ)
and m2 = m3 = 0, thus, (from relations (21)-(24))
g4 = 2λ cot(φ)/α andg1 = g2 = g3 = 0. Hence, (from
Eq. (13)) we obtain the result given in Eq. (28). Note that, by
makingφ = π/2, we obtaing4 = 0, and thereforêV (x) = 0.
Moreover, by makingφ → 0+, we obtaing4 → +∞ (this
is the case (f), which is presented below). It is worth noting
that, the general singular potentialV̂ (x) in Eq. (13) is exactly
the sum of the four potentials (25)-(28) [1].

(e) The Dirichlet potential

V̂ (x) = lim
g1→−∞

g1δ(x), (29)

which is obtained by making:m0 = +1, m2 = m3 = 0 and
φ = π, thus, (from relations (21)-(24))g1 = −4/αλm1 and
g2 = g3 = g4 = 0. Also, m1 = 0 and thereforeg1 = −∞
(in fact,m1 → 0+ ⇒ g1 → −∞, andm1 → 0− ⇒ g1 →
+∞). Therefore, (from Eq. (13)) we obtain the result given
in Eq. (29). Note that the Dirichlet potential is the Dirac

delta potential with infinite strength, and it can (heuristically)
be written in the formV̂ (x) = −δ(0)δ(x) = −(δ(x))2.

(f) The Neumann potential

V̂ (x) = lim
g4→∞

−g4
d
dx

(
δ(x)

d
dx

)
, (30)

which is obtained by setting:m0 = +1, m2 = m3 = 0
andφ = 0, thus, (from relations (21)-(24))g4 = 4λ/αm1

and g1 = g2 = g3 = 0. Also, m1 = 0 and there-
fore g4 = +∞ (in fact, m1 → 0+ ⇒ g1 → +∞, and
m1 → 0− ⇒ g1 → −∞). Therefore, (from Eq. (13)) we
obtain the result given in Eq. (30). Note that the Neumann
potential is the “delta-prime” interaction potential with infi-
nite strength.

2. Bound States

In this section, we present the (normalized) bound state
eigenfunctions and their respective energy eigenvalues cor-
responding to the examples of point interactions that were
introduced above.

(a) For the Hamiltonian with the Dirac delta poten-
tial (25), V̂ (x) = g1δ(x), there exists a single bound state
with energyE < 0:

ψ(x) =

√
−1

2
αg1 exp

(
1
2
αg1 |x |

)
,

E = −1
4
α(g1)2, (31)

whereg1 < 0. This eigenfunction satisfies the boundary
condition (6): ψ(0+) = ψ(0−) ≡ ψ(0) and λψ′(0+) −
λψ′(0−) = 2 cot(φ)ψ(0), whereg1 = 2 cot(φ)/αλ. A nice
discussion of the Dirac delta potential, which includes the
scattering states, can be found in the book by Griffiths [9].
For studies on the completeness of the eigenfunctions in this
problem, see Refs. 10 and 11.

(b) For the Hamiltonian with the potential first deriva-
tive of the Dirac delta (26),V̂ (x) = g2δ

′(x), there
exists the trivial bound state solution (ψ(x) = 0)
with zero energyE = 0, i.e., there is no a non-
trivial square integrable solution that satisfies the bound-
ary condition (7): ψ(0+) = ((1 + m3)/m1)ψ(0−) and
ψ′(0+) = (m1/(1 + m3)) ψ′(0−), whereg2 = 2m3/α(1 +
m1) and(m1)2 + (m3)2 = 1. For a concise discussion of
this potential, which includes the scattering states, we rec-
ommend Ref. 12. For a study that considers the potential
−aδ(x) + bδ′(x), see Ref. 13. It should be noted that differ-
ent definitions of the derivative of the delta interaction exist
in the literature; seee.g. Refs. 6 and 14 and other references
quoted therein. Finally, another article that presents a very
particular study that involves the same potentialδ′(x) used
by us throughout the article can be found in Ref. 15. In the
Appendix B, we treat precisely with a different but very nat-
ural definition of this potential. However, we do not get a
nontrivial bound state in this case either.
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(c) For the Hamiltonian with the quasi-periodic poten-
tial (27), V̂ (x) = ig3 (2(d/dx)δ(x)− δ′(x)), there also ex-
ists the trivial bound state solution with zero energyE = 0,
whereψ(0+) = (m1 − im2)ψ(0−) along withψ′(0+) =
(m1 − im2)ψ′(0−) is the corresponding boundary condition
(formula (8)), andg3 = −2m2/α(1 + m1) with (m1)2 +
(m2)2 = 1. We have not found a complete discussion of the
scattering states for this potential (withm1 6= 0 andm2 6= 0)
in the literature. However, see Refs. 5 and 8 where various
aspects related to the boundary condition associated with this
potential are discussed.

(d) For the Hamiltonian with the “delta-prime” interac-
tion potential (28),̂V (x) = −g4(d/dx) (δ(x)(d/dx)), there
exists a single odd-parity bound state with energyE < 0:

ψ(x) =
√

2
αg4

sgn(x) exp
(
− 2

αg4
|x |

)
,

E = − 4
α3(g4)2

, (32)

whereg4 > 0 andsgn(x) is the sign function (sgn(x > 0) =
+1 andsgn(x < 0) = −1). This eigenfunction satisfies the
boundary condition (9):ψ(0+)−ψ(0−) = −2 cot(φ)λψ′(0)
andψ′(0+) = ψ′(0−) ≡ ψ′(0), whereg4 = 2λ cot(φ)/α.
Scattering states arising from this boundary condition were
obtained, for example, in Ref. 16 and the most important
spectral properties associated with the free Hamiltonian for
this boundary condition (as well as with others) were ana-
lyzed in [3]. In Ref. 17, it was shown that the boundary
condition defining this interaction arises precisely from the
potential (28).

(e) Because the Dirichlet potential (29) is obtained from
the Dirac delta potential (25) by setting the limit tog1 →
−∞, the eigenfunction and the respective energy eigenvalue
for the Hamiltonian with the Dirichlet potential can be ob-
tained from (31) by taking the same limit. Thus, we obtain
the following formal results:

ψ(x) = lim
g1→−∞

√
−1

2
αg1 exp

(
1
2
αg1 |x |

)

≡ lim
g1→−∞

ψ(g1, x) ⇒ |ψ(x) |2 = δ(x),

E = −∞, (33)

where we have used the following representation of the Dirac
delta [18]: δ(x) = lim

n→∞
(n/2) exp(−n |x |). Clearly,ψ(x)

looks like a highly localized state with infinite energy, in fact,
it is essentially the square root of the Dirac delta. Despite
these results, it is easy to show that the scalar product ofψ(x)
with a square integrable function,f ∈ H ≡ L2(R), vanishes.
The latter result implies that the distribution (or linear func-
tional) associated withψ(x),

ψ[f ] = 〈ψ, f〉 =

+∞∫

−∞
dxψ(x)f(x)

= lim
g1→−∞

+∞∫

−∞
dxψ(g1, x)f(x),

is precisely zero. In fact,

ψ[f ] = lim
g1→−∞

2
√
− 2

αg1

+∞∫

−∞
dx

1
2

(
−1

2
αg1

)

× exp
(

1
2
αg1 |x |

)
f(x)

= lim
g1→−∞

2
√
− 2

αg1
f(0) = 0. (34)

In the last step we used the representation of the Dirac delta
that was used to derive Eq. (33), and also the property

+∞∫

−∞
dx δ(x)f(x) = f(0).

Thus, we conclude that the eigenfunction is really trivial,i.e.,
ψ(x) = 0 everywhere onR, and it satisfies the boundary con-
dition (10): ψ(0+) = ψ(0−) = 0 (of course, to the system
corresponding to the case (i) where the origin is excluded). A
similar result to that given in Eq. (34) emerges in the problem
of the one-dimensional hydrogen atom. In that case the state
ψ(x) corresponds to the (nonexistent) ground state of infinite
binding energy [19,20].

(f) Because the Neumann potential (30) is obtained from
the “delta-prime” interaction potential (28) by setting the
limit to g4 →∞, the eigenfunction and the respective energy
eigenvalue for the Hamiltonian with the Neumann potential
can be obtained from (32) by taking the same limit. Thus, we
obtain the following results:

ψ(x) = 0, E = 0. (35)

This is the trivial bound state with zero energy, and it ob-
viously satisfies the boundary condition (11):ψ′(0+) =
ψ′(0−) = 0.

3. Conclusion

We have presented and examined the bound states for a num-
ber of representative examples of (Schrödinger) point inter-
actions,i.e., boundary conditions and singular potentials, that
were introduced, related and also discussed, throughout the
article. As we have seen, the (attractive) Dirac delta function
potential provides an even-parity bound state; this is a well-
known fact. If this potential has infinite strength it becomes
the Dirichlet potential, and therefore the state must satisfy the
Dirichlet boundary condition. Thus, the bound state becomes
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trivial in this latter case. Likewise, the labelled as “delta-
prime” interaction potential (this is not the first derivative
of the Dirac delta potential) also provides a bound state (an
odd-parity state). If this potential has infinite strength it be-
comes the Neumann potential,i.e., the state must satisfy the
Neumann boundary condition. However, this state is equal
to zero. On the other hand, in our model, the potential first
derivative of the Dirac delta function does not provide a non-
trivial bound state. If we change the definition ofδ′(x) for a
more natural, we do not obtain a nontrivial bound state either.
It is worth mentioning that this new potential is also a legit-
imate point interaction because it corresponds to a boundary
condition included in the domain of the (self-adjoint) Hamil-
tonianĥ (in fact, it is the Dirichlet boundary condition).

Appendix A

In this appendix we study some general aspects that have to
do with the eigenvalues and eigenvectors of the Hamiltonian
operator given by Eq. (1). More technical details can be
found, for example, in Ref. 21.

The Schr̈odinger equation for the eigenvalues with nega-
tive energyE ≡ −~2κ2/2m < 0 and eigenfunctionsψ(x)
is: ĥψ(x) − Eψ(x) = 0 ⇒ ψ′′(x) − κ2ψ(x) = 0, in the
regionΩ ≡ R − {0}. The solution of this equation has the
general form

ψ(x) = A exp(κx) Θ(−x) + B exp(−κx) Θ(x), (A1)

whereκ =
√

2m(−E)/~, Θ(x) is the Heaviside function,
and the constantsA andB are related by imposing boundary
conditions. We will consider the following four parameters
(general) family of boundary conditions, which was obtained
from Eq. (2) in Ref. 1:

(
ψ(0+)

λψ′(0+)

)
= exp(iϕ)

(
a b
c d

)(
ψ(0−)

λψ′(0−)

)
, (A2)

where

a ≡ m3 + sin(φ)√
(m1)2 + (m2)2

, (A3)

b ≡ −m0 − cos(φ)√
(m1)2 + (m2)2

, (A4)

c ≡ −m0 + cos(φ)√
(m1)2 + (m2)2

, (A5)

d ≡ −m3 + sin(φ)√
(m1)2 + (m2)2

, (A6)

and

ϕ ≡ tan−1

(
m1

m2

)
− π

2
, (A7)

with (m0)2+(m1)2+(m2)2+(m3)2=1 (becausead−bc=1).
By imposing on the solution (A1) the boundary conditions

given in Eq. (A2), we find the following homogeneous sys-
tem of equations (for the constantsA andB):

B = (a + λκb) exp(iϕ)A ,

λκB = −(c + λκd) exp(iϕ)A. (A8)

Note that, it follows from the equation that is on the left in
(A8) (for instance) that the eigenfunctions may be written as

ψ(x) = A

[
exp(κx)Θ(−x)

+ (a + λκb) exp(iϕ) exp(−κx)Θ(x)
]
. (A9)

Moreover, from Eq. (A8) we obtain the equation for the en-
ergy eigenvalues:

b(λκ)2 + (a + d)λκ + c = 0, (A10)

which has the following solutions:

λκ = − c

a + d
, (b = 0) ;

λκ = − (a + d)
2b

±
√

(a + d)2 − 4bc

2b
, (b 6= 0). (A11)

Let us suppose that the eigenfunctions have definite parity,
i.e., (i) if ψ is an even function, thenψ(0+) = ψ(0−) and
alsoψ′(0+) = −ψ′(0−); (ii) if ψ is an odd function, then
ψ(0+) = −ψ(0−) and alsoψ′(0+) = ψ′(0−). These two
conditions imply the following relations:

a = d , exp(iϕ) = 1, (A12)

which allow us to rewrite the results given in (A11) as fol-
lows:

λκ = − c

2a
, (b = 0) ;

λκ = −a

b
± 1

b
, (b 6= 0) (A13)

(in the last expression we also use the fact thatbc = ad− 1).
Note that, by taking the limitκ → 0 in the latter results, we
obtain the relationc = 0 (see Eq. (A10)). The latter is the
necessary condition for the existence of the eigenvalue zero;
however, in the case at hand the eigenfunction is trivial (or it
is not square integrable).

For example, for the Dirac delta interaction (a) (see
Eq. (6)), we have thata = d = 1, b = 0 and
c = −2m0/m1 = αλg1 (and alsoϕ = 0); therefore (from
Eq. (A9) and Eq. (A13) withb = 0) we obtain the results
given by Eq. (31) (we also have to normalize the eigenfunc-
tion). Likewise, for the “delta-prime” interaction (d) (see
Eq. (9)), we have thata = d = 1, b = −2m0/m1 =
−αg4/λ, c = 0 (and alsoϕ = 0); hence (from Eq. (A9) and
Eq. (A13) withb 6= 0) we obtain the results given by Eq. (32)
(again, we also have to normalize the eigenfunction).
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Appendix B

In this appendix we explicitly solve the Schrödinger equation
for the eigenvalues with negative energyE ≡ −~2κ2/2m <
0 and eigenfunctionsψ(x) in the potentialV̂ (x) = g2δ

′(x),
where

δ′(x) = lim
N→0

δ(x + N)− δ(x−N)
2N

, (B1)

in the regionΩ ≡ R. That is to say,

Ĥψ(x)− Eψ(x) = 0 ⇒ ψ′′(x)

− κ2ψ(x) = αV̂ (x)ψ(x) (36)

⇒ ψ′′(x)− κ2ψ(x) = lim
N→0

αg2

2N

× [
δ(x + N)− δ(x−N)

]
ψ(x), (B2)

whereα ≡ 2m/~2 (Ĥ is given by Eq. (12)). As discussed
below, the potential̂V (x) defined in this appendix is not ex-
actly the same as that used throughout the article (see poten-
tial (b) in Eq. (26)).

Due to the presence of two Dirac deltas in Eq. (B2),ψ(x)
must satisfy the following boundary conditions atx = −N
andx = N , lettingN → 0 at the end:

ψ((−N)+) = ψ((−N)−) ≡ ψ(−N) ,

ψ′((−N)+)− ψ′((−N)−) =
αg2

2N
ψ(−N) (B3)

and

ψ(N+) = ψ(N−) ≡ ψ(N) ,

ψ′(N+)− ψ′(N−) = −αg2

2N
ψ(N), (B4)

whereψ(x±) = lim
ε→0

ψ(x±ε) (and the same definition for the

derivativeψ′). Notice that boundary conditions (B3) and (B4)
tend to the Dirichlet boundary condition,ψ(0+) = ψ(0−) ≡
ψ(0) = 0, when N → 0. Thus, this confirms that we
are using a different definition of the first derivative of the
Dirac delta interaction to that presented in Sec. I (compare
the Dirichlet boundary condition with boundary condition (b)
given in Eq. (7)).

The solution of Eq. (B2) has the general form

ψ(x) = A exp(κx)Θ(−N−x)+B exp(−κx)Θ(x−N)

+ [ C exp(κx) + D exp(−κx) ]

× [ Θ(x + N)−Θ(x−N) ] , (B5)

whereκ =
√

2m(−E)/~, Θ(x) is the Heaviside function.
The following homogeneous system of equations to the con-
stantA, B, C andD is obtained after imposing the boundary
conditions (B3) and (B4) on solution (B5), withN → 0:




exp(−κN) 0 − exp(−κN) − exp(κN)(
κN + αg2

2

)
exp(−κN) 0 −κN exp(−κN) κN exp(κN)

0 exp(−κN) − exp(κN) − exp(−κN)
0

(
αg2
2 − κN

)
exp(−κN) −κN exp(κN) κN exp(−κN)







A
B
C
D


 = 0. (B6)

The cancellation of the determinant of the square matrix
in (B6) provides the following equation for the energy eigen-
values:

(κN)2 +
1
4

(αg2

2

)2

[ exp(−4κN)− 1 ] = 0, (B7)

whereN → 0 is understood. Therefore,

4κN = − ln

[
1− 4

(
2

αg2

)2

(κN)2
]

= −
[
−4

(
2

αg2

)2

(κN)2 + O(κN)4
]

,

⇒ κ −→
N→0

1
N

(αg2

2

)2

= ∞. (B8)

Finally, the energy corresponding to the bound state is

E = lim
N→0

− κ2

α
= lim

N→0
− 1

αN2

(αg2

2

)4

= −∞. (B9)

Using the two equations in (B6) that are independent of
αg2/2, we obtain the constantsC andD in terms ofA andB,

C =
A−B exp(2κN)
1− exp(4κN)

,

D =
B −A exp(2κN)
1− exp(4κN)

. (B10)

For example, substituting these relations into the second
equation of (B6), the following relation is obtained:

B = A

[
1 +

1− exp(−4κN)
2
√

κN

]

= A
[
1 + 2

√
κN + 2κN + O(κN)2

]
,

⇒ B −→
N→0

A. (B11)

Therefore, the eigenfunction that corresponds to the eigen-
value of infinite energy has the form:
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ψ(x) = lim
κ→∞

A exp(κx) , for x ≤ 0; (B12)

ψ(x) = lim
κ→∞

A exp(−κx) , for x ≥ 0; (B13)

ψ(x)= lim
κ→∞

lim
N→0

lim
x→0

A

[−4 exp(κN) sinh(κN)
1− exp(4κN)

]

× cosh(κx) = lim
κ→∞

lim
N→0

A

[
1− κN +

1
3
(κN)3

+ O(κN)5
]

= lim
κ→∞

A , for x = 0. (B14)

That is to say,

ψ(x) = lim
κ→∞

A exp (−κ |x |) ,

for −∞ < x < ∞; (B15)

whereA=
√

κ if ψ(x) is normalized. Also note that, because
δ(x)= lim

κ→∞
κ exp(−2κ |x |) [18], then |ψ(x) |2 =δ(x).

However,〈ψ, f〉 = 0 for all square integrable functionf ,
thereforeψ = 0 in R. These results are not unexpected since
the potentialV̂ (x) = g2δ

′(x), with δ′(x) given by Eq. (B1),
leads to the Dirichlet boundary condition (e). That is, these
results are consistent with those for the Dirichlet potential (e).
The procedure made in this appendix is close to that made in
Ref. 22. Likewise, a very nice and also recent study that dis-
cusses the difficulties surrounding the definition of the delta
prime potential can be seen in Ref. 23.
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