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This work is an introduction at a beginning graduate or advanced undergraduate level to Kurt Gödel’s foray into cosmology. After an
elementary introduction to the basics of Einstein’s theory of gravitation, we simply present the Gödel’s solution and the geodesic equations
associated with it. This equations are then explicitly solved obtaining its full set of temporal geodesics. Armed with such explicit expressions,
the geodesic time-travelling possibilities of Gödel’s universe are discussed. We search for their time-like closed geodesics that, following
Gödel’s analysis, other people has imagined as possible routes for time-travel. We next exhibit that such time-travelling possibility do not
exist in his model universe. This is done in the most straightforward way possible, framing the discussion as to serve as a simple example for
students of General Relativity.
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1. Introduction

Kurt Gödel, one of the greatest logicians of all time [1],
discovered in 1949 a solution to Einstein’s field equations,
describing the G̈odel universe (GU), which some people
claimed that there exist geodesics which run smoothly back
into themselves;i.e. the GU was imagined endowed with
closed time-like and geodesic world lines. Furthermore, in
this spacetime matter is rigidly rotating respect to, as Gödel
put it, a compass of inertia. You may imagine such inertia
compass as a set of gyrocompasses fixed to every galaxy in
GU and such that all such galaxies rotate in unison about its
prescribed parallel-transported normals, so indicating that the
entire GU rotates rigidly in the opposite sense. Therefore,
GU is homogeneous but cannot be isotropic, a feature that
prevents the definition of a unique time valid for the whole
universe [2]. The notion of causality itself, implying that
a cause happens earlier than its effect, was moreover chal-
lenged by the existence of such closed time-like geodesics,
since a time-machine for travelling into one’s own past had
become a possibility sanctioned by general relativity (GR).
Time travel lead to questions as, ‘how can we understand
that someone could kill her own ancestors destroying in this
way the very conditions for her existence?’ As we recognize
that these are the sort of discussions that attract students into
GR, it is important to offer physics students an introduction
to GR and to cosmological features like of GU from a not

too-complicated standpoint, as we intend to offer in this con-
tribution. Incidentally, it is apt to mention that Gödel himself
began his scientific career in 1924 as a physics student at Vi-
enna University and that he was keenly interested in physics
for the rest of his life [1, 3]. G̈odel managed to obtain a cos-
mological solution in GR with the above-mentioned temporal
structure and some other features that, as he was well aware,
do not represent the universe we live in. For example, a uni-
verse in which matter rigidly rotates [4] means that GU is ho-
mogeneous but not isotropic. Moreover, it is an example of a
cosmology exhibiting properties associated with the rotation
of the universe as a whole. The conflict with observations
notwithstanding, he maintained that if GR permits such be-
havior then it should be studied in detail. The Gödel metric
(3) solves the Einstein field equations with a homogeneous
perfect fluid source [2, 3], see Eq. (6). Moreover, it has been
regarded as an important pedagogical example [6] as it may
illustrate some of the remarkable behavior GR predicts. GU
is known to allow closed timelike and closed nullcurves, but
as we are going to exhibit here, it containsno closed temporal
geodesics, that is, that no observer can travel in such a way
in Gödel’s model universe. GU is also known to be geodesi-
cally complete, the domain of definition of every geodesic is
the whole real line [5]— containing neither a singularity nor
a horizon —of the sort occurring in black-hole solutions [6].
Gödel’s cosmological solution was one of the first to admit
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the possibility of time travel, but such non-causal possibility
occurs in other metrics like Kerr’s and Stockum’s [6, 8, 9].
This GU feature seems to have been considered as the most
important point of the solution by G̈odel himself, who was
supposedly trying to show that Einstein’s equations were not
consistent with our basic concept of time. For, in GU, the
usual distinction oflater thanandearlier than is no longer
permitted, simply because a time machine enabling one to
travel into ones own past became a GR-sanctioned possibil-
ity [1,6].

Most non-vacuum cosmological solutions allow defining
a universal time coordinate,τ , the so-called cosmological
time, thanks to the existence to a system of 3-spaces ev-
erywhere orthogonal to the world lines of matter. The non-
existence of such a system, hence ofτ , is equivalent to a ro-
tation of matter relative to a system of free-falling observers,
each carrying giroscopes with parallel(-transported) angular
momenta,i.e. rotating respect the aforementioned compass
of inertia [2]. As G̈odel proposed a homogeneous rotating
universe, the use of such cosmological time is not allowed
as closed time-like curves (that are not geodesics!) are pos-
sible. Let us clearly state that we do not pretend to derive
the G̈odel solution in this paper, we only discuss its geodesic
temporal properties, for a more or less simple derivation see
Ref. 3. This paper is organized as follows, after giving a very
brief cursory introduction to Einstein equations in Sec. 2,
we obtain the complete set of solutions to GU geodesic equa-
tions. We analyse such curves and, after writing them in what
we call hypercylindrical coordinates, we exhibit that closed,
future-pointing, time-like geodesics do not exist in GU. We
expect our solution and subsequent discussion be of help to
students trying to get a grip on the basic techniques needed
in the study of GR.

2. General relativity basics

Einstein general relativity is a geometric theory of gravitation
in which Newton’s force of gravity is replaced by the curva-
ture of 4-dimensional spacetime. But, what do we mean by
curvatureof a space(time)? as described in Ref. 14, the term
is used as “an analogy, a visual way of extending ideas about
three–dimensional space to the four dimensions of space-
time.” GR also serves to explain certain facts that are not even
mentioned in Newton’s theory, as the cancelation of gravita-
tional fields by accelerated motions. That is, as the accelera-
tion in a gravitational field is independent of the mass of the
body then gravitational interactions behave as pseudo-forces,
or inertial forces, that can always be cancelled (at least in a
small spacetime region) by the proper selection of a refer-
ence frame. Such cancelation is known by the name ofweak
principle of equivalence.The so-calledstrong principle of
equivalence, on the other hand, states that the results of any
experiment (gravitational or not) in a free-falling laboratory
is independent both of the velocity of the laboratory and of its
location. These two principles suggests that gravity behaves
as an inertial force or, as stablished by Einstein’s general rela-

tivity, that is geometric in nature. Accepting such basic tenet,
it then follows that the metric alone suffices to determine the
effect of gravity. We pinpoint also that GR is the only the-
ory of gravity that satisfies both previously stated equivalence
principles. Those changes in the basic framework of gravita-
tion obliges masses free from non-gravitational interactions
to move not in “old-fashioned” straight lines but along cer-
tain natural trajectories in spacetime (remember, there are no
forces just the “bumps and hollows” of spacetime), such im-
portant trajectories, thegeodesics, may be described as those
minimizing the proper-time between any eventsA andB (or
minimizing the interval between them). Such interval, or
rather, square of the interval,dτ2, is in differential form and
for a region completelyfreefrom gravity

dτ2 = dt2 − dx2 − dy2 − dz2 = dt2 − dr2

= dt2 (1− v · v) (1)

where we are using units such that the speed of light is unity,
i .e. c = 1, v = dr/dt is the particle’s standard 3-velocity,
the · represents the usual dot product, andxA = (rA, tA),
xB = xA + dx are the coordinates of the spacetime eventsA
andB, separated by the infinitesimal intervaldx = (dr, dt).
Notice that the interval,ds, can be real, zero, or purely imag-
inary, corresponding to spacetime points separated in such a
way thatA andB may be connected by an inertial observer, a
ray of light, or free from any possibility of causal connection.
Notice also that the interval along a worldline connectingA
andB can be measured by a clock riding on such world line.
That is,ds, may be called either the interval or the proper
time, dτ = ds, along the worldline. To describe the motion
of matter, we introduce the 4-velocity,va = dxa/dτ , and the
4-acceleration,ac = dvc/dτ , both defined along a worldline.
The 4-velocity is a 4-vector tangent to the particle’s worldline
and complying withvavbgab = 1, andvc adgcd = 0. Here,
as in the rest of the paper, we use the summation convention
where repeated indices are regarded as summed over from 0
to 3. Thegµν stands for the metric tensor whose coefficients
can be arranged in matrix form as

gflat =




1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1


 , (2)

this metric is the one corresponding to theflat spacetimeof
special relativity which is called the Minkowsky metric. In
the more general, non-flat spacetime of general relativity the
components ofg(x) are in general not constants but func-
tions of the spacetime pointxµ, such dependence accounts
for the curvature of spacetime which is the manifestation of
the action of gravity.

So, how can we describe the gravitational interaction us-
ing no forces? We have to accept first the idea thatphysics
is simple only when analyzed locally, gravitation should be,
at difference with Newton’s action-at-a-distance approach, a
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completely local phenomena. We should accept that the grav-
itational interaction is mediated by the local structure of the
spacetime, which is a 4-dimensional space or a 4-dimensional
manifoldi. We have to accept that spacetime tells matter how
to behave and, in turn and because we want a closed theory,
that matter determines the local curvature of spacetime, the
curvature acts back on matter determining its motion. We
should forget everything about the old-fashioned notion of
force of gravity and start thinking that the particles of matter
or the quanta of fields when not acted by non-gravitational in-
teractions follow the straightest possible paths in spacetime:
they should travel alonggeodesics[12]. So, the metric ten-
sor, gµν , plays the role of the gravitational field in general
relativity. In our G̈odel case, the free particles should follow
the GU geodesics; our first task then is to derive the possi-
ble geodesic paths in GU and then to prove impossible that
travelling on such paths we could manage to travel back in
time.

3. The geodesic equations for GU

The G̈odel spacetime is a stationary solution of the Einstein
equations with nonvanishing cosmological constantΛ whose
matter content for comoving observers consists of dust with
constant densityρii, as shown in Eq. (6).

The G̈odel’s metric solves the Einstein field equations
with a homogeneous perfect fluid source given in (6). For
comoving observers such matter can be thought of as consist-
ing of dust with constant densityρ, the associated spacetime
admits closed timelike and closed null curves but contains
no closed timelike nor closed null geodesics. This is one of
the things we want to exhibit here. Moreover, all possible
geodesics in GU never encounter a singularity or meet a hori-
zon, as do happen with the geodesics of the Schwartzchild
solution [5]. Assumingc = 1 Gödel’s metric may be written
as

ds2 = a2
(
dx0

2 − dx1
2 + (exp(2x1)/2)dx2

2

− dx3
2 + 2 exp(x1)dx0dx2

)
, (3)

or, in matrix form,

gGU = a2




1 0 exp(x1) 0
0 −1 0 0

exp(x1) 0 exp(2x1)/2 0
0 0 0 −1


 (4)

where thexµ, µ = 0, 1, 2, 3, are the space-time coordinates
and a is Gödel’s constant parameter, related to the angu-
lar velocity Ω of matter respect the compass of inertia by
a = 1/(

√
2Ω) [2, 3]. The metric (3) satisfies Einstein equa-

tions,

Rab + (Λ− 1
2
R)gab = −

√
8πG Tab, (5)

whereΛ = −1/(2a2) is the value of cosmological constant
used by G̈odel, ρ is the matter density,G the gravitational

constant and the energy-momentum tensor is

T ab = ρ uaub, (6)

with ua the 4-velocity of matter. From (3), we may also get
the non-zero Christoffel symbols,

Γ012 = Γ120 = Γ210 = a2 exp(x1)/2,

Γ122 = −Γ221 = Γ212 = a2 exp(2x1)/2,

Γ01
0 = 1, Γ22

1 = exp(2x1)/2,

Γ10
2 = − exp(−x1), Γ12

0 = Γ02
1 = exp(x1)/2, (7)

the non-vanishing components of the Ricci tensor

R00 = 1, R22 = exp(2x1),

R02 = R20 = exp(x1), (8)

the curvature scalar

R =
1
a2

, (9)

and the geodesic equations

d2xα

dτ2
+ Γβσ

α

dxβ

dτ

dxσ

dτ
= 0. (10)

Note that the previous equation clealy exhibits that the “ac-
celeration” (thed2xα/dτ2 term) along the geodesic has no
components outside the tangent plane of the spacetime man-
ifold, so the motion is completely determined by the bending
and the deforming of it.

For the specific GU case, the geodesic equations that fol-
low from (10) are

ẍ0 + 2ẋ0ẋ1 + exp(x1)ẋ1ẋ2 = 0, (11)

ẍ1 + exp(x1)ẋ0ẋ2 + exp(2x1)(ẋ2)2/2 = 0, (12)

ẍ2 − 2 exp(x1)ẋ0ẋ1 = 0, (13)

and

ẍ3 = 0, (14)

were the overdots stand for derivatives respect to the proper
time τ .

Equation (14) can be inmediately solved to get

ẋ3 = C and x3 = Cτ + c3 (15)

whereC is the starting value of the third component of the
4−velocity, ẋ3, andc3 is the starting value ofx3. Next, we
realize that we can complete a square in metric (3), rewrite
such equation, and, dividing twice bydτ , we get what we
may call a first integral of the geodesic equations

(ẋ0 + exp(x1)ẋ2)
2 − (ẋ1)2

− exp(2x1)(ẋ2)2/2− (ẋ3)2 = 1. (16)
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We then proceed to solve for thėxµ with µ = 0, 1, 2, we
first take the product of (12) timeṡx1 and the product of (13)
timesexp(2x1)ẋ2/2, finally adding the results, we get

ẋ1ẍ1+
1
2

exp(2x1)ẋ1(ẋ2)2+
1
2

exp(2x1)ẋ2ẍ2=0, (17)

integrating this last equation, we obtain

B2 = (ẋ1)2 +
1
2

exp(2x1)(ẋ2)2, (18)

whereB is a constant. From (18), we obtainẋ2 in terms of
ẋ1

ẋ2 =
√

2 exp(−x1)[B2 − (ẋ1)2]1/2. (19)

Now, using (15) and (18), in (16) we obtain

D ≡
√

2(1 + B2 + C2) =
√

2 (ẋ0 + exp(x1)ẋ2). (20)

Now, on analysing (27), we may obtain

ẋ0 = (D/
√

2)− exp(x1)ẋ2

= (1/
√

2)
(
D − 2[B2 − (ẋ1)2]1/2

)
; (21)

then, we found it convenient to introduce the auxiliary vari-
ableθ through

ẋ1 ≡ B sin θ, (22)

using this last definition, Eq. (19) and Eq. (21), in (12) we
obtain

dθ

ds
= B cos θ −D. (23)

which expresses a useful relationship betweenτ andθ, as we
exhibit in what follows.

Solving Eq. (23), we get

τ = −
√

4
(D2 −B2)

arctan

[(
D + B

D −B

)1/2

tan
(

θ

2

)]

≡ 2
(D2 −B2)1/2

σ, (24)

were we have introducedσ as an scaled measure of the orig-
inal interval τ . From now on, we employσ as our proper
time parameter using it instead ofτ and, as follows from (18)
and (20), we assumeD ≥ B. Furthermore, using (24), the
relationship betweenθ andσ is

tanσ = −
√

D + B

D −B
tan

(
θ

2

)
. (25)

From the previous transformations, we get

cos θ =
1− α tan2 σ

1 + α tan2 σ
, sin θ = −2

√
α

tan σ

1 + α tan2 σ
,

where α ≡ D −B

D + B
, (26)

and, after obtaininġx1 from Eq. (22), we can use (24), (25),
and (26), to write

dx1

dσ
= ẋ1

ds

dσ
= −

(
4B

D + B

)
tan σ

1 + α tan2 σ
. (27)

The first-order geodesics Eqs. (19) and (21), now become

dx0

dσ
=

(
2

D2−B2

)1/2 [
D−2B

(
1−α tan2 σ

1+α tan2 σ

)]
, (28)

dx2

dσ
=2e−c1

(
2B2

D2−B2

)1/2 (1−α tan2 σ) sec2 σ

(1+α tan2 σ)2
, (29)

and, in spite of the fact that we already know its solution (15),
we add

dx3

dσ
=

2C

(D2 −B2)1/2
. (30)

We have gotten the four first-order geodesic equations
in terms ofσ, which we can then proceed to write for the
xµ µ = 0, 1, 2, 3, as

x0=−
(

2D2

D2−B2

)1/2

σ

+2
√

2 arctan(
√

α tan σ)+c0, (31)

x1 = log
(

1 + α tan2 σ

1 + tan2 σ

)
+ c1, (32)

x2 = 2e−c1

(
2B2

D2 −B2

)1/2 tan σ

1 + α tan2 σ
+ c2, (33)

x3 =
2C

(D2 −B2)1/2
σ + c3. (34)

These solutions, withc0 = c1 = c2 = c3 = 0, α = 1/4,
C = 1/3, are plotted in Fig. 1, we want to pinpoint that they

FIGURE 1. Solution of the geodesics equations. Thex0-coordinate
is plotted as the thin line showing a discontinuity,x1 is plotted as
a thick continuous line,x2 is plotted as a dashed line, andx3 is
the dotted line. The obvious discontinuity in the plot is completely
harmless as it is just a coordinate discontinuity, as explained in the
text.
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they are of the same form that Chandrasekhar and Wright
found [7]. However, there is a difference between the graph
of thex0-coordinate in [7] and the one shown here. In [7]x0

has an apparent maximum atσ = 3π/4 that we can not found
here and in our result it shows a discontinuity atσ = π/2 that
is nowhere in sight in [7]. This difference is rather extraor-
dinary because we are plotting our solution, that is the same
as Chandrasekhar’s, and also because the discontinuity was
to be expected because of theArcTanfunction. However, as
we show in the next section, this is a discontinuity that dis-
appears after a simple change of coordinates and so there is
nothing to worry about since it is not part of the spacetime
structure but just a consequence of the chosen coordinates.

It is convenient to change variables to the coordinates
(r, ϕ, t, z) through the transformations,

ex1 = cosh 2r + cosϕ sinh 2r, (35)

x2 ex1 =
√

2 sinϕ sinh 2r, (36)

tan
(

ϕ

2
+

x− 2t

2
√

2

)
= e−2r tan

ϕ

2
, (37)

x3 = 2z. (38)

In the new coordinates, we have

ds2 = 4a2(dt2 − dr2 − dz2

+ (sinh4 r − sinh2 r)dϕ2 + 23/2 sinh2 rdϕdt); (39)

which explicitly exhibit the cylindrical symmetry of the
metric—they can be regarded as a sort of “hyper-cylindrical”
coordinates. The coordinater is a generic function ofσ un-
lessc1 takes certain values, for example, if

e2c1 = 1/α, (40)

r becomes independet ofσ, accordingly1 ≤ cosh 2r ≤ √
2

and

cosh 2r =
1
2

(
1√
α

+
√

α

)
. (41)

On account of the previous equations, if we take

ϕ = 2σ, (42)

and use (31) and (42), equation (37) becomes

t =
√

2(1− 1/2 cosh 2r)σ = βσ. (43)

The solution of the geodesic equations simplifies due to the
constancy ofx3 = z andr. Note that no trace of the singu-
larity is found in hypercylindrical coordinates ergo the sin-
gularity found is merely an artifact of the description —as is
the case of the singularity near the poles of a sphere in 3D-
spherical-coordinates that disappear in cartesian coordinates.

With the explicit solution to the geodesic equations given
above to show the non-existence of closed futue pointing

world lines becomes an almost trivial task. Let us calculate
first the 4-velocity of the geodesics, as

ua =
dxa

dσ
(44)

which is future pointing. Additionally, as G̈odel showed, a
positive direction of time can be introduced in any tempo-
ral or null geodesic in such a way that we can be determine
which of any two neighboring points is earlier and which is
later. Furthermore, we need to check if there exist a number
T such thatW a(τ) = W a(τ+T ) for any value of the proper-
time τ , whereW stands for any one ofr, φ or z. But the last
one,z, clearly complies with the condition for anyT because
it is a constant. For the remaining coordinates such condi-
tions should be clear on taking the derivatives of (31), (32),
(33) and (34) and we may safely grant that we have proved
that the supposed closed time-like geodesics in GU do not
exist.

4. Conclusion

We have derived analytical solutions to the geodesic equa-
tions of G̈odel’s metric for general initial conditions. The
general solution was also used to determine whether or not
causality violations exist when traveling on geodesics. Chan-
drasekhar and Wright [7] presented an independent deriva-
tion of the solution. They concluded that there are no closed
timelike geodesics and noted that this fact seems to be con-
trary to G̈odel’s statement that the “circular orbits” allow one
to travel into the past or otherwise influence the past. We
have informally proved that in G̈odel universe there are no
closed time-like geodesics and so that time travelling using
one of the GU geodesics is not possible. But, of course, this
not prevent the possibility of time-travel using any other kind
of curves. There are more issues with GU that one should
be aware of such as that it provides an example of an anti-
Machianiii distribution of matter,i. e. one where the rotation
of the compass of inertia bears no relation to the mass distri-
bution in the universe.

The proof that in GU time travel cannot be performed
along a geodesic has been given originally by Kundt [11]
and independently by Chandrasekhar and Wright [7], but,
as Chandrasekhar and Wright misinterpreted Gödel’s paper,
they claimed that their results were in contradiction to some
of the statements in it. Because, in Ref. 7, Chandrasekhar
and Wright did not find any closed time-like geodesics, they
announced that G̈odel’s claim about the possibility of time-
travel in his universe was incorrect. However, a careful read-
ing of Gödel’s papers would suffice to understand that he
had never claimed that the closed time-like world lines in his
model were geodesic, in GU geodesic time-travel is not al-
lowed as we have shown again in this paper. The only con-
clusion then is that the claimed result in Ref. 7 is mistaken.
This may be taken as a good lesson for any student of gen-
eral relativity, as we shall never acritically accept as correct
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the claims made in any scientific work—the prestige of the
authors notwhitstanding.

But you should notice that the features of GU bring to the
fore two basic issues of general relativity. The first is the pos-
sible existence of closed time-loops, which means trouble for
causality. The possible causal connectability of each point in
this space-time with each other involves relevant questions as
to whether our concepts of causal connectibility and causal-
ity are compatible with the consequences of GU solution. A
possible answer to this is that it should be expected that na-
ture has some (as yet unknown) mechanism preventing the
formation of such universes, analogous perhaps to the speed
limit in special relativity, which also could serve to preserve
causality—but at present this is really just a hope not a so-
lution. A case in point is the chronology postulate proposed
expressely to avoid solutions like the non-geodesic but closed
world lines that do exists in GU. The second issue is the
non-unicity of simultaneity in some relativistic cosmologies
though not in others. But this is not really a problem, as spe-
cial relativity has taught us to accept it. Another point raised
by Gödel paper is his demonstration that the possibility of the
non-existence of an universal time is some thing that should

not take for granted when working in GR, he was completely
convinced that expanding (as the actual universe) and rotat-
ing solu tion to Einstein field equations did exist and that in
such universes absolute time might also fail to exist [1,10].
Anyhow, as Einstein himself said [13]. “G̈odel’s paper is the
most important one on relativity theory since my own original
paper appeared.” We must say however that Einstein point of
view on the importance of G̈odel result is not shared by most
researchers nowadays.
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i. An n-dimensional manifold can be though as any space that lo-
cally looks likeRn, just think of a sphere that in a very small
patch may be regarded as isomorphic toR2 as we use on draw-
ing city or country maps.

ii. Comoving observers are observers who perceive the universe as
isotropic. They are called “comoving” observers because they
move along with the motion of galaxies that follow the overall
expansion of the universe.

iii. Mach principle can be loosely stated as “There is a sort of phys-
ical relationship between the motion and distribution of distant
stars and the behaviour of local inertial frames.”
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Gödel, (A K Peters, Wellesley USA, 1997).
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