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Anomaly of non-locality and entanglement in teaching quantum information
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Non-locality and quantum entanglement constitute two special features of quantum systems of enormous relevance in quantum information
theory (QIT). Historically regarded as identical or equivalent for many years, they constitute different concepts. We want to stress in the
present contribution such difference which actually may guide the instructor to cover the most essential topics of QIT in any section of some
introductory course. We shall address the simplest possible case of that of two qubits. The material may be of interest to instructors teaching
high-undergraduate quantum mechanics, as well as students.
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1. Introduction

In teaching quantum mechanics (QM) to upper-year under-
graduates a bit of the basics of QIT, it is quite common to
study the singlet state as a paradigm. When the two spin-
(1/2) particles are moving apart, towards two distant ob-
servers –Alice and Bob, a quite common terminology bor-
rowed from information theory– their spins will be measured
locally (usually along thez-axis for simplicity). Students are
told that whenever Alice measures either~/2 or −~/2, she
instantlyknows that Bob will obtain the opposite result upon
measuring the other particle’s spin along the same direction.
Then it is mentioned that the two particles areentangledor,
in other words, they display a quantum correlation which is
called non-locality. This zeroth approximation to QIT for
quantum mechanics students is extremely common in non-
specialized textbooks. The discussion then goes on to address
if causality is violated –which is not– and how it is possible
that after the measurement on one particle, the state of the
other becomesimmediatelywell-defined.

Schr̈odinger’s reply [1] to the paradox posed by Einstein
et al. [2] motivated the modern notion of entanglement in a
quantum system. Schrödinger, opposing EPR, did not rec-
ognize any conflict in their argument and regarded entangle-
ment, or the impossibility of describing two particles sepa-
rately from each other, asthecharacteristic feature of QM.

The above description explained in terms of spins is the
Bohm’s simplified version [3] of the original argument by
Einstein, Podolsky and Rosen (EPR) [2] in 1935 (for about
fifteen years following EPR!). EPR suggested a descrip-
tion of nature, called “local realism”, which assigned in-
dependent properties to distant parties in a composite sys-
tem to conclude that QM was incomplete. They used in-

stead the Heisenberg position-momentum uncertainty prin-
ciple∆x ·∆p ≥ ~/2.

The existing literature regarding entanglement is vast.
The role played by entanglement [4, 4–13] in quantum sys-
tems for two parties and in the context of general many-body
systems has been the subject of extensive work (See [14] and
references therein). The advent of quantum-information the-
ory (QIT) boosted the interest for entanglement since it lies
at the basis of some of the most important processes and ap-
plications studied by QIT such as quantum cryptographic key
distribution [9], quantum teleportation [10], superdense cod-
ing [11] and quantum computation [12,13], among many oth-
ers which possess no classical counterpart.

Likewise, extensive research has also been made on the
issue of non-locality, ranging from its contextualization in
QM [15–17], regarding experimental set-ups in the under-
graduate laboratory [18], and also somehow against the usual
mainstream[19]. We want to highlight that our contribution
is not to review entanglement and non-locality, but to cope
with the best way to teach them at the undergraduate level
without confusion.

There are two key assumptions that are misunderstood in
the usual first attempts to address QIT by studying two qubits.
On the one hand, any two particles governed by a given statis-
tics, let us say two fermions, arenot entangled for the sake
of being anti-symmetric. They just possess a state which is
anti-symmetric, that is all. These ”statistical correlations” are
not the quantum correlations that are required in QIT. On the
other hand, it is usually taken for granted thatentanglement
andnon-localityare equivalent, which is partially true in the
case of two qubits, but not in the general case. In point of
fact, entanglement and non-locality constitute two different
concepts.
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The clarification of the former second issue constitutes
the aim of the present contribution. Actually, the process it-
self of addressing similarities between the two notions will
unfold basic issues in QIT that will clarify many ideas to the
students. We shall assume that the student is already famil-
iar with the definition of a two qubit state, which is the only
instance we will address here.

2. Entanglement and Bell inequalities

The modern definition of entanglement is based in partition-
ing the corresponding Hilbert space of the system, which was
provided by Werner [20] in 1989 for the bipartite case: a state
of a composite quantum system constituted by the two sub-
systemsA andB is called entangled if it can not be repre-
sented as a convex linear combination of product states. In
other words, the density matrixρAB ∈ HA ⊗HB represents
an entangled state if itcannotbe expressed as as the mixture
of product states

ρAB =
∑

k

pk ρ
(k)
A ⊗ ρ

(k)
B

=
∑

k

pk|ψk
A〉〈ψk

A| ⊗ |ψk
B〉〈ψk

B |, (1)

with 0 ≤ pk ≤ 1 and
∑

k pk = 1 (convex sum). On the
contrary, states of the form (1) are called separable or unen-
tangled. The above definition is physically meaningful be-
cause entangled states (unlike separable states) should not be
“created” by acting on any subsystem individually. The set
of those operations are called Local Operations and Classi-
cal Communications (LOCC operations). An example of a
LOCC operation is provided by

ρ′ = (UA ⊗ UB) ρ (UA ⊗ UB)†, (2)

whereUA(UB) represents a local action (a unitary transfor-
mation) acting on subsystemA(B).

Usually, the preferred basis for two qubit states is the so
called computational basis{|00〉, |01〉, |10〉, |11〉}. Also, it
may be at some point convenient to employ the so called Bell
basis of maximally correlated states, which are of the form

|Φ±〉 =
(|00〉 ± |11〉)√

2
, |Ψ±〉 =

(|01〉 ± |10〉)√
2

, (3)

with |ij〉 = |iA〉 ⊗ |jB〉.
If the state we are studying is pure, thenρAB = |Ψ〉〈Ψ|.

One measure that quantifies how entangled (pure and mixed)
states are is given by the concurrence, defined for pure
states in the following fashion: when a pure state|ψ〉 is
written in the Bell basis, as|ψ〉 = α1|Φ+〉 + α2|Φ−〉 +
α3|Ψ+〉 + α4|Ψ−〉, the concurrence measure is actually de-
fined asC(|ψ〉) = |∑i α2

i |. The quantityC ranges from
zero to one. Another way of computing it is given by the
relationC2 = 4det(ρA) = 4det(ρB). ρA andρB are the re-
duced density matrices of the original stateρAB obtained

by tracing out the degrees of freedom of the other subsys-
tem ρA,B =TrB,AρAB . That is, ρA = 〈0B |ρAB |0B〉 +
〈1B |ρAB |1B〉 and similarly forρB . The computation of the
concurrence for mixed states is more involved. One widely
used measure for entanglement is the so calledentanglement
of formation. For two-qubits systems is given by Woot-
ters’ expression [21],E[ρ] = h

(
1 +

√
1− C2/2

)
, where

h(x) = −x log2 x − (1− x) log2(1− x), andC stands for
theconcurrenceof the two-qubits stateρ. The concurrence is
given byC = max(0, λ1−λ2−λ3−λ4), λi, (i = 1, . . . 4)
being the square roots, in decreasing order, of the eigenvalues
of the matrixρρ̃, with ρ̃ = (σy⊗σy)ρ∗(σy⊗σy). The above
expression has to be evaluated by recourse to the matrix ele-
ments ofρ computed with respect to the product basis.

Now, what about entanglement and EPR? The most sig-
nificant progress toward the resolution of the EPR debate
was made by Bell [22] in 1960s. Bell showed that what is
called local realism, mathematically in the form of local vari-
able models (LVM), implied constraints (Bell inequalities)
on the predictions of spin correlations. That is, separated
observers sharing an entangled state and performing mea-
surements could induce (nonlocal) correlations which can-
not be mimicked by local means (violate Bell inequalities).
This physical limitation is actually exploited for implement-
ing QIT tasks. In other words, Bell’s crucial contribution was
that he devised a way to experimentally test the structure of
QM.

Let us put into simple words how to understand the tri-
nomial quantum correlations - entanglement - non-locality.
Entanglement is the potential of quantum states to exhibit
correlations that cannot be accounted for classically. Us-
ing Bohm’s argument within the framework of two distin-
guishable parties A and B sharing a two-qubit singlet state,
either party’s (A or B) measurement outcome will immedi-
ately unveil the other side’s result, and outcome that cannot
be communicated user faster-than-light means. EPR where
strongly against thisnon-localaspect of QM, for their view
was that nothing that can be measuredlocally can affect a dis-
tant party. In short, LVM constitute mathematical attempts
to mimic the experimental results of the quantum theory by
introducing random (and, of course,local) variables and av-
eraging them so as to obtain an equivalent result.

Most of our knowledge on Bell inequalities and their
quantum mechanical violation is widely based on the
Clauser-Horne-Shimony-Holt (CHSH) inequality [23]. We
have to stress the fact that Bell’s original mathematical in-
equality was different. With two dichotomic observables per
party, it is the simplest [24] (up to local symmetries) non-
trivial Bell inequality for the bipartite case with binary in-
puts and outcomes. LetA1 and A2 be two possible oper-
ators or observables acting on A side whose outcomes are
aj ∈ {−1, +1}, and similarly for the B side. Mathemati-
cally, it can be shown, following LVM, that the averge of the
classical operatorBLV M

CHSH representing the Bell inequality
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∣∣BLV M
CHSH(λ)

∣∣ = |a1b1 + a1b2 + a2b1 − a2b2| ≤ 2. (4)

The letterλ represents a random variable belonging to
a certain LVM probability distributionµ(λ). Sincea1(b1)
anda2(b2) cannot be measured simultaneously (only one out-
come at a time, therefore they ought to be measured at differ-
ent times), instead one estimates after randomly chosen mea-
surements the average value of the

BLV M
CHSH ≡

∑

λ

BLV M
CHSH(λ)µ(λ) = E(A1, B1)

+ E(A1, B2) + E(A2, B1)− E(A2, B2), (5)

whereE(·) represents the expectation value. Therefore the
CHSH inequality reduces to

∣∣BLV M
CHSH

∣∣ ≤ 2. (6)

Quantum mechanically, since we are dealing with qubits,
these observables reduce toAj(Bj) = aj(bj) · σ, where
aj(bj) are unit vectors inR3 andσ = (σx, σy, σz) are the
usual Pauli matrices. Therefore the quantal prediction for (6)
reduces to the expectation value of the operator

BCHSH = A1⊗B1+A1⊗B2+A2⊗B1−A2⊗B2. (7)

Tsirelson showed [25] that CHSH inequality (6) is maximally
violated by a multiplicative factor

√
2 (Tsirelson’s bound)

on the basis of quantum mechanics. In fact, it is true that
|Tr(ρABBCHSH)| ≤ 2

√
2 for all observablesA1, A2, B1,

B2, and all statesρAB . Notice thatTr(ρBCHSH) is the
general way of computing the expected value of a Bell in-
equality for a quantum stateρ, pure or mixed. In general,
it is not known how to calculate the best such bound for an
arbitrary Bell inequality.

Non-locality is now to be understood as that property dis-
played by quantum states whose quantum predictions (vio-
lation of Bell inequalities) cannot be reproduced by LVM
(hence the namenon-local).

Ever since Bell’s contribution, entanglement and non-
locality were essentially regarded as the same thing. With the
advent QIT, interest in entanglement dramatically increased
over the years [26,27].

How do quantum correlations relate to non-locality after-
all, that is, the violation of a Bell inequality? We can ascertain
that if a state violates a Bell inequality, it is because it pos-
sesses correlations that are of quantum nature, that is, cannot
be imitated by an alternative local theory. In a way, the vi-
olation of a Bell inequality indicates the ”quantumness” of
the state of a system. The converse, however, it is not true.
One can encounter states that are genuinely entangled but do
not violate a Bell inequality. This confusion is precisely dis-
cussed in the following Section.

3. Gisin theorem

Confusion between non-locality and entanglement arose
when the usefulness of quantum correlations was put in doubt
(see [28]). The nonlocal character of entangled states, how-
ever, is clear for pure states sinceall entangled pure states
of two qubits violate the CHSH inequality and are therefore
nonlocal. This is the celebrated Gisin’s Theorem [29] that we
are about to show.

Suppose we are given an arbitrary general pure state of
two qubits as

|ψ(θ)〉 = cos θ|00〉+ sin θ|11〉. (8)

Quantum mechanically, we have

E(Aj,Bj) = 〈ψ(θ)|(~ai · ~σ)⊗ (~bj · ~σ)|ψ(θ)〉
= ai

zb
j
z + sin(2θ)

(
ai

xbj
x − ai

ybj
y

)
. (9)

We then gather these expressions and maximize the ensu-
ing quantity over all possible orientations of the settings for
Alice and Bob. It is not difficult to show that the arrangement
{~a1 = ẑ,~a2 = x̂,~b1 = (1/

√
2)(ẑ+x̂),~b2 = (1/

√
2)(ẑ−x̂)}

returns the optimal value

Bmax
CHSH = 2

√
1 + sin2(2θ), (10)

which is always greater than two, unless we have an unentan-
gled state (|00〉 = |0A〉⊗|0B〉 or |11〉 = |1A〉⊗|1B〉). Now, if
we recall the definition for the concurrence measure of entan-
glement for a two qubit pure state,C2 = 4det(ρA)=4det(ρB),
andρA =diag(cos2 θ, sin2 θ), we obtain

C2 = 4 detρA = 4 cos2 θ sin2 θ = sin2(2θ). (11)

Thus, combining (11) and (10), we obtain thatBmax
CHSH =

2
√

1 + C2 for any pure state of two qubits. Since0 ≤ C ≤ 1,
we see that all entangled pure states of two qubits violate the
CHSH inequality, and are therefore non-local.

However, the situation became more involved when
Werner [20] discovered that while entanglement is necessary
for a state to be nonlocal, for mixed states is not sufficient.
Let us recall that entanglement is necessary for a pure state to
display non-local features. After introducing the states which
are now called Werner states

ρW = p|Ψ−〉〈Ψ−|+ (1− p)
I

4
, (12)

where|Ψ−〉 is the singlet state andI is the4 × 4 identity,
there is a range forp where the state (12) is entangled but
does not violate the CHSH Bell inequality.

Summing up, we have to clarify concepts even in the first
approach to QIT in QM: entanglement is to be related to the
possibility or not of having a state written as a convex sum of
a tensor product of individual parties, whereas non-locality is
related to the impossibility of LVM to describe or reproduce
the predictions associated to that state.
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4. Gisin theorem for mixed states?

The study of new Bell inequalities as well as new correlation
measures constitutes a subject for actual research, but not for
two qubits states only. The study of multipartite quantum
correlation is matter of intense current research. We could
wonder if the Gisin result holds for general mixed states. The
answer is no and the Werner state (12) is just one well-known
counterexample.

However, we can ask ourselves whether a particular class
of two qubit mixed states exists such that entanglement and
non-locality imply each other. If those states exist, they have
to violate the CHSH maximally. In other words, we have to
look for those mixed states whose quantum correlations are
more concentrated. One well-known result [30, 31] is that
Bell diagonal states,

ρ
(diag)
Bell = λ1|Φ+〉〈Φ+|+ λ2|Φ−〉〈Φ−|

+ λ3|Ψ+〉〈Ψ+|+ λ4|Ψ−〉〈Ψ−|, (13)

do concentrate quantum correlations as well as possessing
non-zero entanglement.ρBell indicates that it is given in the
Bell basis. Actually, if we arrange their eigenvaluesλi in
decreasing order, we obtain

max
aj,bj

Tr(ρ(diag)
Bell BCHSH) = 2

√
2

×
√

(λ1 − λ4)2 + (λ2 − λ3)2. (14)

Recall that2
√

2 is the maximum value allowed by quantum
mechanics, and fulfilled by any state of the Bell basis.

Let us describe the most general only class two qubit
statesρG that do fullfill the equivalent Gisin theorem for
mixed states. First, we need to know what matrix elements
intervene in the computation of Tr(ρBellBCHSH ). Given
both ρBell andBCHSH in the Bell basis, we separate [31]
the elements ofρ into two contributions, namely

ρ = ρ‖ + ρ⊥ =




ρ11 iρI
12 iρI

13 ρR
14

−iρI
12 ρ22 ρR

23 iρI
24

−iρI
13 ρR

23 ρ33 iρI
34

ρR
14 −iρI

24 −iρI
34 ρ44




+




0 ρR
12 ρR

13 iρI
14

ρR
12 0 iρI

23 ρR
24

ρR
13 −iρI

23 0 ρR
34

−iρI
14 ρR

24 ρR
34 0


 . (15)

This separation is motivated because only terms inρ‖ con-
tribute toTr(ρBCHSH). In other words,Tr(ρBCHSH) =
Tr(ρ‖BCHSH) + Tr(ρ⊥BCHSH) = Tr(ρ‖BCHSH).

Given the following rank-2 state [30, 31] in the compu-
tational basis (any square arrangement of non-zero entries
would do)

ρG =




a 0 0 b
0 0 0 0
0 0 0 0
b∗ 0 0 1− a


 , (16)

once it is expressed in the Bell basis, it reads as

ρG =




A B 0 0
B∗ 1−A 0 0
0 0 0 0
0 0 0 0


 , (17)

with A = (1/2) + <(b) andB = a− (1/2) + i=(b).
Direct comparison between (17) and (15) points out the

elements that intervene in the computation ofBmax
CHSH , be-

ing almost diagonal in the Bell basis. In point of fact, when
performing the optimization calculations,Bmax

CHSH for states
(17) is very similar to (14), with one additional term inside
the square root. The final outcome is

Bmax
CHSH = 4

√
1/4 + |b|2. (18)

This expression is always greater than 2 provided that|b|2 6=0.
Calculating the concurrence for statesρG is straightforward
(C = 2|b|), leadingexactly to the same result for pure states,
that is,Bmax

CHSH = 2
√

1 + C2. We have thus found, appar-
ently, the only family of mixed states for which entanglement
and non-locality are equivalent. This result is, to our knowl-
edge, the first time to be reported in the literature. We have
to stress the fact that any state with rank greater than two will
not display the expected result. This is so because it has been
checked that if we let other entries in (15) to be non-zero (that
is, higher ranks) the relationship betweenBmax

CHSH andC is
no longer be given in analytic fashion.

5. Conclusions

We have highlighted the fact that non-locality and entangle-
ment should be taught as separate concepts in introductory
courses of QM on the subject of QIT. By pointing out the dif-
ferences and similarities in bipartite systems, the student is
more capable of grasping the subtleties associated to entan-
glement and Bell inequalities. In such a way, the student will
regard non-locality and entanglement as different resources
from the very beginning. Also, we have provided the only
family of statesρG of mixed two qubits (not being Bell diag-
onal) for which both resources imply each other. This result
may be of interest to researchers as well as students learning
the first tenets of QIT.
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