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Approximate frequencies of the pendulum for large angles
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By approximating the cosine function to a polynomial, analytical approximations of pendulum trajectories are developed for initial angles
close toπ. The periods are deduced and they are compared with other techniques recently developed for the same purpose. Our results
practically match with the exact solutions. A process that allows to understand the difficulties of dealing with nonlinear equations, of using
the minimization of the standard deviation and the importance played by energy conservation is done.
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1. Introduction

Throughout the history of Classical Mechanics, the simple
pendulum represents one of the most important issues. How-
ever, the problem is usually solved by doing the typical ap-
proximation of small angles (sin θ ' θ). The large angle case
is normally avoided but it is a well-known fact that the solu-
tion can be reduced to an integral which involves the com-
plete elliptic integrals of the first kind [1,2]. Few years ago,
some authors proposed some empirical methods, arithmetic-
geometric mean techniques and approximate approaches for
finding the period for high angles [3-7], but for angles big-
ger than100◦ the methods fail. Recently, other authors de-
veloped different techniques based on approximate methods
which give much better results [8-11]. In particular, it must
be highlighted the work done by Beléndezet al [8] since they
found practically perfect periods up to 163◦ with an error of
1% using MacLaurin series expansion. However, for larger
angles the method begins to separate from the exact period
and the calculation includes too much terms. The purpose of
this article consists in developing a technique which deduces
the periods for angles bigger than170◦ with a high degree of
accuracy and it shows the importance of using the conserva-
tion of the energy as a constraint in an approximation method
when a nonlinear problem is analyzed.

Recently, Salinaset al [12] by means of substituting the
cosine function by a polynomial in the energy equation, de-
duced the trajectory of the pendulum by a simple integration.
An intermediate step is necessary for obtaining the trajectory
for angles up to85◦. Due to the symmetry of the trajectory,
the technique can be extended to angles close to95◦ and by

using a third step, with different parameters, the method can
be generalized to bigger angles. Unfortunately, for practical
purposes, the proposal becomes impractical. However, for
angles bigger than170◦, a simple polynomial can be used to
obtain a great similitude with the cosine function. Neverthe-
less, obtaining the trajectories and the periods is not satisfac-
tory. The small difference between the proposed polynomial
potential and the real potential in the neighborhood of the
maximum angle, is the cause of the failure of the method.
The essence of the method will consist of giving an approxi-
mate function of the potential energy as much as it is possible
but with the constraint of minimizing the error in the critical
point. Other kind of polynomial has to be proposed. Indeed,
by using a different but similar polynomial which leads to
simple integrations too, a much more accurate result is ob-
tained between170◦ and180◦ which is almost equal to the
exact solution.

This work is organized as follows: in Sec. 2, a simple
polynomial method is performed in order to obtain the tra-
jectories for angles close to170◦. Since the method fails, it
is explained why another kind of polynomial has to be used.
In Sec. 3, a different polynomial, but similar to the used in
Sec. 2, is proposed. By using the minimization of the stan-
dard deviation, the result matches quasi perfectly with the
exact solutions and it improves all the previous methods. In
Sec. 4, some concluding remarks are done.

2. The Polynomial Method

The simple pendulum consists of a massless rod fastened at
one end which freely rotates in a plane and a pointed mass at
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the other end. The conservation of the energy can be written
as

E =
1
2
ml2

·
θ2 −mgl cos θ, (1)

whereE, m, g, θ and l represent the energy, the mass, the
gravity, the angle with the vertical and the length of the pen-
dulum. Then,

·
θ =

√
2

ml2
(E + mgl cos θ). (2)

By supposing that the maximum angle occurs atθo and
·
θo = 0, obtains

·
θ =

√
2g

l

√
(cos θ − cos θo). (3)

Expressing the time as a function of the angle,

t− to =

√
l

2g

θ∫

θo

dθ√
(cos θ − cos θo)

. (4)

This represents an elliptic function. Many authors proposed
different methods, usually approximations, in order to ap-
proach simple solutions without using any difficult func-
tion and giving a simple analytical approach to the trajec-
tory [3-12]. In particular, Salinaset al [12] developed an an-
alytical method based on substituting the cosine by a polyno-
mial which leads to a simple integral. However, the approach
is not enough good from a certain angle and a second step is
required obtaining the trajectory for angles less than95◦. For
larger angles, a third step must be done so that the method
becomes impractical. Nonetheless, for angles between170◦

and180◦, a polynomial which matches the cosine function
with a high degree of accuracy, can be found. Let us summa-
rize the principal idea of the method [12]: first, the function
cos θ − cos θ0 is approximated by a polynomial,

cos θ ' a(1− bθ2)3 + cos θ0, (5)

wherea and b are setting parameters. Sincecos 0 = 1, it
is necessary thata = 1 − cos θ0. If we put b = 1/θ2

0, the
polynomial coincides withcos θ at θ = θ0, but for other an-
gles, the polynomial differs greatly from the cosine function.
Therefore,b should be adjusted to give a good approxima-
tion. As a consequence of it, the polynomial approximation
is not good enough for angles lower than the maximum an-
gle θ0 (lower than85◦) and a cut-off angle,θ1, is required
and a second step must be improved [12]. Nevertheless, for
higher angles close to170◦ the polynomial can be fixed very
close to the cosine function and a second step is apparently
not necessary. Therefore, put

cos θ ' (1− cos θ0)(1− bθ2)3 + cos θ0. (6)

Then, Eq. (4) can be expressed as (changing the initial time
to = 0)

t =

√
l

2g

θ0∫

0

dθ√
(1− cos θ0)(1− bθ2)3

. (7)

FIGURE 1. The dashed curve corresponds to the polynomial with
b = 0.085 andθ0 = 171.9◦. The other curve is the cosine func-
tion.

This integral is easily solved,

t =

√
l

2g

[
θ√

1− cos θ0

√
(1− bθ2)

]
. (8)

Finally, we arrive at

θ =
t√

l
2g(1−cos θ0)

+ bt2
. (9)

It has to be noted thatb is restricted tob < (1/θ2).Unlike
maximum angles about85◦, for maximum angles bigger than
170◦ the polynomial can be fixed fitting the parameterb by
minimizing the standard deviation between the polynomial
and cosine function. The found polynomial practically coin-
cides with the cosine function (see Fig. 1).

In Fig. 1, it is easy to notice that the difference between
the polynomial and the cosine function is negligible and we
expect to obtain a good trajectory. However, by analyzing
Eq. (9), some aspects must be mentioned. The first one is
that at the maximum angle, the angular velocity does not
vanish. Indeed, by using Eq. (7), the angular velocity can
be expressed as

dθ

dt |θ0

=

√
2g

l
(1− cos θ0)(1− bθ2

0)3. (10)

For θ0 = 171.9◦ = 3.000 rad,1/θ2
0 = 1/9 ' 0.111 differs

from the value ofb = 0.085 used in the polynomial for this
angle. Therefore, the obtained trajectory cannot represent the
real since the angular velocity does not vanish at the maxi-
mum angle. Moreover, if we calculate the angular velocity
in this case,θ0 = 171.9◦, g = 9.8 m/sec2 andl = 1 m, we
obtain

dθ

dt |171.9◦
' 0.711 rad/ sec. (11)
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FIGURE 2. Trayectory of the pendulum for a maximum angle
θ0 = 171.9◦ = 3.0 rad. It can be noted thatθ0 is reached at
t0 = 1 sec and that the angular velocity does not vanish att0.

FIGURE 3. The polynominal method is far from the exact solution.

By comparing it with the typical angular velocity of the mo-
tion of 3 rad/sec, it represents the 23.7% of the basic motion
which is unacceptable. As a consequence of this, the ob-
tained period will be far from reality. Indeed, the period of
the motion is equal to

TB = 4t0, (12)

being t0 the time to reach the maximum angleθ0 from the
initial θ = 0 (see Fig. 2).

The frequency compared with the frequency of the small
angle limitw0 =

√
g/l is:

w

w0
=

π

2t0

√
l

g
' 0.502

t0
(13)

For the maximum timet0 ' 1 sec forθ0 = 171.9◦, the
ratiow/w0 ' 0.502. If we compare this result with the exact
solutionwexact/w0 ' 0.4 and with the one obtained by using
Beléndez techniquewB/wo ' 0.418 [8], we notice that the
present method fails. For other maximum angles the results
are similar and far from the exact solutions (see Fig. 3). This
means that the error of the Polynomial method is around the

FIGURE 4. The minus cosine function is the continuous line; the
approximate polynomial -[(1− cosθ0)(1+ bθ0)

3] with b = 0.085
is the dashed line. The approximate potential attains the total en-
ergyE at angleθmax bigger thanθ0

20% and it does not represent a good approximation for such
angles.

The question now is to understand why if the polynomial
coincides with the cosine function for practically all the tra-
jectory (the difference begin at2.4 rad and it is minimal for
θ0, see Fig. 1), the result is so different to the exact solution.
The answer is the following: first, it has to be noticed that
since the parameterb does not coincide with1/θ2

0, the final
velocity (atθ = θ0) does not vanish and it represents around
the 20% of the typical velocity during the true trajectory
(vTyp = 3 rad/sec); second, the reason is inherent to energy
conservation. A slight deviation can result in a significant dif-
ference. Indeed, the intersection between the horizontal line,
the total energyE (see Fig. 4), and the exact potential en-
ergy,−mgl cos θ, is achieved atθ = θ0. However, the inter-
section between the horizontal line and the approximate po-
tential energy,−mgl

[
(1− cos θ0)(1− bθ2)3 + cos θ0

]
with

b = 0.085, is achieved at an angle bigger thanθo (see Fig. 4).
Moreover, the angle is bigger thanπ. Therefore, atθ = θ0,
the approximate potential has not reached the horizontal line
which represents the total energyE. Consequently, the ve-
locity does not vanish,θ0 does not represent the turning point
and the period is increased.

The physical problem consists of noticing that the conser-
vation of the energy is an essential issue in a method which
pretends to give numerical solutions by means of an approx-
imate function of the potential energy. Indeed, in a situation
of one dimension by using the conservation of the energy, we
can express the velocity at any moment as:

v =

√
2
m

(E − U). (14)

The energy can be expressed as the value of the potential en-
ergy at the maximum point; that is:

E = U(xmax). (15)

This means that the velocity obviously vanishes at this point.
However, when the energy potential is approximated by an-
other functionUapp which does not equal exactly the energy
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FIGURE 5. The Polynominalcosθ w (1−cosθ0)(1−bθ2)3+cosθ0

with b = 1/θ2.

at the critical point, the velocity of the particle does not van-
ish and consequently the method fails. It is necessary to
minimize the error at this point. Therefore, we need to pro-
pose another method. In first instance, in order to obligate
the angular velocity to vanish at the maximum angleθ0, see
Eq. (10), we can use a polynomial such thatb = 1/θ2

0. How-
ever, by doing this the polynomial is very different from the
cosine function (see Fig. 5). The results will be highly de-
viated from the exact. Moreover, by looking at Eq. (8) the
maximum time will diverge and the period will be infinite.

3. The Modified Polynomial

The conclusion of the above section consists of noticing that
the polynomial has to be changed to another more compli-
cated. The proposal is the following

cos θ ' (1− cos θo)(1− cθ − bθ2)3 + cos θo, (16)

where a new parameterc has been introduced. First of all, we
can begin by obligating the polynomial to coincide with the
cosine function atθ = θ0 by putting

c = −bθ0 +
1
θ0

. (17)

FIGURE 6. The modified polynomial is the dashed line; the con-
tinuous line is the cosine function;θ0 = 171.9◦, b = 0 : 097 and
c = −0.009.

The resulting polynomial is also very different of the cosine
function for all the other value of the angle. Therefore, it is
necessary to fit the parametersb andc such that the polyno-
mial completely matches the cosine function as possible for
all the angles betweenθ = 0 andθ = θ0 (see Fig. 6). This is
achieved by calculating the standard deviation and by mini-
mizing it as function ofb andc, even if the value of the poly-
nomial does not coincide with the cosine function atθ = θ0.
With the new adjusted parameters, we can continue with the
procedure. Substituting Eq. (16), obtains

t =

√
l

2g

θ∫

0

dθ√
(1− cos θo)(1− cθ − bθ2)3

(18)

Integrating, arrives

t =

√
l

2g

[
2 (c + 2bθ)

(4b + c2)
√

1− cos θo

√
(−1cθ − bθ2)

]
(19)

The velocity at the maximum angle can be deduced by using

dθ

dt |θ0

=

√
2g

l

√
(1− cos θ0)(1− cθ − bθ2)3 (20)

Finally, by obtaining the physical solution, we arrive at

θ =
−4bc− d2ct2 + d

√
4b + c2

√
4b + d2t2t

2 (4b2 + d2bt2)
, (21)

with

d =
1
2

√
2g

l
(1− cos θ0)(4b + c2) (22)

By using Eq. (20), the velocities for the different maximal
angles can be obtained; the maximal time for each maximal
angle is graphically deduced (see Figs. 7, 8 and 9, where
l = 1 m, g = 9.8 m/sec2). The frequency compared with the
frequency of the small angle limitw0 is

w

w0
=

π

2t0

√
l

g
' 0.502

t0
. (23)

FIGURE 7. The trajectory forθ0 = 171.9◦ with b = 0.097 and
c = 0.009. The corresponding timet0 w 1.24 sec.
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FIGURE 8. The trajectory forθ0 = 174.2◦ with b = 0.97 and
c = 0.015. The corresponding timet0 w 1.4 sec.

FIGURE 9. The trajectory forθ0 = 177.4◦ with b = 0.097 and
c = 0.013. The corresponding timet0 w 1.6 sec.

We obtain by simple inspection of the trajectories in
Figs. 7, 8 and 9 or by using Eq. (19), the timest0 for
θ0 = 171.9◦, θ0 = 174.2◦, andθ0 = 177.4◦. The corre-
sponding angular velocities atθ = θ0 by using Eq. (20).
Once we have the maximal times, we can proceed to calcu-
late the compared frequencies (see Table I) and in Fig. 10 we
can observe that the frequencies are very close to the exact
solutions and coincide for maximal angles close toπ.

TABLE I.

θ0 b −c
·
θ0 t0 w/w0 = 0.502

t0

171.9◦ 0.097 0.009 0.45 1.24 sec 0.405

174.2◦ 0.099 0.015 0.16 1.4 sec 0.36

177.4◦ 0.098 0.013 0.012 1.6 sec 0.315

FIGURE 10. The modified polynomial method gives results that
are between Beléndez method and the exact solution. For higher
angles the method converges to the exact solution.

4. Concluding Remarks

We find a rapid method for obtaining the period of the simple
pendulum just by using a polynomial method. Although the
paths are not as good for angles near170◦ since the velocity
·
θ = 0.45 for θ0 = 171.9◦, for bigger angles the angular ve-

locity practically vanishes,
·
θ = 0.012 for θ0 = 177.4◦ (the

velocity is around0.4% of the typical velocity), and the tra-
jectories and the periods coincides with the exact solutions. It
has to be highlighted that the method shows that a small de-
viation can lead to significant errors, where the conservation
of the energy plays an important role.

Although the aim of the article was to find a method to
know the periods of the motion of a simple pendulum for
angles close to 180◦, a goal that was fulfilled, actually the
most interesting result is to understand that, at critical points,
the approximate potential energies must match with real po-
tential energies along all the trajectory. In fact, the use of
a slightly more complicated polynomial allows that the ap-
proximate potential energy is as close as possible to the real
potential value at the critical point and at the same time hav-
ing a minimal standard deviation. The conservation of the
energy and the nonlinear characteristic of the problem are the
causes of such behavior.
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