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Approximate frequencies of the pendulum for large angles
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By approximating the cosine function to a polynomial, analytical approximations of pendulum trajectories are developed for initial angles
close tor. The periods are deduced and they are compared with other techniques recently developed for the same purpose. Our results
practically match with the exact solutions. A process that allows to understand the difficulties of dealing with nonlinear equations, of using
the minimization of the standard deviation and the importance played by energy conservation is done.
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1. Introduction using a third step, with different parameters, the method can
be generalized to bigger angles. Unfortunately, for practical

Throughout the history of Classical Mechanics, the simplePurposes, the proposal becomes impractical. However, for
pendulum represents one of the most important issues. Hovngles bigger than70°, a simple polynomial can be used to
ever, the problem is usually solved by doing the typical ap-Obtain a great similitude with the cosine function. Neverthe-
proximation of small anglesin 6 ~ 6). The large angle case less, obtaining the trajectories and the periods is not satisfac-
is normally avoided but it is a well-known fact that the solu- tory. The small difference between the proposed polynomial
tion can be reduced to an integral which involves the com#otential and the real potential in the neighborhood of the
plete elliptic integrals of the first kind [1,2]. Few years ago, Maximum angle, is the cause of the failure of the method.
some authors proposed some empirical methods, arithmetidne essence of the method will consist of giving an approxi-
geometric mean techniques and approximate approaches fé1ate function of the potential energy as much as it is possible
finding the period for high angles [3-7], but for angles big- but with the constraint of minimizing the error in the critical
ger than100° the methods fail. Recently, other authors de-Point. Other kind of polynomial has to be proposed. Indeed,
veloped different techniques based on approximate method® using a different but similar polynomial which leads to
which give much better results [8-11]. In particular, it must Simple integrations too, a much more accurate result is ob-
be highlighted the work done by Beidezt al[8] since they ~ tained betweern70° and180° which is almost equal to the
found practically perfect periods up to 16@&ith an error of ~ €Xact solution.

1% using MacLaurin series expansion. However, for larger ~ This work is organized as follows: in Sec. 2, a simple
angles the method begins to separate from the exact peridgdlynomial method is performed in order to obtain the tra-
and the calculation includes too much terms. The purpose dgctories for angles close t70°. Since the method fails, it
this article consists in developing a technique which deducei$ explained why another kind of polynomial has to be used.
the periods for angles bigger than0° with a high degree of In Sec. 3, a different polynomial, but similar to the used in
accuracy and it shows the importance of using the conservaec. 2, is proposed. By using the minimization of the stan-

tion of the energy as a constraint in an approximation methodard deviation, the result matches quasi perfectly with the
when a nonlinear problem is analyzed. exact solutions and it improves all the previous methods. In

Recently, Salinast al [12] by means of substituting the Sec. 4, some concluding remarks are done.

cosine function by a polynomial in the energy equation, de-

duced the trajectory of the pendulum by a simple integration2  The Polynomial Method

An intermediate step is necessary for obtaining the trajectory

for angles up t®5°. Due to the symmetry of the trajectory, The simple pendulum consists of a massless rod fastened at
the technique can be extended to angles clo$dtand by  one end which freely rotates in a plane and a pointed mass at
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the other end. The conservation of the energy can be written cos(8

as 1.0g—
[y S
E= §ml 0° — mgl cos 6, (1)
whereE, m, g, 0 andl represent the energy, the mass, the 0.5
gravity, the angle with the vertical and the length of the pen-
dulum. Then, >
1 N 2 3 4 ¢

. 2

0 :\/le (E 4+ mgl cosb). 2 —0.5
By supposing that the maximum angle occursfatand
6, = 0, obtains -1.0 L —

9 = 4 /2ﬁ V/(cos§ — cosb,). () FIGURE 1. The dashed curve corresponds to the polynomial with

! b = 0.085 andfy = 171.9°. The other curve is the cosine func-

Expressing the time as a function of the angle, tion.

This integral is easily solved,

0
t—t, = L/ 4 . 4)
29 P \/(cos — cosB,)

This represents an elliptic function. Many authors proposed t= \/7 [ 4 ] . (8)
different methods, usually approximations, in order to ap- 29 | V1 —cosfo+/(1 — b6?)

proach simple solutions without using any difficult func-

tion and giving a simple analytical approach to the trajec-Finally, we arrive at

tory [3-12]. In particular, Salinast al [12] developed an an-

alytical method based on substituting the cosine by a polyno- 0 — i )

mial which leads to a simple integral. However, the approach / 1 1 b2 '
is not enough good from a certain angle and a second step is 29(1=cosfo)
required obtaining the trajectory for angles less th&h For
larger angles, a third step must be done so that the methdiihas to be noted that is restricted tob < (1/6?).Unlike
becomes impractical. Nonetheless, for angles betwgeh ~ Maximum angles abost°, for maximum angles bigger than
and 180°, a polynomial which matches the cosine function 170° the polynomial can be fixed fitting the parametesy
with a high degree of accuracy, can be found. Let us summanhinimizing the standard deviation between the polynomial
rize the principal idea of the method [12]: first, the function @nd cosine function. The found polynomial practically coin-
cos B — cos b is approximated by a polynomial, cides with the cosine function (see Fig. 1).
- 1 2\3 In Fig. 1, it is easy to notice that the difference between

c0s 6 2 a(l = b97)" + cos b, ©) the polynomial and the cosine function is negligible and we
wherea andb are setting parameters. SineesO = 1, it  expect to obtain a good trajectory. However, by analyzing
is necessary that = 1 — cosf. If we putb = 1/62, the  Eq. (9), some aspects must be mentioned. The first one is
polynomial coincides witltos § até = 6, but for other an-  that at the maximum angle, the angular velocity does not
gles, the polynomial differs greatly from the cosine function.vanish. Indeed, by using Eq. (7), the angular velocity can
Therefore,b should be adjusted to give a good approxima-be expressed as
tion. As a consequence of it, the polynomial approximation
is not good enough for angles lower than the maximum an- do \/

291~ cosBo)(1 — bo2)3. (10)

gle 6y (lower than85°) and a cut-off angled,, is required =\ 7

; dt
and a second step must be improved [12]. Nevertheless, for 16o
higher angles close t670° the polynomial can be fixed very
close to the cosine function and a second step is apparentﬁg

not necessary. Therefore, put

rdy = 171.9° = 3.000 rad, 1/63 = 1/9 ~ 0.111 differs

m the value of = 0.085 used in the polynomial for this
angle. Therefore, the obtained trajectory cannot represent the

cosf =~ (1 — cosfp)(1 — b0?)® + cos . (6)  real since the angular velocity does not vanish at the maxi-

gum angle. Moreover, if we calculate the angular velocity

In this casefy = 171.9°, g = 9.8 m/seé andl = 1 m, we

obtain

17 do
t=y|— . 7 do
2¢ 0/ V(1 = cos ) (1 — b62)3 ™ ~ 0.711 rad/ sec (11)

5\171.90

Then, Eq. (4) can be expressed as (changing the initial tim
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02 04 06 08 10 12 14 FIGURE 4. The minus cosine function is the continuous line; the
FIGURE 2. Trayectory of the pendulum for a maximum angle approximate polynomial {1 — cosflo)(1+ bfo)®] with b = 0.085
0o = 171.9° = 3.0 rad. It can be noted tha, is reached at is the dashed line. The approximate potential attains the total en-

to = 1 sec and that the angular velocity does not vanigl.at ergy £ at angledmax bigger thard,
© 20% and it does not represent a good approximation for such
wo angles.
A The question now is to understand why if the polynomial

The polynomial method

coincides with the cosine function for practically all the tra-
jectory (the difference begin &t4 rad and it is minimal for
0o, see Fig. 1), the result is so different to the exact solution.
The answer is the following: first, it has to be noticed that
since the parametérdoes not coincide with /63, the final
velocity (atd = 6,) does not vanish and it represents around
the 20% of the typical velocity during the true trajectory
(vryp = 3 rad/sec); second, the reason is inherent to energy
T r— conservation. A ingh'F deviatio_n canresultina sign_ificant d_if-
| P P . - SRS ference. Indeed, the intersection between the horizontal line,
150 155 160 165 120 Lk the total energyF (see Fig. 4), and the exact potential en-
FIGURE 3. The polynominal method is far from the exact solution. €9y, —mgl cos 6, is achieved at = 6,. However, the inter-
section between the horizontal line and the approximate po-
tential energy—mgl [(1 — cos6p)(1 — b62)? + cos f] with
By comparing it with the typical angular velocity of the mo- 5 = 0.085, is achieved at an angle bigger than(see Fig. 4).
tion of 3 rad/sec, it represents the 23.7% of the basic motioMoreover, the angle is bigger than Therefore, att = 0,
which is unacceptable. As a consequence of this, the olthe approximate potential has not reached the horizontal line
tained period will be far from reality. Indeed, the period of which represents the total energy Consequently, the ve-
the motion is equal to locity does not vanistt), does not represent the turning point
and the period is increased.
Tp = 4to, (12) The physical problem consists of noticing that the conser-

beingt, the time to reach the maximum anglg from the vation of the energy is an essential issue in a method which
initial 6 = 0 (see Fig. 2) pretends to give numerical solutions by means of an approx-

The frequency compared with the frequency of the smalfmate function of the potential energy. Indeed, in a situation
anale limitw, — o of one dimension by using the conservation of the energy, we
gle limitwy = /g/lis: ;
can express the velocity at any moment as:

w T [l 0.502 2
— =y 1 — ./
wo 2t g to ( 3) v = E(E - U) (14)

For the maximum time, ~ 1 sec forg, = 171.9°, the  The energy can be expressed as the value of the potential en-

ratiow /wo ~ 0.502. If we compare this result with the exact €rgy at the maximum point; that is:

solutionwe.qct /wo ~ 0.4 and with the one obtained by using E = U(max) (15)
Belendez technique s /w, ~ 0.418 [8], we notice that the e

present method fails. For other maximum angles the result$his means that the velocity obviously vanishes at this point.
are similar and far from the exact solutions (see Fig. 3). ThisHowever, when the energy potential is approximated by an-
means that the error of the Polynomial method is around theother functionU,pp which does not equal exactly the energy

Beléndez method

Exact result ————p

0.1
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cos(0) The resulting polynomial is also very different of the cosine
11)‘;“\'\\ function for all the other value of the angle. Therefore, it is
0.5 \l\\ necessary to fit the parametérandc such that the polyno-
) \\ mial completely matches the cosine function as possible for
=5 . >0 all the angles betweeh= 0 andfd = 6, (see Fig. 6). This is
1 N2 3 4 achieved by calculating the standard deviation and by mini-
-0.5 ~ \\\ mizing it as function ob andc, even if the value of the poly-
S //” nomial does not coincide with the cosine functiorfat 6.
-1.0 e With the new adjusted parameters, we can continue with the
15 procedure. Substituting Eq. (16), obtains
0
. f de
FIGURE 5. The Polynominatost « (1—cosfo)(1—b0%)3+cosby t= \/;/ V0 —cos0,)(1 — 0 bo2)? (18)
with b = 1/62. 0 ¢

at the critical point, the velocity of the particle does not Van_lntegratmg, arrves

ish and consequently the method fails. It is necessary to 0 2 (c + 2b0)
\ 29

(4b + ¢2)y/T — cos 0,/ (—1cl — b6?)

minimize the error at this point. Therefore, we need to pro- ¢ =
pose another method. In first instance, in order to obligate

the angular velocity to vanish at the maximum arngjjesee
Eg. (10), we can use a polynomial such that 1/62. How-
ever, by doing this the polynomial is very different from the do 2

cosine function (see Fig. 5). The results will be highly de- dt 10, = Tg\/(l — cos o) (1 — c — b0?)? (20)
viated from the exact. Moreover, by looking at Eq. (8) the

maximum time will diverge and the period will be infinite. ~ Finally, by obtaining the physical solution, we arrive at

_ —4bc — d2ct? + dv/4b + 2/4b + d2t2t

(19)

The velocity at the maximum angle can be deduced by using

3. The Modified Polynomial o= > (107 T i) . (@
The conclusion of the above section consists of noticing thatvith

the polynomial has to be changed to another more compli- d—= 1 /29 1_ 000 (4b + 2 22
cated. The proposal is the following 2V 1 ( cos f)(4b + %) (22)

By using Eq. (20), the velocities for the different maximal
angles can be obtained; the maximal time for each maximal
angle is graphically deduced (see Figs. 7, 8 and 9, where
I =1m,g = 9.8 m/sed). The frequency compared with the
frequency of the small angle limitg is

cos@ ~ (1 — cosb,)(1 — cf — b6?)3 + cos b, (16)

where a new parametehas been introduced. First of all, we
can begin by obligating the polynomial to coincide with the
cosine function afl = 6, by putting

1 w T l 0.502
cos(f) o)
1.05—. B ——
s \‘\_\ 33—
S //"
0.5 2 //
1 AN 2 3 59 1
~0.5 N\ .
RN 7 /05 10 15 20 25 3.0
-1.0 el /
/7'-1

FIGURE 6. The modified polynomial is the dashed line; the con-
tinuous line is the cosine functiod; = 171.9°, b = 0 : 097 and FIGURE 7. The trajectory fordy = 171.9° with b = 0.097 and
¢ = —0.009. ¢ = 0.009. The corresponding timg = 1.24 sec.
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FIGURE 8. The trajectory ford, = 174.2° with b = 0.97 and

¢ = 0.015. The corresponding timg = 1.4 sec.
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FIGURE 9. The trajectory ford, = 177.4° with b = 0.097 and

¢ = 0.013. The corresponding timg « 1.6 sec.
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FIGURE 10. The modified polynomial method gives results that
are between Béhdez method and the exact solution. For higher
angles the method converges to the exact solution.

4. Concluding Remarks

We find a rapid method for obtaining the period of the simple
pendulum just by using a polynomial method. Although the
paths are not as good for angles n€z0° since the velocity

f = 0.45 for 3 = 171.9°, for bigger angles the angular ve-

locity practically vanishes? = 0.012 for 6, = 177.4° (the
velocity is around).4% of the typical velocity), and the tra-
jectories and the periods coincides with the exact solutions. It
has to be highlighted that the method shows that a small de-
viation can lead to significant errors, where the conservation
of the energy plays an important role.

Although the aim of the article was to find a method to
know the periods of the motion of a simple pendulum for

We obtain by simple inspection of the trajectories inangles close to 180 a goal that was fulfilled, actually the

Figs. 7, 8 and 9 or by using Eq. (19), the timgsfor  most interesting result is to understand that, at critical points,
0o = 171.9°, 6y = 174.2°, andfy = 177.4°. The corre- the approximate potential energies must match with real po-
sponding angular velocities &t = 6y by using Eq. (20). tential energies along all the trajectory. In fact, the use of
Once we have the maximal times, we can proceed to calcua slightly more complicated polynomial allows that the ap-
late the compared frequencies (see Table I) and in Fig. 10 wgroximate potential energy is as close as possible to the real
can observe that the frequencies are very close to the exagbtential value at the critical point and at the same time hav-
solutions and coincide for maximal angles close to ing a minimal standard deviation. The conservation of the

energy and the nonlinear characteristic of the problem are the

TABLE I. causes of such behavior.
6o b —c é() to w/wo = 0'5)002
171.9 0097 0009 045 1.24sec 0.405 Acknowledgments
1742 0099 0.015 0.16 1l.4sec 0.36 This work was partially supported by COFAA, EDI SIP - IPN
177.4 0.098 0.013 0.012 1.6sec 0.315 and SNI CONACYT.
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