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The time independent Schrödinger equation is a differential equation of great interest in computational physics. In many cases, it is impossible
to reach an analytical solution for it, due to the potential function complexity, therefore numerical methods play an important role in its
solution for practical cases. By means of numerical methods it is possible to solve the stationary Schrödinger equation for arbitrary potentials,
allowing the study of interesting potentials that exhibit fascinating phenomena. Some of these potentials are the Kronig-Penney and pseudo-
Coulomb potential functions, or more single like barrier potential function. Nevertheless, in many cases, the implementation of the sequence
of steps needed to solve the differential equation is not straightforward. In this work we present and explain a sequence of steps to solving
the time independent Schrödinger equation by means of the variational method, and apply it to solve non-periodic potential functions, like
the harmonic oscillator potential well and rectangular potential barrier, and periodic potential functions like the Kronig-Penney and pseudo-
Coulomb. Our main purpose is for this work to be an introduction to the computational quantum mechanics field.
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1. Introduction

One of the purposes of quantum mechanics is to find solu-
tions for the time independent Schrödinger equation (TISE).
This equation can be written as

Ĥψ (x) = Eψ (x) (1)

and can be solved analytically only in a few particular cases.
Undergraduate level courses focus on solving this equation
for cases such as the free particle, the harmonic oscillator
or the particle in a potential well. In those examples, due
to the simplicity of the potential function, it is possible to
find an analytical solution with a straightforward mathemat-
ical treatment. In many other much more realistic cases, the
potential function is sufficiently complex to require a numer-
ical instead analytical treatment.

The variational method is a very useful tool to compute
the ground-state energy for an arbitrary system described
by a complex potential function by taking advantage of the
Rayleigh-Ritz variational principle [1-3]. The variational
method employs a set of basis functions as trial functions,
and its success relies on the selection of said trial functions.
The variational method is also one of the most commonly
numerical techniques to solve the TISE, therefore, in order to
make the problem computer friendly, it is a good practice to
study variationally the TISE using matrices.

Since numerical methods allow us to solve the TISE for
arbitrary potential function, then, we can easily observe phe-
nomena such as the tunnel effect in a potential barrier, the
energy quantization of bound states and other interesting phe-
nomena raising from periodic potential functions used to de-
scribed solids.

The purpose of this paper is not only to show but also to
explain an algorithm to solve the TISE in one dimension, for
arbitrary, and in particular, for periodic potentials, employing
the variational method and matrix mechanics at an introduc-
tory level.

We want to state that this kind of solution is already
widely used in research [4,5] and even commercial software,
furthermore it is explained is scattered regions of the liter-
ature. However, we think that it is important for junior re-
searchers to understand the power and limitations of the tools
they are using. This is why this paper presents a comprehen-
sive study of the formalism and implementation details of the
variational method applied to solve the TISE and, to some ex-
tend, present some ideas of topics in computational science
that can be solved with this method. We aim to encourage
the undergraduate and graduate students to make a practical
approach to computational quantum mechanics.

2. Formalism

Any wavefunctionψ (x) can be expanded as a superposition
of energy eigenstates{ψn (x)} like:

ψ (x) =
∞∑

n=1

Cnψn (x) , Cn ∈ C (2)

whereCn is the coefficient of theψn wavefunction. ψ (x)
can be normalized with

∑
n

|Cn|2 = 1 (3)

It is interesting to appreciate that the space can be dis-
cretized into small intervals of sizeh. Therefore, if the wave-
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function of a particle is described in the interval[0, a] and the
space is discretized, then

ψ (x) ←→




ψ (0)
ψ (h)
ψ (2h)

...
ψ (a)




(4)

The Eq. (1) can be seen as

Ĥ|ψ〉 = E|ψ〉 (5)

where|ψ〉 ↔ ψ (x). The expansion (2) takes the form

|ψ〉 =
∞∑

n=1

Cn|ψn〉 (6)

Straightforward algebra induces to

∞∑
n=1

HmnCn =
∑

n

CnEnSmn (7)

whereSmn = 〈ψm|ψn〉 is the overlap matrix andHmn =
〈ψm|Ĥ|ψn〉 is the componentmn of the Hamiltonian matrix.
To see the complete deduction, you can consult the Ref. 6. In
the matrix way, the problem reduces to a generalized eigen-
value problem [7]

HCn = EnSCn (8)

whereCn is the eigenvector associated to the eigenvalueEn,
and the wavefunction for the staten is found from the trials
functions and the coefficientsC by

Ψn (x) =
∑
m

Cmnψm (x) (9)

If the set of basis|ψn〉 is orthonormal, the element
〈ψm|ψn〉 is equal to the Kronecker delta,δnm, and the ma-
trix S becomes the identity. Then the problem is reduced to
a symmetric eigenvalue problem [8]. If the bases are not nor-
malized(〈ψn|ψn〉 6= 1), the elementsHmn andSmn should
be preciously divided by the inner product〈ψm|ψn〉 to guar-
antee the normalized eigenstates.

In order to construct the Hamiltonian matrix, it is nec-
essary evaluate the kinetic and potential energy matrices by
means of

Tmn = 〈ψm|T̂ |ψn〉 (10)

Vmn = 〈ψm|V̂ |ψn〉 (11)

where T̂ is the kinetic energy operator defined in reduced
units(~ = m = 1), in one dimension, as

T̂ = −1
2

d

dx2
(12)

andV̂ is the potential energy operator. So, the elementsTmn

andVmn are found using the following equations

Tmn =

∞∫

−∞
ψ∗m

(
−1

2
d

dx2

)
ψndx (13)

Vmn =

∞∫

−∞
ψ∗mV̂ ψndx (14)

Therefore, the value ofHmn can be evaluated by

Hmn = Tmn + Vmn (15)

At this point, we could solve the TISE for a potential
function even thought the mathematical treatment for the dif-
ferential equation is unfeasible. In such cases, the problem
can be solved by means of variational method. The process
starts by proposing a set of basis functions. In order to com-
ply with the computational constraints the number of func-
tions in this set have to be some how small. However, the
accuracy of the solution grows with the number functions of
the basis set. F. Marsiglio [4] solved the TISE through the
variational method, using the solutions to the infinite poten-
tial well as elements of the basis set

ψn (x) =

√
2
a

sin
(nπx

a

)
(16)

wherea the potential well width. He computed analytically
the elementsHmn for the harmonic oscillator and various
square wells. However, it is not always possible to evaluate
the integrals (13) and (14). When this happens, numerical in-
tegration methods can be applied to come up with theHmn

matrix elements.
After obtaining the elementsHmn, and in some cases

Smn, it is possible to solve the generalized eigenvalue prob-
lem (8), which can be reduced to a diagonalization problem,
as mentioned in [7].

In general, the aforementioned numerical integration
methods require to narrow and apply discretization to the in-
tegration range, thus, in general, it is impossible to integrate
over all space. A smart solution for that is to assume that the
particle is enclosed in an infinite potential well, thus the po-
tential function, that describes the system, lays between two
infinite potential barriers. The position of said barriers can
be used as limits for the integrals (13) and (14). This also
ensures that all states are bounded. Some of these states are
bounded to the original potential function and the rest are
bounded to the combination of the infinite potential well and
the original potential. The latter states are not useful for us,
because they deviate from the solution of our initial problem.
However, the amount of states bounded to the original poten-
tial function increases with the width of the infinite potential
well. Furthermore, a good choice for the functions in the ba-
sis set is to choose them so that they should be able to form a
root (zero amplitude) in both walls of the potential well.
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The dispersion relation (E (K)) is a very important prop-
erty of a material [9], and also, it is very useful in solid state
physics. In a typical solid, the allowed energy bands are sep-
arated by band gaps, or forbidden energy bands. Such con-
figurations along with the Fermi energy, define if a material
is conductor, insulator or semiconductor. There are several
models, which have analytical solutions, that reproduce these
phenomena. One of the most studied examples is the one
dimensional Kronig-Penney model. Such one dimensional
solutions give an idea about the physics of quantum systems
and serve as an overview of these phenomena in three dimen-
sions.

The periodic potentials feature energy bands in their dis-
persion relations. To solve the TISE for a periodic potential
using the variational method, a smart choice is to pick a set
of periodic functions to conform the basis set. The trick of
embedding the potential into the infinite potential well will
not be necessary in these cases. R. L. Pavelichet al. [5] stud-
ied the Kronig-Penney model and arbitrary periodic potential
by means of variational method employing one dimensional
plane-wave basis set, which are defined as

ψn (x) =
1√
a

exp (iKnx) n = 0, ± 1,±2, . . . (17)

wherea should be a multiple of the period of the functions
that we want to reproduce andKn the wave number. How-
ever, they also computed analytically the elementsHmn too,
so the possible potentials are special, in the sense, that the
mathematical treatment is feasible. The allowed values for
Kn are2πn/a in order to keep the periodic boundary condi-
tions. The plane-wave basis set is a good choice because it is
closely related to Fourier expansions, thus, it might be able
to reproduce any periodic function of periodicitya.

Imagine a metal that exhibits a crystalline structure. Such
metal can be seen as an one dimensional lattice, where the
ions are arranged in such a way that there is a periodicitya.
Those ions can be modeled with a potential function of peri-
odicity a such that

V (x + a) = V (x) (18)

Therefore, the potential energy operator is invariant under
displacements byα. The kinetic energy operator also remains
invariant under the aforesaid displacements, because the sec-
ond derivative operator keeps the periodicity of the functions
it operates on. This implies that solutions to the TISE can
be expressed in terms of the solution for a unit cell only cor-
rected by a phase factor, thus

ψK (x + a) = exp (iKa)ψK (x) (19)

whereK is the Bloch vector which, in our case, is a number
because we are working in one dimension. AllK values that
differ by a multiple of2π/a are equivalent due to phase fac-
tor periodicity. Therefore, the values forK can be restricted
in the interval−π/a ≤ K ≤ π/a and refolded by means of
a translation by2πn/a, K → K + 2πn/a, wheren is an

integer.K is continuous because the potentials are repeated
indefinitely. In this way, there is a solution for eachK.

The Bloch’s theorem establish thatψK,n can be written as
a product of a periodic functionun of periodα and a plane-
wave function. That is

ψK,n (x) = exp (iKx)un (x) (20)

Thanks to Bloch’s theorem (19), it is only necessary to
solve the TISE within a single unit cell(0 ≤ x ≤ a), for sev-
eral values ofK between−π/a andπ/a, in order to generate
the solution for any region [1,10]. Then, we only need to pro-
pose a basis set to describedun.

3. Algorithm

To solve the TISE by means of the variational method, is to
choose a set of basis. For non-periodic potential functions,
we assumed that the particle is bound to an infinite potential
well of width a. For periodic potential functions, there is a
periodicity and the problem is reduced to an interval[0, a].
In order to use computational differentiation and integration
methods, this range is divided into sub-intervals of sizeh.

In order to find the elementTmn, we can change the limits
of (13)

Tmn =

a∫

0

ψ∗m

(
−1

2
d

d2x

)
ψndx (21)

Using the finite differences method, the second derivative of
a basis function will be [11]

ψ′′ (xi)=
ψ (xi+h)−2ψ (xi) +ψ (xi−h)

h2
+O

(
h2

)
(22)

whereh is the distance between two consecutive points,xi

andxi+1. In order to compute the second derivative atx = 0
andx = a, we employ the finite differences method forward
and backward respectively, then

ψ′′ (0) ≈ ψ (0)− 2ψ (h) + ψ (2h)
h2

(23)

and

ψ′′ (a) ≈ ψ (a− 2h)− 2ψ (a− h) + ψ (a)
h2

(24)

We use the composite Simpson’s rule to calculate the def-
inite integrals required to evaluate bothTmn andVmn. This
method can be summarized as

xi+h∫

xi−h

f (x) dx =
h

3
(f (xi − h)

+ 4f (xi) + f (xi + h)) + O
(
h5

)
(25)
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Because the discretization of the range, the functions can
be seen as numerical arrays

ψ′′n (x)=




ψ′′n (0)
ψ′′n (h)
ψ′′n (2h)

...
ψ′′n (a)




; V (x)=




V (0)
V (h)
V (2h)

...
V (a)




(26)

and the integrands become

ψ∗m

(
−1

2
d

d2x

)
ψn =




− 1
2ψ∗m (0) ψ′′n (0)

− 1
2ψ∗m (h)ψ′′n (h)

− 1
2ψ∗m (2h)ψ′′n (2h)

...

− 1
2ψ∗m (a)ψ′′n (a)




(27)

ψ∗mV ψn =




ψ∗m (0)V (0)ψn (0)

ψ∗m (h)V (h)ψn (h)

ψ∗m (2h)V (2h)ψn (2h)
...

ψ∗m (a)V (a) ψn (a)




(28)

Then, the integration is computed by means of (25) as

a∫

0

f (x) dx ≈ h

3
(f (0) + 4f (h) + f (2h))

+
h

3
(f (2h) + 4f (3h) + f (4h))

...

+
h

3
(f (a− 2h) + 4f (a− h) + f (a)) (29)

wheref can be the integrand forTmn or Vmn.
At this point, the matrixHmn is known. The next step

is to determineCn and En in the eigenvalue problem (8).
If the basis set is orthonormal, and therefore, the overlap
matrix S is the identity matrix, then, the problem is solved
directly. Otherwise, it is necessary to find a transformation
to turn the problem into a symmetric eigenvalue problem.
The Givens-Householder QP decomposition is a known pro-
cedure to make that happen [6,7]. Using this method, the
overlap matrixS should be transformed into an unit matrix
by means of a matrixV such that

V†SV = I (30)

The extend explication can be consulted in [7]. It is advis-
able to use a numerical library to compute the eigenvalues
and eigenvectors of bothH andS because the programming
is difficult and confusing. We use scipy’slinal.eig func-
tion [12], which solves an ordinary or generalized eigenvalue

problem of a square matrix using routines from LAPACK.
The aforementioned routine takes in as arguments the ma-
trix H and optionally the overlaping matrixS, in case of a
generalized eigenvalue problem, and returns a vectorE with
the eigenenergies and a matrixC with the eigenvectors. The
eigenvector matrixC is layed out in such a way that itsnth
is the eigenvector corresponding to thenth element in the
eigenenergy vectorE. However, any another routine can be
used to solve the eigenvalue problem.

At this point, we know bothEn andCn. Therefore, we
can compute the wavefunction for the staten, using the el-
ements of the previously calculated matrixC as coefficients
of the basis functions, by means of (9) and, from this, the
probability density functionρ can be evaluated

ρn = |Ψn|2 = Ψ∗nΨn (31)

If the potential is periodic, the above steps are followed
using a periodic basis set, like the plane-waves (20), repeat-
ing the process for several values ofK and calculating the
values forEn as a function ofK to get the band structure,
which is the uttermost property of periodic potentials.

4. Non-periodic potential examples

The algorithm explained in Sec. 3. is used to compute the
eigenenergies and probability densities for the harmonic os-
cillator potential and the barrier potential, both embedded in
the infinite square well

V (x) =

{
0 0 < x < a

∞ otherwhise
(32)

For the harmonic oscillator potential, it is possible to compare
both the eigenenergies and the eigenvectors with the theoret-
ical values available in standard quantum mechanics books.

4.1. Harmonic oscillator potential

The form of the harmonic oscillator potential is

V (x) =
1
2
mω2

(
x− a

2

)2

0 < x < a (33)

wherem is the particle mass,ω is the angular frequency re-
lated to the particle and, in this case, the potential is centered
arounda/2. The analytical solution of (1) for this potential
function is [1]

En =
(

n +
1
2

)
~ω n = 0, 1, 2, . . . (34)

for eigenenergies and

ψn (x) =
(mω

π~

)1/4 1√
2nn!

exp
(
−mω

~

(
x− a

2

)2
)

×Hn

(√
mω

~

(
x− a

2

))
(35)

Rev. Mex. Fis.E 63 (2017) 12–20



16 J.D. ALZATE-CARDONA, O.D. ARBELÁEZ-ECHEVERRI AND E. RESTREPO-PARRA

TABLE I. Eigenenergy values for the harmonic oscillator.

n En (Basis 1) En (Basis 2) En theoretical %ε (Basis 1) %ε (Basis 2)

0 25.001 25.001 25.0 0.004 0.004

1 75.016 75.022 75.0 0.021 0.029

2 125.164 125.208 125.0 0.131 0.1664

3 175.989 176.203 175.0 0.565 0.687

4 228.973 229.721 225.0 1.766 2.098

5 286.558 288.232 275.0 4.203 4.812

6 351.277 354.566 325.0 8.086 9.097

7 424.839 429.873 375.0 13.290 14.633

FIGURE 1. Probability density function|ψn|2 for different energy
levelsn for the harmonic oscillator potential. The probability den-
sities for the basis set 1 and 2 overlap, that is why only one function
shows up in the figure (color online).

for eigenvectors, whereHn are the Hermite polynomials de-
fined as

Hn (x) = (−1)n exp
(
x2

) dn

dxn

(
exp

(−x2
))

(36)

We picked two different basis sets. The infinite square
well solutions (16) were chosen as basis set 1. Another basis
set with the form

ψn = x (x− a) sin
(nπx

a

)
(37)

was chosen as basis set 2, which is neither normalized nor
orthogonal. For this reason, the basis set 2 must be normal-
ized before solving the generalized eigenvalue problem. The
well width was set ata = 1.0 and the angular frequency at
ω = 50. The number of divisions was set at10000 such that
h is 0.0001.

The number of basisN was set at30, for both basis set,
yielded a good approximation while keeping a reasonable run
time.

Figure (1) shows a plot of the probability density func-
tion for the ground state and the first three excited states in
the harmonic oscillator potential, comparing them with the
analytical solutions.

FIGURE 2. Schematic representation of the harmonic oscillator po-
tential “embedded” in an infinite square well of widtha = 1, for
the basis set 1.

Table I shows the eigenenergy values obtained by the
variational method both basis set and comparing them with
the theoretical values from (34). Results show that the error
increases whenn increases, which is expected because the
variational method guarantees an accurate solution only for
the ground state(n = 0). However, the basis set 1 is a bet-
ter choice that basis set 2 because it can reproduce accurately
the exact solution. This was expected because the basis set
1, being solution to the infinite well potential, can adjust eas-
ily to any function embedded in this potential. However, the
basis set 2 returns a good approximation because it presents
nodes in the walls and has behavior similar as the basis set 1.
The error for the ground state with the basis set 1 is around
0.004%. When the state’s energy reaches the maximum value
of potential, then the states stop belonging to harmonic oscil-
lator potential and become close to the solutions for a particle
confined in an infinite square well with a harmonic oscillator
potential. This can be readily observed in the Table I and
in the Fig. 2. The maximum value of the potential, when
ω = 50, is 312.5 and the energy for statesn = 6 andn = 7
exceeds that limit thus the error for those levels is notably
larger than the error for lower values ofn.

In order to reach more energy levels, the widtha should
be increased, so that the maximum value of potential in-
creases accordingly. This requires to increase the number of
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FIGURE 3. Schematic representation of the harmonic oscillator po-
tential “embedded” in an infinite square well of widtha = 1.5, for
the basis set 1.

divisions and the number of functions in the basis set to pre-
serve the accuracy. Accordingly, the width of the well was
increased to1.5 and to preserve the value for the size interval
h, the amount of divisions was increased to15000. Figure 3
shows that, as it was expected, the eigenenergies are accurate
even for the staten = 10, above which the method begins to
fail.

4.2. Rectangular potential barrier

The rectangular potential barrier function is one of the sim-
plest potentials that is employed for educational reasons to
illustrate some non-classical effects like quantum tunneling.
This phenomenon occurs when a particle travels towards a
barrier potential and there is a probability for the particle to
cross the barrier, even if the energy of the particle is lower
than the height of the barrier. The barrier potential has the
form

V (x) = V0Θ(x− dl)Θ (x + dr) 0 ≤ x ≤ a (38)

where Θ is the Heaviside step function,V0 is the barrier
height anddl anddr are the position for the left and right
walls, respectively, such that the barrier center is indl + dr/2
with a width ofdr − dl, beingdr > dl.

FIGURE 4. Schema of the rectangular potential barrier embedded
in an infinite potential well.

FIGURE 5. Analytical solution (a) and variational solution (b) for
the potential barrier embedded in an infinite potential well with re-
duced units(~ = m = 1), V0 = 50, b = 0.1 anda = 1.0. The
graphical method is employed for the analytical solution (39).

To solve this potential, the trick aforementioned in Sec. 3
is used again. Therefore, the potential barrier is embedded in
an infinite potential well. This problem can be solved analyti-
cally and compared with the numerical solution. The scheme
for this problem can be visualized in the Fig. 4. The math-
ematician treatment is feasible for this case, which is useful
to compare with the numerical solutions. You can consult the
appendix for the deduction. To compute the allowed energies
(bound energies), it is necessary to solve the transcendental
equation arising from the mathematician deduction

exp (−4αb)
[
α− κ cot

(
κ

(a

2
− b

))]2

=
[
α + κ cot

(
κ

(a

2
− b

))]2

(39)

where α =
√

2m (Vo − E)/~ and κ =
√

2mE/~. A
good technique to solve the above equation is the graphical
method, which consists in plotting the left and right sides of
the Eq. (39) as a function ofκ. The crosspoints of the two
functions return the allowed values forκ and, subsequently,
the allowed values forE. Figure 5a shows the graphical so-
lution for Vo = 50, a = 1.0 and b = 0.1. For this specific

Rev. Mex. Fis.E 63 (2017) 12–20



18 J.D. ALZATE-CARDONA, O.D. ARBELÁEZ-ECHEVERRI AND E. RESTREPO-PARRA

FIGURE 6. Different states of the potential barrier showing degen-
eration. The scheme for the potential is a guide to the eye.

case, there are two bound states; hence, there must be two
intercepts. The two values forκ were5.81325 and6.58358,
which correspond to values for the energyE of 16.897 and
21.672, respectively. For applying the variational method, the
interval sizeh was set at0.0001 and the amount of basisN
was set at30. Figure 5b shows the two levels of interest, with
energies16.899 and21.673. The relative errors for those lev-
els are0.012% and0.005% respectively, which implies that
the variational method is very accurate to the analytical solu-
tion.

On the other hand, if the barrier is centered ata/2 and the
barrier height is huge, the energy levels becomes two-folded
degenerate, because there is some kind of arbitrariness due
to symmetry, and the energy is the same when the particle
travels from left to right or from right to left. Figure 6 shows
the first four states for the potential mentioned above and it
is possible to visualize that the wavefunctions for the states
n = 0 andn = 1 are different although their energies are the
same. Same happens for the staten = 2 andn = 3. This
is an evidence that the levels for the bound energies are two-
folded degenerated. The last simulations were carried out for
Vo = 1000, a = 1.0 andb = 0.1.

Similar results were finding by V. Jelicet al. [13] for a
double-well potential embedded in an infinite potential well,

FIGURE 7. Probability density function for the staten = 7 for a
particle in an asymmetric potential barrier embedded in the infinite
potential well.

where again appears the degeneracy as a result of symmetry
and a barrier height sufficiently large.

Other important phenomenon is the quantum tunneling,
which is possible to visualize if the probability density func-
tion in the opposite side of the potential is greater than zero.
In this case, we simulate an asymmetric potential barrier, re-
curring to Eq. (38), and setdl = 0.5, dr = 0.6, a = 1.0
andV0 = 500. Figure 7 shows that in the right side the prob-
ability density function is greater than zero. For this case,
it is thought that the particle travels from left to right and it
crosses the barrier allowing appreciate the tunnel effect, al-
though the particle energy(E7 = 275.980) is lower that the
barrier height.

This problem could be more realistic in the nature, be-
cause the particles in the devices are thought as confined and
can be seen like a infinite potential well.

5. Periodic potentials

Besides, the algorithm explained in Sec. 3. is also used to
compute the energy bands for the Kronig-Penney model and
for a more realistic potential, named “pseudo-Coulomb” po-
tential.

5.1. Kronig-Penney model

The Kronig-Penney model consists in an infinite periodic ar-
ray of rectangular potential barrier functions. This model il-
lustrates a perfect one dimensional crystal and its solutions
resemble important features of the quantum behavior of elec-
trons in periodic lattices [11].

The potential of the Kronig-Penney model has the form

V (0 < x < a) =





0 0 < x <
a− b

2
V0

a− b

2
≤ x ≤ a + b

2
0

a + b

2
< x < a

(40)
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FIGURE 8. Kronig-Penney model.

FIGURE 9. Numerical solutions to the dispersion relation for the
Kronig-Penney model, forb = 0.0a, 0.25a, 0.5a, 0.75a anda,
respectively.

for a unit cell, wherea is the unit cell width,b < a andV0 are
the potential barrier width and height, respectively. Figure 8
shows a scheme of the Kronig-Penney model’s potential.

The analytical solution is studied in detail in Ref. 14. The
final expression for the dispersion relation is

cos (Ka) = −α2 + β2

2αβ
sin (α (a− b)) sin (βb)

+ cos (α (a− b)) cos (βb) (41)

whereα =
√

2mE/~ andβ =
√

2m (E − V0)/~. This re-
lation will be useful to estimate the error in the numerical
solution.

In order to solve the TISE for this potential, the plane-
wave basis set was chosen. Therefore, the values forK are
varied from−π/a to π/a. This interval was divided at100
equal parts, and for any part, the algorithm explained in 3. is
used to find a set of energies for each value ofK. This set of
energies returns the dispersion relation. Besides, the amount
of basisN was set to15 that corresponds to31 plane-waves
becausen, for this case, runs from−N to N including zero.
Moreover, the interval from0 to a was divided into10000
parts. These quantities were fixed to ensure an accurate so-
lution. For the simulation, the unit cell widtha is set to1.0,
the barrier widthb is varied and the barrier heightV0 is fixed
to 50. Again, the constants are reduced, so that~ = 1 and
m = 1.

Figure 9 shows the numerical (solid lines) and analytical
solutions (squares) for different values ofb. The potential
barriers (vertical textured regions) are plotted to improve the
visualization. The horizontal shaded regions are known as
band gaps or forbidden energy bands, since it is not possible
for the particle to have energies in those regions. As the po-
tential barrierb increases, the band gaps width also increase,
up untilb arrives to0.5a, where the band gaps width starts de-
creasing as the potential barrierb increases. That is because
for b = 0.0a, the model reduces to the free particle model,
similarly for b = 1.0a, the model reduces to the free particle
model plus a constant and uniform potential or gauge.

5.2. Pseudo-Coulomb potential

The pseudo-Coulomb potential, or soft-Coulomb potential,
is a more realistic model for electrons traveling through peri-
odic lattices, where the interaction between the electrons and
the ions in the lattice is approximated to the Coulomb poten-
tial between charged particles. This potential can be written
as

V (x) =
Keq1q2∣∣∣x− a

2

∣∣∣
(42)

whereKe is the Coulomb’s constant andq1 andq2 are the
particles charges. The potential is centered arounda/2.
However, the potential diverges whenx = a/2. In order
to avoid such divergence, a softening parameterb is added,
and Eq. (42) takes the form

V (x) =
A

b
− A√(

x− a

2

)2

+ b2

(43)

where A is a positive number that represents the product
Keq1q2 and it is called strength, andb is a positive and small
softening parameter introduced to prevent singularities [5].
We introduce the potential gaugeA/b to keep the potential
values greater than zero.

The pseudo-Coulomb potential falls into the category of
interesting and realistic potentials where the mathematical
treatment is so hard that, until now, it has been impossible

FIGURE 10. Numerical solution to the dispersion relation for the
pseudo-Coulomb potential, withA = 50 andb = 0.3a.
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to arrive to an analytical solution. The pseudo-Coulomb po-
tential has been used to study auto-ionized states [15].

Again, the plane-wave basis set is chosen for this poten-
tial. The values were fixed atA = 50, b = 0.3a anda = 1.0.
Figure 10 shows the numerical solution for the relation dis-
persion in this potential. The thick line represents the poten-
tial for visualization issues, while the thin lines, the disper-
sion relation (E (K)). The dispersion relation for pseudo-
Coulomb potential also features band gaps, (shaded regions
in the plot), as expected for periodic potentials.

6. Summary

The intended audience of this work are students starting in
the field of computational quantum mechanics. We explain a
sequence of steps to solve the stationary Schrödinger equa-
tion for arbitrary potentials, which can be non-periodic or
periodic. For the periodic potentials employing the Bloch’s
theorem. Moreover, we explain the fundamentals of the vari-
ational method and matrix mechanics. A student, with the
help of this paper, should be able for implementing a code
to solve the TISE, in his preferred programming language.
However, the results and plots were obtained with a pro-
gram implemented in python3 and can be consulted in the
link https://gitlab.com/jdalzatec/TISE. The graphical inter-
face was implemented by means ofPYTHON-GTK. Although
this paper is geared in a basic way, the student has the free-
dom to practice with any other potential function, using his
program or ours, and compares his results with theoretical
ones, whenever is possible to get an analytical solution.

Appendix

A. The Potential Barrier Embedded in an Infi-
nite Potential Well

The problem is divided into three regions: the left, the mid-
dle and the right sides of the barrier (see Fig. 4). Applying

boundary conditions to the left side, the left side solution is
reduced to

ψ(x) = A sin(κx) 0 ≤ x ≤ a

2
− b

whereκ =
√

2mE/~ andA is an arbitrary constant. In the
middle of the barrier, the solution is of the form

ψ (x) =C exp (−αx) + D exp (αx)
a

2
− b ≤ x ≤ a

2
+ b

whereC andD are arbitrary constants. For the right side,
again the boundary conditions are applied and the solution
for this region is

ψ (x) =F sin (κx)− F tan (κa) cos (κx)
a

2
+ b ≤ x ≤ a

At this point, the continuity conditions forψ andψ′ must be
used. The transcendental equation arises when these condi-
tions are employed and the constantsA, C, D andF van-
ishes. This equation relatesα with κ, which are functions of
E. If the mathematical procedure is made in the correct way,
one possible form for the transcendental equation is

exp (−4αb)
[
α− κ cot

(
κ

(a

2
− b

))]2

=
[
α + κ cot

(
κ

(a

2
− b

))]2
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