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Inspired by the recent discovery of Gravitational Waves (GWs) by the LIGO array, we consider necessary to strengthen the formation of our
students in Numerical Relativity (NR) in Ḿexico. A key issue in the future GW astronomy is the efficiency at solving inverse problems,
this means, reconstructing the physical parameters of the GW source. In the case of the Binary Black Holes (BBH) inspirals, we find the
appropriate example where NR has shown its usefulness, because the waveforms predicted by NR simulations in BBH collisions are used
to filter the data in the interferometer runs. The size of a catalog of such numerically generated waveforms is therefore of great importance
because the more waveforms it has the easier is to reconstruct the intrinsic parameters of the BBH system. In this way, the purpose of this
educative paper is to show the comparison, in terms of performance and accuracy, of the two different numerical methods used to build the
catalogs, applied to the evolution of a training problem, namely the evolution of a single black hole. We present a comparison between a
pseudospectral and a finite differences method in the solution of numerical general relativity equations. The system we choose to test the
performance and accuracy is a spherically symmetric black hole in Eddington-Finkelstein coordinates. For the evolution we use the Einstein-
Christoffel formulation of General Relativity. We compare accuracy in the violation of the Hamiltonian constraint and CPU time, both in
terms of the spectral and finite differences resolution.
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1. Introduction

There is no doubt that the recent discovery of Gravitational
Waves (GWs) is of historic importance [1,2], and that it will
open a new window for astrophysics [3], mainly because it
has confirmed the two main predictions of General Relativ-
ity (GR), namely, the existence of GWs and the existence
of Black Holes on a strong gravitational field scenario, even
though there is still room for other compact objects to source
these GWs [4,5].

What requires some patience and deep knowledge to con-
solidate this new branch is to acquire the know how on vari-
ous ingredients of this discovery and future GWs astronomy
work. On the one hand there is the knowledge of the math-
ematics of GR and its different implications on astrophysics,
and on the other hand there is the data analysis behind the
scene of GW observations.

Specifically, the analysis of the sources of GWs reduces
to infer the properties of the source that generates a given ob-
served signal. In the case of the discovery in [1], the system is
an orbiting binary black hole system with masses of 29 M¯
and 36 M̄ within an uncertainty box. This information is
obtained through the inversion of the problem, that is, given
a signal one has to estimate the parameters of the BHs that
better fit the observed GW signal. The parameters character-
izing the system are many and of two types, on the one hand
the intrinsic parameters associated to the masses and spins of
the black holes and possibly the eccentricity of the orbit; on
the other hand there are extrinsic parameters related to the lo-
cation of the source on the sky, including luminosity distance,
declination, inclination, polarization and orbital phase of the
source [6, 7]. The inversion of the problem is specifically

the reconstruction of all the parameters of the astrophysical
problem that generated a given GW signal.

The inversion would be easy if one could carry out as
many simulations as desired of the collision of two black
holes with any combination of parameters, and then decide
which simulation better fits the data. Unfortunately, the sim-
ulation of the binary black hole system requires the solution
of Einstein’s equations, which is a system of PDEs on a chunk
of space-time [8, 9], whose solution requires a considerable
amount of computational resources. The good news are that
after the first long term binary black hole evolutions [10–12],
the simulations of a many orbits binary black hole colli-
sions are doable, the bad news are that still the computer
power required to explore such an amazingly big parame-
ter space is currently unaffordable. A complete catalog of
GW source signals should include many combinations of -at
least- the intrinsic parameters of the binary system, namely
masses of the black holes, their linear momenta and individ-
ual spins of the black holes. These quantities span an at least
eight dimensional space [6]. The number of parameters ob-
viously increases the number of simulations and processing
time required to construct a complete catalog. For exam-
ple, consider the parameter space of the masses and spins
of the black holes, and for simplicity assume the spins are
aligned and parallel to the orbital angular momentum, the
number of dimensions of the parameter space would be two,
the mass ratio (MR) between the black holes and the spin
ratio (SR); considering the mass ratio ranges from 1 to 10
and the spin ratio between -1 and 1; exploring the mass ratio
with ∆MR = 0.1 and∆SR = 0.1 the number of simulations
is 100 × 21 = 2100 runs. If each of these runs takes one
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week using 128 powerful cores using high numerical reso-
lution, it would take about 43 million cpu-hours assuming
no technical problems happen and not taking into account
the post-processing analysis required to extract the physical
quantities. This must lead to imagine the scenario where the
spins are not parallel.

A way out to this problem and all the computer power
required, is to use waveforms generated by other means, in-
cluding post-Newtonian expansions or effective one body ap-
proaches to the binary problem, avoiding in this way the need
to solve directly the full Einstein’s equations. These methods
are very efficient however they lack of the information during
the merger stage of the collision.

What has been done is to produce a standardized cat-
alog [13] of NR simulations with representative combina-
tions of intrinsic parameters that is used to match-filter the
observed signals called the Numerical INJection Analysis
(NINJA) Project, which was produced using different numer-
ical codes that use various numerical methods and gauge con-
ditions under severe accuracy restrictions [14]. The wave-
forms in the catalog are combined with and matched to or-
bital waveforms generated with post-Newtonian approxima-
tions [14]. These matched signals are used to filter potential
waveforms in the data measured by the interferometers. Later
on, these signals are used to approximately estimate parame-
ters of a potential GW source [15]. Finally, as expected, the
catalog is growing in size (e.g. [16,17]).

The educative aspect we bring on, is the accuracy and
efficiency of different numerical methods when solving Ein-
stein’s equations that later is reflected in the size of a given
catalog. Following the standardized approach in the NINJA2
Project [14], we call the attention that among the codes
used to submit waveforms, one of them, SpEC [18] uses a
multidomain pseudospectral method that shows exponential
convergence, whereas the rest of codes used in the collab-
oration (BAM [19], LazEv [20], LEAN [21], Llama [22],
MayaKranc [23] and UIUC [24]) use finite differences meth-
ods.

Therefore we consider very educative a comparison be-
tween the two main numerical methods used to solve Ein-
stein’s equations, namely, pseudospectral and finite differ-
ences. We show how to construct and compare the accuracy
and efficiency at solving a specific numerical relativity prob-
lem. For this we choose to evolve a black hole in spherical
symmetry, without matter. The spherical symmetry is easy
to implement from the scratch in a simple manner, so that
we avoid to use a code from elsewhere that is a black box
hiding many computational processes additional to the nu-
merical methods. We do not involve matter because it is not
necessary at this stage due to the small interaction between
matter and GWs and because it would require the use of dif-
ferent numerical methods. This would be an obstacle to the
comparison we want to develop.

The methods we compare are a flavor of Pseudospec-
tral method (PS) used for instance by the SpEC code [18],
and the Finite Differences method (FD), commonly used in
many robust codes, for instance by the Einstein Toolkit pack-
age [25,26]. For the PS we do not use any fancy approach like
calculation of the expansion coefficients using FFT, instead,
we simply evaluate the derivatives of the functions using the
Chebyshev collocation derivative matrix. For the FD method
we use a uniform mesh with fourth order stencils.

A fair arena to compare both methods requires an appro-
priate formulation of General Relativity that allows the im-
plementation of the two methods in a simple way, and that
shows well posed boundary and initial conditions. For this
we use the KST Einstein-Christoffel formulation of General
Relativity, which has all these properties [27].

The paper is organized as follows. In Sec. 2 we present
the evolution equations in the Einstein Christoffel (EC) for-
mulation for spherically symmetric space-times and the ini-
tial data for a Schwarzschild black hole. In Sec. 3 we de-
scribe both, the FD method and the Pseudospectral method
used for the comparison. In Sec. 4 we presents the results of
our comparison and in Sec. 5 we mention some conclusions.

2. Evolution equations

2.1. Einstein-Christoffel system of equations in spheri-
cal symmetry

The idea is to solve the Einstein Field equations for a
Schwarzschild Black Hole, which is a vacuum solution
Gµν = 0, whereGµν is the Einstein tensor. For this we
assume the standard 3+1 decomposition metric in spherical
symmetry (see for example [8,9])

ds2 = −α2dt2 + grr(dr + βrdt)2

+ gT r2(dθ2 + sin2 θdφ2) (1)

where(t, r, θ, φ) are the time and spherical coordinates, with

gT =
gθθ

r2
=

gφφ

r2 sin2 θ
.

So far, the involved functions, the 3-metric of the spatial
slicesgij , the lapse functionα and the shiftβr are assumed
to depend on(t, r) only.

In the EC formulation, in spherically symmetric space-
times, Einstein’s equations in vacuum reduce to the follow-
ing system of first order in time evolution equations, where a
densitized lapsẽα = α/(gT

√
grr) is used [27]

∂tgrr = βr∂rgrr − 2αKrr + 2grr∂rβ
r,

∂tgT = βr∂rgT − 2αKT + 2
βr

r
gT ,
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frT . (2)

This is a system that determines the evolution of the extrinsic
curvature components of the spatial hypersurfacesKrr and
KT = Kθθ/r2 = Kφφ/(r2 sin2 θ), which are the radial and
transverse components of the extrinsic curvature, whereas
frrr and frT = frθθ/r2 = frφφ/(r2 sin2 θ) are auxiliary
variables defined by [27]

fkij = Γ(ij)k + gkig
lmΓ[lj]m + gkjg

lmΓ[li]m.

This system of equations is attached to a set of four con-
straints, namely the usual Hamiltonian and Momentum Con-
straints in vacuum and two new constraints resulting from the
definition of the auxiliary variables particular of the EC for-
mulation

C :=
∂rfrT

grrgT
− 1

2r2gT
+

frT

grrgT

(
2
r

+
7frT

2gT
− frrr

grr

)

− KT

gT

(
Krr

grr
+

KT

2gT

)
= 0

Cr :=
∂rKT

gT
+

2KT

rgT
− frT

gT

(
Krr

grr
+

KT

gT

)
= 0

Crrr := ∂rgrr +
8grrfrT

gT
− 2frrr = 0

CrT := ∂rgT +
2gT

r
− 2frT = 0

all of which have to hold during the evolution. In the orig-
inal ADM 3+1 formulation there are only the Hamiltonian
and Momentum constraints, and the only variables evolving
in time are the components of the induced 3-metric and the
components of the extrinsic curvature of the spatial hyper-
surfaces. When new formulations appeared, like the BSSN
and the EC, new variables were promoted as dynamical vari-
ables with their own evolution equations. The motivation
of the new formulations was to improve the properties of
the evolution system in terms of its characteristic structure,
which is fundamental to define a well posed initial value
problem [8,9]. Every time a new variable is defined a new

constraint appears in the system of evolution equations, and
this is the meaning of the last two equations above.

These constraints are not being solved during the evo-
lution and in practice the set of constraints of an evolution
system is satisfied only up to numerical errors. Therefore,
the way to know whether one is solving Einstein’s equations
is to monitor the violation of the constraints and check if it
is small and converges to zero when improving errors of the
numerical methods.

2.2. Initial data

We start the evolution of a Schwarzschild black hole us-
ing Eddington-Finkelstein coordinates. It is well known that
standard Schwarzschild coordinates are singular at the event
horizon, which makes all the variables divergent at that sur-
face and makes impossible any numerical calculation there.
The family of Eddington-Finkelstein foliations has the prop-
erty that the spatial hypersurfaces of the space-time pene-
trate the horizon. In this description the equations are all
regular except at the singularity located at the origin of co-
ordinates. The use of this description allows one to solve
the equations inside the event horizon as long as the sin-
gularity is not included in the numerical domain. This can
be done using a technique called excision [28], which con-
sists on defining the numerical domain forr ∈ [rmin, rmax]
with 0 < rmin < rEH , wherermin is an internal boundary,
rEH = 2M is the radius of the event horizon andrmax is
a radius far away from the black hole. Explicitly, the met-
ric functions, curvature components andf variables in these
coordinates are

grr = 1 +
2M

r

gT = 1
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α̃ =
(

1 +
2M

r

)−1

βr =
2M

r

(
1 +

2M

r

)−1

Krr = −2M

r
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whereM is the mass of the black hole. These expressions
satisfy identically the four constraints at initial time. With
the evolution equations and initial conditions one only needs
to start up the evolution of these initial data. Given these con-
straints are not being solved during the evolution, they start
being violated due to the numerical errors of each method. It
is a common practice that during the numerical evolution of
a space-time the constraints have to be monitored in order to
verify that the system remains near the constraint surface and
converges in the continuum limit to no violation.

3. Numerical methods

In this section we explain the Pseudospectral and Finite Dif-
ferences methods. In both cases we use a time and space
discretization. The spatial discretization depends on the num-
ber of points used to describe the spatial coordinate. In both
methods, the number of points used to discretize, defines a
given resolution. As the number of points tends to infinity we
say that we increase the resolution and expect the numerical
solution to approach the solution of the continuum equations.

The time discretization is defined by a time resolution∆t.
We use the method of lines to evolve the numerical solution
along the discretized spatial domain. The method of lines is
well described in [29] and here we describe the methods used
for the spatial discretization.

3.1. Pseudospectral method

We use the pseudospectral Chebyshev method that we briefly
describe here for clarity. This method assumes a smooth
function u(x) in the domainx ∈ [−1, 1]. The Chebyshev-
Gauss-Lobatto (CGL) collocation points are set to the posi-
tions

xi = cos
πi

N
i = 0, ..., N,

which are the extrema of theN th order Chebyshev polyno-
mial

TN (x) = cos(N cos−1(x)).

The functionu(x) is interpolated by a polynomialP (x) of
degree≤ N ,

P (x) =
N∑

j=0

ujLj(x),

whereuj = u(xj) andLj is the polynomial of degreeN
such thatLj(xk) = δjk. Therefore, in the CGL points we
have

Pi = P (xi) =
N∑

j=0

ujLj(xi) =
N∑

j=0

ujδji = ui.

It can be shown (see [30]) that

Lj(x) =
(−1)j+1(1− x2)T ′N (x)

cjN2(x− xj)
, j = 0, ..., N,

whereT ′N is the derivative of a Chebyshev polynomial and

cj =
{

2, j = 0, N,
1, j = 1, ..., N − 1.

The derivative ofu(x) at the CGL points can be approxi-
mated by

∂u(xi)
∂x

≈ ∂Pi

∂x
=

N∑

j=0

ujL
′
j(xi) =

N∑

j=0

uj(DN )i,j ,

whereDN is the Chebyshev collocation derivative matrix
with (DN )ij = L′j(xi). The entries ofDN are

(DN )ij =
ci(−1)i+j

cj(xi − xj)
, i 6= j,

(DN )jj =
−xj

2(1− x2
j )

j 6= 0, N,

(DN )00 =− (DN )NN =
2N2 + 1

6
.

In order to use Chebyshev polynomials,Pi is defined for
x ∈ [−1, 1]. Hence for our radial coordinate on the arbitrary
intervalr ∈ [rmin, rmax] we use the following application

r : [−1, 1] → [rmin, rmax]

r(x) =
rmax − rmin

2
(x− 1) + rmax,

that maps the colocation coordinatex onto the physical coor-
dinater. One can substitute this mapping into the differential
operator and find for a given functionu that spatial deriva-
tives satisfy

∂u(r)
∂r

=
2

rmax − rmin

∂u(x)
∂x

.

This method is used to decompose each of the evolution
variables in (2) and at each collocation point we integrate in
time using the Method of Lines with a 4th order Runge-Kutta
integrator.
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3.2. Finite differences method

For the FD implementation we define a uniform grid with
resolution∆r = (rmax − rmin)/Nr with grid points at
ri = rmin + i∆r. The values ofrmin and rmax indicate
the location of the inner and outer boundaries of the numer-
ical domain. An educative paper on finite differences can be
found in [29]. The discretization tends to the continuum limit
when the resolutions∆t and∆r tend to zero.

The system of evolution equations (2) is first order in
time. The FD implementation uses standard 4th order accu-
rate stencils, which requires both, centered and up and down-
wind election of neighboring grid points. For completeness
we rewrite the first derivative of a given functionui consider-
ing the possible combinations of neighboring points consis-
tent with fourth order accuracy

∂rui = C[3ui−4 − 16ui−3 + 36ui−2

− 48ui−1 + 25ui] +O(∆r4)

∂rui = C[−ui−3 + 6ui−2 − 18ui−1

+ 10ui + 3ui+1] +O(∆r4)

∂rui = C[ui−2 − 8ui−1 + 8ui+1 − ui+2] +O(∆r4)

∂rui = C[−3ui−1 − 10ui + 18ui+1

− 6ui+2 + ui+3] +O(∆r4)

∂rui = C[−25ui + 48ui+1 − 36ui+2

+ 16ui+3 − 3ui+4] +O(∆r4) (3)

whereC = 1/12∆r. We have to be this explicit because
the advection terms of the typeβi∂ru in (2) may affect the
causality of the evolution algorithm. In order to causally re-
connect we use stencils with neighbors to the right ofri when
βr

i > 0 and neighbors to the left whenβr
i < 0 for all the

pointsri of the grid far from the boundaries. At the bound-
aries we simply use appropriately unbalanced stencils from
(3) to calculate accurately the spatial derivatives.

As mentioned before, the time integration is performed
using the Method of Lines on each grid point, using a 4th
order accurate Runge-Kutta method like for the PS method.

3.3. Boundary conditions

One of the most important aspects of numerical relativity is
that the final result is the construction of only a small piece
of space-time, no matter whether is a system of two orbiting
black holes or a supernova core-collapse. The result is limited
both in space and time. It is limited in time because the simu-
lations take a finite time and limited in space, because gener-
ally uses a finite spatial domain, defining an external artificial
boundary. The binary black hole simulations are usually car-
ried out in cubical domains in full 3D, and when excision
is used there are two other internal excision boundaries, one
inside each of the two black holes.

In the present problem with spherical symmetry, there are
two boundaries, the external boundary is a sphere, which in
our coordinates is located at the pointr = rmax and the inner
boundary, also a sphere located atr = rmin.

We use the same boundary conditions for both methods.
At the inner boundary there is no need to implement any
boundary conditions because all the characteristic fields get
off the domain throughrmin in the direction toward the sin-
gularity. This means that the light cones point toward the
singularity atr = 0 and therefore, all the fields propagate
with world-lines within the light cones.

Following the EC formulation of Einstein’s equations
in [27], for spherically symmetric space-times the radial char-
acteristic modes can easily be identified for the variables
in (2). Therefore, at the outer boundary inrmax, the fields
have, tangential and radial ingoing and outgoing modes.
What is usually done in black hole evolutions is to apply out-
going boundary conditions and so we do here. There are four
fields propagating atrmax inwards, which eventually may
contaminate the numerical solution. Two of these fields are
U0

r = grr andU0
t = gT moving with speed−βr. Two other

fields moving with speed−βr ± α̃gT are

U±
r :=Krr ± frrr√

grr
,

U±
T :=KT ± frT√

grr
.

The boundary condition we impose are the freezing condi-
tions, that is∂tU = 0 for the incoming part of these fields,
namelyU0

r , U0
t , U−

r andU−
T . These boundary conditions al-

low the evolution of the space-time for hundreds of crossing
times.

4. The comparison

We now set parameters commonly used in real simulations in
terms of domain, accuracy estimates and performance.

Spatial domain.We describe the black hole using horizon
penetrating coordinates and use excision. We set the excision
boundary atr = 1.9 M near but inside the event horizon [28].
We run the simulations in two different domains a small one
with r ∈ [1.9, 11.9] M and a big one withr ∈ [1.9, 101.9] M ,
in order to estimate the accuracy in two different scenarios.

For the FD method the mesh is uniform in the whole do-
main, whereas the colocation points in the PS method are
distributed in a non uniform way.

Numerical calculations always involve errors, in numer-
ical relativity one monitors the violations of the constraints
due to numerical errors. The most important source of nu-
merical errors is due to numerical methods. In the case of FD
it is the discretization error, which depends on the accuracy
of the approximation and in the PS method it is the trunca-
tion error depending on the number of basis elements used to
define derivatives.
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Specifically the number of collocation points for the PS
method and the resolution for FD are the following:

- For the PS method we use a different number of col-
location points for each of the two spatial domains
used in order to lie within the convergence regime.
For the small domainr ∈ [1.9, 11.9]M we use
N =10,14,20,24,28,32, 36,40,45,48. For the big do-
main r ∈ [1.9, 101.9] M we useN =50,60,70,80,90,
100,120,140.

- For the FD simulations we use the following resolu-
tions ∆r1 = 0.1, ∆r2 = ∆r1/2, ∆r3 = ∆r2/2,
∆r4 = ∆r3/2, ∆r5 = ∆r4/2, ∆r6 = ∆r5/2 and
∆r7 = ∆r6/2. We apply these resolutions for the
two different spatial domainsr ∈ [1.9, 11.9] M and
r ∈ [1.9, 101.9]M .

Time stepping. For the PS method, given the collocation
points are not equally spaced in the domain, we choose the
time stepping guaranteeing stability of time integration, lim-
ited by the two closest collocation points separated by the
distance∼ π2/N2. Thus we set the time step for the PS
method to∆t = 0.25π2/N2.

FIGURE 1. L2 norm of the Hamiltonian constraint as a function
of time using the PS method for a different number of colloca-
tion pointsN . On the top we show the results for the spatial do-
mainr ∈ [1.9, 11.9] M and on the bottom we show the results for
r ∈ [1.9, 101.9] M .

FIGURE 2. L2 norm of the Hamiltonian constraint as a function
of time using FD for seven different resolutions:∆r1, ..., ∆r7.
The same values of∆r are used for both spatial domains
r ∈ [1.9, 11.9] M (top panel) andr ∈ [1.9, 101.9] M (bottom
panel).

In the FD method, given the mesh is uniform, we sim-
ply set the time step using the CFL relation∆t = λ∆r. We
chooseλ = 0.25 in all the runs.

Calculation of the Hamiltonian constraint.In order to
verify that a numerical solution corresponds to the solution
in the continuum we need to carry out a series of simulations
with different resolutions and measure the resulting errors.
For the sake of having meaningful simulations we choose res-
olutions within the convergent regime for both methods (for a
detailed explanation of convergence see [29]). We check the
convergence for various resolutions until we find a resolution
for which theL2 norm of the Hamiltonian constraint is of the
order of round-off error precision and the convergence is lost.

The accuracy is compared using the violation of the
Hamiltonian constraint and its convergence. In order to have
a comparison between the two methods, the PS method cal-
culates theL2 norm of the Hamiltonian constraint on a FD
mesh. We do this because it would be unfair to estimate the
accuracy only measured at the colocation points.

In Figs. 1 and 2 we show theL2 norm of the Hamiltonian
constraint violation and convergence using the PS and FD
methods respectively, for the two different spatial domains.
Strictly this analysis has to be done for all the constraints,
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FIGURE 3. CPU time using the two numerical methods for a run on the domainr ∈ [1.9, 11.9] M (top) and[1.9, 101.9] M (bottom) during
a timet ∈ [0, 1000] M . For the two methods we use the same resolutions used for the accuracy. We can appreciate the different scaling of
the two methods. The plots on the left correspond to FD and the plots on the right correspond to PS.

nevertheless the common practice is to show only the Hamil-
tonian. The parameters used for the simulations lie within the
convergence regime and when the resolution is increased, un-
til the two methods achieve the round-off error accuracy and
no longer converge.

In Fig. 1 for the small domain, the numerical solution is
convergent forN = 10 until N = 40, and forN = 45, 48
it does not converge anymore. This is not a bad sign, on the
contrary, this behavior of the error indicates that the method
has achieved the best accuracy, only limited by the round-off
error of the computer. The same effect can be seen in the case
of the big domain forN = 120, 140.

In Fig. 2 we show the convergence for the FD method.
Also the round-off error is achieved with resolution∆r7,
which is the same for both the small and big domains. These
two Figures show that both methods achieve the best possible
accuracy for this problem.

Computing time. The advantage of programming our
codes from the scratch is that it is easy to disable all the I/O
and diagnostics routines during the evolution, something that
cannot be done (at least straightforwardly) in a massive code
like ETK or SpEC. With this advantage we thus switch off
I/O and diagnostics so that we estimate the CPU time during
the evolution.

The test for this comparison is done with the small do-
main with r ∈ [1.9, 11.9]. We run simulations duringt ∈
[0, 1000], which is equivalent to about 100 crossing times of
signals moving at the speed of light. The two codes use the
same compiler and optimization flags, and we make the com-
parison on the same computer. The results in calculation time
are shown in Fig. 3 for the two methods. The behavior is non-
linear in both cases. A fair comparison between the methods
is to choose the resolution corresponding to similar accuracy
and then compare the CPU time.

Case of the small domain.Let us compare one partic-
ular case for PS withN = 32 and FD with∆r4 showing
similar accuracy withL2 norm of the violation of the con-
straint of the order of10−9 as shown in Figs. 1 and 2. The
CPU time using the PS method takes 59 seconds, whereas
using FD with it takes 312 seconds, that is six times slower
than the PS method.

Going to the first resolution achieving round-off error pre-
cision, another interesting particular case is that of PS with
N = 45 and FD with∆r6. The CPU using PS is 207 sec-
onds whereas using FD it takes 5088 seconds, which is 25
times slower than the PS method, see Fig. 3.

Case of the big domain. Unlike in the small domain,
an accuracy of10−9 is achieved withN = 100 which is
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only about three times the number of colocation points for
the small domain. On the other hand, using FD the accuracy
is achieved with∆r4 again, however this time, given the do-
main is ten times bigger, the number of points required to
achieve this accuracy is ten times bigger as well.

5. Discussion and conclusions

We have compared the performance of two essentially differ-
ent numerical methods, the PS and the FD methods to evolve
the space-time of a black hole. The comparison has involved
the accuracy and CPU time during the evolution of the space-
time.

We did not introduce any type of matter in order to
avoid ingredients requiring the mixture of different numeri-
cal methods. We also implemented one code for each method
from the scratch in order to avoid any fancy extra complica-
tion that could blur the performance of any of the methods.

When using a small domain, the results indicate that a
given accuracy with the PS method can be achieved and a
100 crossing times simulation would be faster than a simula-
tion using FD, and the more accuracy required the faster PS
is with respect to FD.

The accuracy becomes an issue for the PS methods when
using a considerably big domain. Generally, gravitational
wave extraction is measured by numerical detectors located
far away from the source in a practically flat region of the
space-time (seee.g. [9]), and therefore, the matter of accu-

racy may be an issue for PS methods. A way out to this
problem with PD methods would be the use of domain de-
composition techniques (e.g. see [18]). The way around with
FD methods on the other hand, is the use of mesh refinement
in the regions far from the source which also has an impact
on the accuracy at the location of the detectors, however not
in the region where the sources (e.g. black holes) lie.

The knowledge acquired is essential when deciding on
the methods to be used in the construction of a code designed
to solve Einstein’s equations from the scratch. This must
take into account that solving a problem in three spatial di-
mensions increases the number of equations, variables, con-
straints and therefore the computing performance is impor-
tant. Under more complicated scenarios, for instance includ-
ing magnetohydrodynamics, will also require the solution of
the evolution equations for a plasma and not every numerical
method will work.

Currently, in order to optimize the exploration of the pa-
rameter space, new methods involving the use of artificial in-
telligence techniques are being developed in our group at the
moment for the binary black hole problem [31].
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