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Quantum-mechanical aspects of magnetic resonance imaging
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The Magnetic Resonance Imaging (MRI) is a non-invasive technique which uses the physical phenomenon of nuclear magnetic resonance to
obtain structural and compositional information about human body regions. In this imaging study we use the radio-frequency and a powerful
static magnetic field, which aligns the magnetization of hydrogen nuclei. Nowadays there are many types of clinical equipment that conduct
MRI studies, which have intensities of magnetic fields from 0.2T to 7.0T. Moreover, liquid helium is required for the superconducting coil.
This paper presents an analysis of the magnetic resonance phenomenon; by doing a review of the quantum-mechanical aspects as the spin
and Zeeman effect.
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1. Introduction

Nowadays, there are many techniques to observe and analyze
the inside of the human body in order to obtain a better diag-
nosis. One non-invasive and high-resolution technique is the
Magnetic Resonance Imaging (MRI), which takes advantage
of hydrogen nuclei, a powerful static magnetic field, and a
computer system to process and get images.

The Nuclear Magnetic Resonance is a physical phe-
nomenon in which certain atomic nuclei (with an odd num-
ber of protons or neutrons) are placed under a high-intensity
magnetic field and can selectively absorb energy from elec-
tromagnetic waves in the radio-frequency range. Once the
nuclei have absorbed the energy, the excess energy returns to
the surroundings through a process called relaxation which is
accompanied by a local magnetic variation, which induces a
signal to a receiving antenna for digital processing and thus
obtain an image or to perform a spectrometric analysis [6].

MRI equipment consists of a magnet (usually supercon-
ductor), radio frequency coils, magnetic field gradients, a
bore or tunnel, and a computer for signal processing. MRI
requires the use of a high-intensity magnetic field. Clinical
equipment use field strengths ranging from 0.5-3.0 T, which
have been achieved by replacing the permanent magnets by
superconducting electromagnets resulting in a very wide line
research. BCS theory [12–14] is the dominant physical the-
ory of superconductivity and was proposed by John Bardeen,
Leon Cooper, and Robert Schrieffer. The theory is based on
the fact that the charge carriers are not free electrons but,
rather, pairs of electrons known as Cooper pairs. Although

electrons are fermions and are subject to the Pauli exclusion
principle, being in a crystal lattice, the energy between them
becomes negative (attractive) so that pairs are created to min-
imize the energy and behave as bosons.

In this paper we discuss the basic physics involving mag-
netic resonance, providing an analysis from the viewpoint of
quantum mechanics.

2. The Hydrogen atom

MRI uses the properties of hydrogen nuclei when they are
exposed to a high magnetic field and a radio-frequency field,
so it is important to analyze the physical characteristics of the
hydrogen atom [11].

The hydrogen atom is the simplest atom since, there is a
proton in its core and an electron orbiting it experimenting an
attractive Coulomb potential.

V (r) = − e2

4πε0r
. (1)

To perform the analysis, the Schrödinger equation indepen-
dent of time is used:

HΨ(r) =
(

p2

2µ
+ V (r)

)
Ψ(r) = EΨ(r), (2)

whereµ is the reduced mass of the system andp, the momen-
tum operator

µ =
mp ·me

mp + me
, (3)

p = −i~5 . (4)
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Because there is a central potentialV (r), natural coordinates
are spherical coordinates, and Eq. (2) becomes:
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Ψ(r) = EΨ(r), (5)

re-arranging the equation above:
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To solve Eq. (6) the separation of variables is:

Ψ(r, θ, φ) = R(r)Y (θ, φ), (7)

replacing the solution proposed in Eq. (6) and dividing by
R(r)Y (θ, φ) we obtain:

r2

R(r)
∂2R(r)

∂r2
+

2r

R(r)
∂R(r)

∂r
+

2µ

~2

(
re2

4πε0
+ Er2

)

= − 1
Y (θ, φ)

∂2Y (θ, φ)
∂θ2

− cosθ
Y (θ, φ)senθ

∂Y (θ, φ)
∂θ

− 1
Y (θ, φ)sen2θ

∂2Y (θ, φ)
∂φ2

. (8)

We can separate the Eq. (8) into two with a separation con-
stant. For reasons that will eventually become clear, we will
write this separation constant asl(l + 1), i.e.

1
Y (θ, φ)
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For the solution of Eq. (9) the separation of variables method
is used again, this time makingY (θ, φ) = Θ(θ) · Φ(φ), to
get:

1
Θ(θ)

d2Θ
dθ2

+
cosθ

Θ(θ)senθ
dΘ
dθ

+
1

Φ(φ)sen2θ
d2Φ
dφ2

= −l(l + 1); (11)

multiplying the above equation by sin2θ:
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separating the azimuth part,

1
Φ(φ)

d2Φ
dφ2

= −m. (13)

The solution to Eq. (13) is given as:

Φ(φ) = Ae−imφ + Beimφ, (14)

whereA andB are constants. Equation (12) is as follows:
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+
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−m2 = −l(l + 1)sen2θ, (15)

multiplying the equation byΘ(θ) we get:

sen2θ
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dθ2

+ senθcosθ
dΘ
dθ

+
[
l(l + 1)sen2θ −m2

]
Θ(θ) = 0. (16)

Making the following change in the Eq. (16) cosθ → x and
Θ → y, to get:

dΘ
dθ

= −senθ
dΘ
dx

;

d2Θ
dθ2

= sen2θ
d2Θ
dx2

− cosθ
dθ

dx
;

sen2θ = 1− x2.

Performing the above changes, Eq. (16) is written as:

(1− x2)
d2y

dx2
− 2x

dx

dy
+

[
l(l + 1)− m2

1− x2

]
y = 0. (17)

Equation (17) is known asAssociated Legendre Differential
Equation, and also reveals why we chose the constant above
to bel(l+1). That is, its solutions are given by theAssociated
Legendre Polynomials:

Pm
l (x) =

(−1)m

2ll!
(1− x2)m/2 dl+m

dxl+m
(x2 − 1)l. (18)

The solutionY (θ, φ) = Θ(θ) ·Φ(φ), comprising the angular
part of the Eq. (8) is of the form:

Yl,m(θ, φ) = NPm
l (cosθ)eimφ; (19)

whereN is a normalization constant defined as:

N =

√
(2l + 1)!(l − 1)!

4π(l + 1)!
, (20)
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and thus it ensures that the functionsYl,m(θ, φ) are orthonor-
mal. Equation (19) is known asSpherical Harmonics. Re-
turning to the radial part of Schrödinger Eq. (10), rearranging
it to be:

d2R(r)
dr2

+
2
r

dR

dr

+
[
2µ

~2

(
e2

4πε0r
+ E

)
− l(l + 1)

r2

]
R(r) = 0, (21)

whole solution is given by theAssociated Laguerre Polyno-
mials, which meet the following normalization condition:

∞∫

0

e−ρρ2l[L2l+1
n+l (ρ)]2ρ2dρ =

2n [(n + l)!]3

(n− l − 1)!
; (22)

so the solution of Eq. (8) for the radial part is expressed as:

R(r) =

√
(n− l − 1)!
2n[(n + l)!]3

×
(

2
na0

)3/2

e−ρ/2ρlL2l+1
n−l−1(ρ), (23)

whereρ = 2r/na0 y a0 = ~/me2.
Since we have the solutions of each of the equations de-

pending only on one variable, we proceed to build the exact
solution of the Schr̈odinger equation independent of time for
the hydrogen atom,

Ψ(r, θ, φ) =

√
(n− l − 1)!
2n[(n + l)!]3

(
2

na0

)3/2

× e−ρ/2ρlL2l+1
n−l−1(ρ)Yl,m(θ, φ); (24)

explicitly writing in terms of the spherical harmonics:

Ψ(r, θ, φ) =

√
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√
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(
2
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l (cosθ)eimφ, (25)

where the principal, azimuthal, and magnetic(n, l,m) quan-
tum numbers take the following values:

n = 1, 2, 3, . . .

l = 0, 1, 2, . . . , n− 1

m = −l,−l + 1, . . . , 0, . . . , l − 1, l

The wave functionΨ(r, θ, φ) by itself has no physical
meaning, but the expression|Ψ|2 calculated for a place and
a given time is proportional to the probability of finding an
electron in that place, at that instant.

3. Nuclear magnetic resonance

Nuclear magnetic resonance is a physical phenomenon asso-
ciated with the intrinsic angular momentum of the spin and
the magnetic properties of atomic nuclei. When a nucleus
is placed in a magnetic field an interaction occurs between
the magnetic moment of the nucleus and the field, resulting
in an energy splitting. By the absorption and emission of
photons with the right frequency, transitions between these
energy states may occur.

Local magnetic changes produced by the absorption and
emission of photons are detected by an antenna that sends the
signal to a computer for decoding and image generating.

3.1. Nuclear Spin

The particles that make up the atomic nuclei (protons and
neutrons) have the intrinsic quantum mechanical property of
spin. In nuclear physics the total angular momentum that
the nucleus has is called nuclear spin [18], though the term
should not be confused with spin of each nucleon or total
spin as the sum of all nucleons, because this is just one of the
two contributions to the nuclear spin, the other is the angular
momentum of the nucleons. So each nucleon will have a net
angular momentum such that:

j i = li + si, (26)

then the nuclear spin will be:

J =
∑

i

j i =
∑

i

(li + si), (27)

or just:
J = L + S. (28)

Each of these vectors have a similar quantum number. The
magnitude of orbital angular momentum satisfies:

L2 = l(l + 1)~2 con l = 0, 1, 2, . . . (29)

The direction of the angular momentum vectorL is associ-
ated with the quantum numberm. For a given quantum or-
bital momentum numberl, there are2l + 1 integral magnetic
quantum numbersm ranging from−l to l. Along thez axis
the component of angular momentum is given as:

Lz = ml~. (30)

For the vector of spin angular momentumS, its quantum
numbers can take integer or half-integer values:

S2 = s(s + 1)~2 con s = 0, 1/2, 1, 3/2, . . . (31)

and for thez component, we find thatsz = ms~, there are
2s + 1 values ofms. To exhibit the property of MRI, the
nucleus must have a non-zero value ofs. In medical applica-
tions, the proton (1H) is the nucleus of most interest, due to
its high natural abundance, however other nuclei have been
studied.
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The proton is a fermion whose value ofs is 1/2, there-
fore there will be two possible values forSz, i.e. ±~/2.
The eigenfunctions describing the nucleus can be written as
|+1/2〉 and| − 1/2〉, and since in quantum mechanics every
physical observable has an associated operator, we can write
an eigenvalue equation to describe the observation of the spin
state as:

Sz|ms〉 = ms|ms〉, (32)

whereSz is the operator describing the measurement of an-
gular momentum along thez axis.

3.2. Voxel magnetization

To measure the energy of the spin system it is necessary to
construct a Hamiltonian operator. The shape of the Hamilto-
nian can be derived from classical electromagnetism, for the
energy of a magnetic moment placed in a magnetic field [15].
The nuclei have a magnetic moment~µ which is proportional
to the spin angular momentum [4]:

~µ = γS, (33)

where γ is a constant of proportionality calledgyro-
magnetic ratio, which for the proton it has a value of
2.675×108 rad/s·T. When this magnetic moment is placed
in a magnetic fieldB its ground state is degenerated and the
energy of a particular level will be:

E = −~µ · B; (34)

combining Eqs. (6), (7) the Hamiltonian is obtained:

H = −~γS · B, (35)

and since the fieldB is oriented in thez direction, the Hamil-
tonian becomes:

H = −~γSzBz; (36)

now using Schr̈odinger’s equation, the energy eigenstates are
found

H|ms〉 = −~γBzSz|ms〉 = −~γBzms|ms〉, (37)

and they will be:

E = −~γBzms (38)

∆E = E (ms = −1/2)− E (ms = 1/2) = ~γBz. (39)

For the protonms = ±1/2, a transition between the two
states represents a change in energy. This is calledZeeman
splitting [17] and is shown in Fig. 1, where it shows that as
the intensity of the magnetic field increases, the energy differ-
ence between the states is bigger. The two possible states are
more commonly known as “spin− up” and “spin− down”,
where the latter has a higher energy state than the “spin−up”
state. Transitions between the two states can be induced by
absorption or emission of a photon such that:

∆E = ~γBz = ~ω. (40)

FIGURE 1. Energy level diagram for a Zeeman interaction.

Thus obtaining theLarmor equationwhich underpins the
whole phenomenon of Nuclear Magnetic Resonance.

ω0 = γB0. (41)

The characteristic frequencyω0 is calledLarmor frequency
andB0 = Bz. In a real system there is not only an isolated
nucleus, but many nuclei which may occupy a particular spin
state. This means that our development must be extended
to consider an ensemble of spins. To do this we define a
Ψ eigenstate, which is a linear combination of possible spin
states for a single nucleus as:

|Ψ〉 =
∑
ms

ams |ms〉. (42)

When performing a measurement on the system, the expected
value of the operation on this superposition of states is:

〈Ψ|Sz|Ψ〉 =
∑
ms

|ams |2ms, (43)

where the value|ams |2 represents the probability of finding
a single nucleus in thems state. For the case of a proton,
which is the particle of interest, with two spin states we have:

|Ψ〉 = a+ 1
2

∣∣∣ +
1
2

〉
+ a− 1

2

∣∣∣− 1
2

〉
. (44)

The ratio of the population in the two energy states follows
the Boltzmann statistics [4],

|a−1/2|2
|a+1/2|2

= exp
(−∆E

kBT

)
= exp

(−~γB0

kBT

)
, (45)

and sincekBT À ~γB0, expanding the first order exponen-
tial we have |a−1/2|2

|a+1/2|2
≈ 1− ~γB0

kBT
, (46)
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FIGURE 2. Magnetization vector of the volume element [6].

and the difference in the number of spins between the spin-up
state and the spin-down state will be:

|a+1/2|2 − |a−1/2|2 ≈ |a+1/2|2 ·
~γB0

kBT
≈ ~γB0

2kBT
. (47)

The magnitude of the magnetization of a voxel containing a
nucleus densityρ is obtained by multiplying the density by
the difference between the number of spins in both states and
the magnetic moment of the nucleiµz = ±(γ~/2)

M =
ργ2~2B0

4kBT
. (48)

The magnetization of the volume element also has a direction
which is equal to the orientation of the main magnetic field
for that reason it should be considered as a vector quantity, as
it shown in Fig. 2.

3.3. Excitation of the Magnetization by radio-frequency
pulse

A volume element of the sample is defined as a voxel. Hav-
ing placed a transmitting antenna in the direction of maxi-
mum emission to the voxel in the vertical plane and changing
the transmission frequency, when we emit the frequency of
precession (Larmor frequency), the nuclei are able to absorb
energy,i.e. enter resonance.

When the nuclei of the voxel are entering into resonance,
the magnetization vectorM travels performing a spiral rota-
tional movement relative to the direction of the fieldB0. Each
nucleus entering into resonance at a specific frequency spec-
ified by the Larmor Law, depending onB0 perceived and
biochemical environment in which it is located. Therefore,
the radio-frequency emission contains an approximate band-
width of 100 kHz.

Separation ofM with respect to its equilibrium posi-
tion is determined by the angle of inclination or FLIP angle.
Its value depends on the power and time of radio-frequency
emission, among other factors.

The process of the radio-frequency emission is of the or-
der of microseconds calledradio-frequency pulseand quan-
tified by the valueα. A 90◦ pulse moves the magnetization
vector about thexy plane, and a180◦ pulse inverts the mag-
netization respect to its equilibrium position.

After a90◦ pulse, the longitudinal component of the mag-
netization vector is zero, in this position the number of nuclei
in the lower energy state equals the number of nuclei in the
higher energy state, it is called a state of saturation.

3.4. MRI selectivity

If we have multiple voxels placed under different magnetic
fields, we can selectively excite either by simply changing
the transmission frequency of the antenna.

A magnetic gradient enables atomic nuclei to perceive a
distinct magnetic field. In addition to changes in biochemical
environment, one can selectively resonate all nuclei within
positions that are being excited by the frequency bandwidth
used in the pulse emitter. Therefore all voxels contained in
a plane perpendicular to the direction of the gradient plane
and whose thickness depends, once defined the value of the
gradient, on the bandwidth used on the pulse emitter, will be
excited.
Magnetic resonance images are obtained by sending pulses
to different spaced time intervals with suitable values, which
is apulse sequence.

3.5. Evolution of magnetization under temporal varia-
tion of the magnetic field

Taking a volume element (Voxel) that has a magnetization
vectorM , the set of equations describing the temporal evo-
lution of said vector are calledBloch equations[1] and are
defined as follows:

∂Mx

∂t
= γ (M × B)x −

Mx

T2
(49)

∂My

∂t
= γ (M × B)y −

My

T2
(50)

∂My

∂t
= γ (M × B)z −

Mz −M0

T1
(51)

whereγ is the gyromagnetic ratio of the proton andM0 = M
is the magnitude of the magnetization in equilibrium,T1 and
T2 are time constants that will be discussed later. The above
equations can be solved with the appropriate conditions; for
example, immediately after when the radio-frequency pulse
is turned off:

Mx(t)= [Mx(0)cos(ω0t)+My(0)sen(ω0t)] · e−t/T2 , (52)

My(t)= [My(0)cos(ω0t)−Mx(0)sen(ω0t)] · e−t/T2 , (53)

Mz(t)=Mz(0)e−t/T1+M0

[
1− e−t/T1

]
. (54)
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3.6. Nuclear relaxation

Once the radio emission is completed, the magnetization
vector,M , returns to its initial position by releasing energy
through a process called relaxation. Relaxation occurs be-
cause nuclei emit the excess energy absorbed when entering
resonance. Relaxation ends when the proportion of nuclei
voxel between higher energy states and lower energy states
match the Boltzmann equilibrium.

The return to the equilibrium position ofM produces
magnetic field modifications that may be collected by a re-
ceiving antenna, since the magnetic field variations induce
an electrical signal called Free Induction Decay (FID) [16],
which is a damped sinusoidal signal. The frequency of the
sinusoid is the precession frequency imposed by the value of
the magnetic field during relaxation.

Given the definition for the electromotive force (fem)
and the magnetic flux through a coil:

fem = −dΦ
dt

Φ =
∫

S

B · ds. (55)

On the other hand, for the magnetization vectorM of a sam-
ple, there is an associated magnetic field from the current
density

JM (r , t) = ~5×M(r , t), (56)

the vector potential derived from a source is defined as:

A(r) =
µ0

4π

∫
J(r)
|r − r ′|dr ,′ (57)

with this, the magnetic field can be calculated asB = ~5×A,
and we can write the flux through the coil as:

Φ =
∫

s

B · ds =
∫ (

~5× A
)
· ds =

∮
A · dl. (58)

Substituting the vector potential in the term for the current
density and later in the line integral, we have:

ΦM =
∮

dl ·
[

µ0

4π

∫ ~5′ ×M(r ′)
|r − r ′| dr ′

]
, (59)

simplifying the above equation and performing integration by
parts:

ΦM =
µ0

4π

∫
dr ′M(r ′) ·

[
~5×

(∮
dl

|r − r ′|
)]

. (60)

The expression in the parentheses of Eq. (60) can be com-
pared with the vector potentialA, obtaining an expression
for circuits:

A(r ′) =
µ0

4π

∮
Idl

|r − r ′| , (61)

thus the curl of the line integral is indeed the magnetic field
per unit current that would be produced by the coil at pointr ′

Br(r ′) =
B(r ′)

I
= ~5′ ×

(
µ0

4π

∮
dl

|r − r ′|
)

. (62)

The magnetic flux through the coil can be written as:

ΦM =
∫

muestra

Br(r ′) ·M(r ′, t)dr ′. (63)

Finally, the electromotive force is expressed as:

fem = − d

dt

∫

muestra

Br(r ′) ·M(r ′, t)dr ′. (64)

Two voxels placed under different magnetic fields in
the moment of relaxation, will have different relaxation fre-
quencies and, therefore, their signals may be differentiated
through a frequency analysis such as Fourier analysis. By
studying signals of relaxation, one can obtain information on
the density (D) of hydrogen nuclei in the voxel and infor-
mation related with the medium by the parameters T1, T2,
and T2 *.

3.7. Spin-lattice relaxation (T1 relaxation)

During the relaxation, the hydrogen nuclei release their ex-
cess energy. Once reaching complete relaxation, the magne-
tization vectorM recovers its initial value aligned with the
direction of the main magnetic fieldB0. An analysis after a
pulse of radio-frequency of the variations in time of the pro-
jection of the magnetization vector on the longitudinal axis
(Mz), called longitudinal relaxation, once the value of the
projection is identical to the initial value ofM , the relaxation
will be over. Thus the study of the longitudinal relaxation
gives an idea of the rapidity with which it again reaches its
initial state.
As we can see in the Fig. 3, the longitudinal relaxation has
the form of a growing exponential regulated by a time con-
stant expressed in milliseconds called T1, which is also called
Longitudinal Relaxation Time.
The values of T1 increases with the value of the magnetic
field.

FIGURE 3. The recovery ofMz toM0 is controlled by an exponen-
tial. T1 is the necessary time to recover the 63% of the equilibrium
value of the magnetization [4].
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FIGURE 4. T1 and T2 simultaneously happen, but T2 is much
faster than T1 [4].

3.8. Spin-spin relaxation (T2 Relaxation)

We can get information related to the biochemical structure
of the medium, by studying the variations over time of the
component for the magnetization vector in the vertical plane
(x, y) during the transverse relaxation.

WhenMx,y is zero it implies that the magnetization vec-
tor is aligned on thez-axis with the main magnetic field.
Immediately after excitation, part of the spins precess syn-
chronously, these spins have a0◦ phase and are said to be in
phase, this state is calledcoherent phase.

The coherent phase is gradually lost as the spins advance
and others are delayed on their way precession. In other
words the transverse relaxation is the decay of transverse
magnetization due to loss of coherence in the spins.

The transverse relaxation differs from longitudinal ralax-
ation in that the spins do not dissipate energy to the surround-
ings but, rather, exchange energy with each other.

The evolution of the transverse magnetization over time,
until it vanishes, corresponds to a sinusoid with a dampened
relaxation frequency generating an exponential decay (see
Fig. 4). This exponential decay of the surroundings is regu-
lated by a parameter T2* [2]. When we take into considera-
tion all factors that influence the asynchronism of the nuclei,

or T2 if neither are influenced by the external magnetic field’s
inhomogeneities or local magnetic variations acting perma-
nently on the nuclei. Therefore T2 indicates asynchronism of
nuclei of the voxel during relaxation due to spin-spin random
influences which depend on the composition and structure of
the tissue. T2 is the time that must elapse before the trans-
verse magnetization loses63% of its value. The time constant
T2 is called the Transverse Relaxation Time.

Returning to the coherence, it is lost in two ways:

• Energy transfer between spins as a result of a local
change in the magnetic field.

• Inhomogeneities independent of time of the external
magnetic fieldB.

4. Conclusions

MRI is a technique for visualizing tissues that takes use of the
physical phenomenon of nuclear magnetic resonance, which
is the union of quantum mechanics with classical electrody-
namics, that uses the quantum-mechanical properties of the
hydrogen atom to produce high resolution images that help
with medical diagnosis. Nowadays, there are many MRI ma-
chines used for both medicine and research, where, for the
second case it is essential to have knowledge of the facets
at a quantum level of the physical process involved. Like-
wise there is a wide variety of research topics such as digital
processing of images acquired during a study, magnetic res-
onance spectroscopy, designing new radio frequency coils,
pulse frequency design, etc., thus the broad field for the de-
velopment and monitoring of research.
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