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On the accuracy of the Debye shielding model
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The expression for the Debye shielding in plasma physics is usually derived under the assumptions that the plasma particles are weakly
coupled, so that their total kinetic energy is much greater than their electrostatic interaction energy, and that the velocity distributions of the
plasma species are Maxwellian. The first assumption also establishes that the number of particles within a sphere with a Debye radius, know
as the plasma parametdip, should be significantly greater than 1, and determines the difference between weakly and strongly coupled
plasmas. Under such assumptions, Poisson’s equation can be linearized, and a simple analytic expression is obtained for the electrostat
potential. However, textbooks rarely discuss the accuracy of this approximation. In this work we compare the linearized solution with a more
precise numerical (or “exact”) solution, and show that the linearization, which underestimates the “exact” solution, is reasonably good even
for Np ~ 40. We give quantitative criteria to set the limit of the approximation when the number of particles is very small, or the distance

to the test charge too short.
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1. Introduction duced when the species are described by the so called kappa-

distributions for non-equilibrium plasmas. This is a more
One of the most elementary concepts in classical plasmgeneral family of distributions that include the Maxwell-
physics is that of Debye shielding, which establishes the chaiBoltzmann one as a special case, and is motivated by observa-
acteristic distancaD in which the electrostatic field from a tions in space p|asmas_ While Bryant’s conclusion is that the
charged test particle can be shielded by particles of the opp&hielding ), is shorter than for the Maxwellian case, given
site sign. If a test charge is placed in a homogenous plasmge same number density and mean energy, the weakly cou-
in which the unperturbed electron and ion densities are thgled assumption is kept. More recently, Livadiotis and Co-
same {e.: satisfy the quasi-neutrality condition), it repels the mas have reviewed the subject, providing a better theoretical
charges of its own sign, while it “dresses” itself with chargesground for the kappa-distributions, under the point of view
of the opposite sign, resulting in an electrostatic shieldingof non-extensive entropy [10]. At a didactical level Meyer-
The derivation ofAp has been well presented with similar Vernet [11] studied the case in which a Boltzmann equilib-
arguments in many textbooks, such as Refs. 1to 7. In dChum is not assumed, from a different point of view.

ing so, two assumptions are generally made: (i) The total
g P g y ) On the other hand, the weakly coupled plasma assump-

kinetic energy of the particles is much greater than the elec- | h ) hat th ¢ icl
trostatic interaction energy between them, which means thd{°" @IS0 poses the requirement that the number of particles
be much greater than 1,

the plasma is weakly coupled, and allows the linearization of ' Within a sphere of radius.,

the problem, (ii) Each particle species is in thermodynamic>© the case of classical strongly coupled plasmas, in which
equilibrium, so their velocity distributions are Maxwellian, Y0 ~ 1 (inthe opposite limit of that of quantum plasmas, for

The latter assumption requires the density to be large enou h'c,h ND_>> 1)is Ieft open. Itis also |mpqrtant to note that

to allow collisions to an equilibrium state, and does not ap_he linearized solution for the electrostatic potential, which

ply for collision-less, non-equilibrium plasmas, such as thosd&€Sults from the weakly coupled plasma assumption, is also

often found in space plasmas. limited in space, and breaks down fox Ap. The relaxation
Modern textbooks discuss the case of strongly couple f the weakly coupled plasma assumption has been addressed

plasmas, for which the first constraint does not apply [3,5.8] y Mak [12], who compared the usual linearized solution for

although they usually ignore the fact that many coIIision-Iethe electrostatic potential with the exact solution of Poisson’s

plasmas, particularly in space physics, even in steady Statgguatlon for several cases in whithp > 1. While the

are non-equilibrium systems, and therefore not Maxwellian.ConCIUSIon was that the approximate solution is good beyond

The case of shielding in quantum plasmas, in which I:e“,nfaxpectation for the cases studied, a few questions went unan-

statistics should be considered, has been presented in Ref. sé/)/ered. Particularly, when_ does the approximate solution
but it will not concern us in this paper. breaks down a®&' and the distance are reduced?

The question on the relaxation of assumption (ii) has The purpose of this paper is to provide a better insight
been addressed by Bryant [9], who studied the shielding pranto the subject, using the same normalised approach as in
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Ref. 12, for comparison. In Sec. 2 we go through the usualakingv as the thermal velocity,;, in the case of three di-
discussion of the problem, reviewing what has been presentedensions for an isotropic plasma, we can w(ité2)mv?, =
in textbooks, for the sake of completeness and in order to eg3/2)kT. Since®(r) = Ze/4meore,

tablish the notation. In Sec. 3 we compare the approximate

analytical solution to the linearized problem with the exact e®(r) _ 3 4)

numerical one, and in Sec. 4 we summarise the main con- kT 2’
clusions. The paper is written with sufficient detail, for asyyyhich can be taken as the limiting case in Poisson’s equation,

reading by an advanced undergraduate or graduate physiggch that weakly coupled plasmas happen for the right hand
student. side is smaller than 3/2, and the opposite case for strongly

coupled plasmas. For a weakly coupled plasma,

2. Linearized Debye shielding e®(r)/kT < 1 (5)

2.1. The Poisson equation in which we may take 1 instead of 3/2. Let us now define the

Let us consider a homogeneous plasma, in which the unpeRebye length\p = /eokT/ne? [1-7], whose significance

ni., are equaline, = ni, = n. If a point test charge is €rage distance between particles= n~1/3, (3) translates

introduced at the origin, it will create an electrostatic poten—into

tial ®(r), which only depends on the radial coordinatand rq 127 A2
which must satisfy Poisson’s equation — = 7*? (6)
Te ry
%i <T2 d<I>(r)> — _L(’")’ (1)  from which it becomes clear that weakly coupled plasmas
e dr dr €o are those for which both; and )\ are greater than the max-

. e imum approach distance.. Using this result, it is easy to
wherep,(r) is the charge density distribution. We make thefinol that, if we define\ — Ap /r., as the ratio between the

usua assgmptlons (i) and (i) mentloned.ln the mtrOdUCt.'onfDebye length (the distance in linearized theory at which the
and following Ref. 12, we make an additional assumption: . . 1 .
electrostatic potential decaysdo* in the linear theory stud-

(iii) The positive ions are protons with infinite inertia, so they .” " . : :
form a uniform background of density n. Since the electronIed in the next subsection,) and the distance of maximum ap-

density would then be given by, (r) — nexp(ed(r)/kT) proach, we find that in the limit between weakly and strongly
e - ’ _ — 3

where —e is the charge of the electronk is Boltz- coupled plasmas). = (3/2)Np, where3Np = dmn)y, is

mann’s constant, and is the electron temperature, then the number of particles within a sphere defined by the Debye

- B . length (This definition forV, is for the sake of comparison
pe(r) = ne[l —exp(e®(r)/kT)], and Bq (1) can be rewritten with Ref. 12.) The familiar statement that in weakly cou-

as pled plasmad’p, > 1, while the opposite is true for strongly
d? ner coupled plasmas, is recovered, as well &g3)A > 1, for
ﬁ[rq)m] - _E[l — exp(e®(r)/kT)]. (@) which the limit increases linearly witk. All follow from

. _ . o assumption (5).
The numerical solution to this equation is what we shall call

the “exact solution”. 2.3. The weakly coupled limit

2.2. The limit between weakly and strongly coupled The linearization for the weakly coupled plasmas arises after
plasmas consideringd(r)/kT < 1, which states the potential energy

between the particles is much smaller than their kinetic en-

In this subsection we follow the discussion of Refs. 6 and 7ergy, and is equivalent td/p, ~ n)\3, > 1. This allows

with some adaptations. The boundary between weakly angn expansion of the exponential in (2). Keeping the first two

strongly coupled plasmas can be established when the elegrms this yields for the approximate potentiaj(r)

trostatic energy between the plasma particles is equal to the

kinetic energy between them, so weakly coupled plasmas are Cﬁ[ B, (r)] = r®,(r) @)

those for which the former is smaller than the latter, and a2 A

the strongly coupled plasmas are represented by the opposite o ]

case. If we consider an electron with velocityand charge  Whose solution is the well known Yukawa potential:

—e in the presence of an ion with charge at rest, the dis-

—r/\
tance of maximum approach will be defined by D, (r) = AM. (8)
}mvz _ Ze? —0 @3) BY taking the iqtegration gonstam = Ze/(flwso), this al-
2 dmegre lows the usual interpretation of the potential produced by a
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point charge of an iotZe, with atomic numbelZ, at the ori-  happen ifNp < 1, in very diluted plasmas, or for short dis-
gin (p.(r) = Zed(r)), whered(r) is the Dirac delta func- tances, whem < Ap. Also, remembering Subsec. 2.1, note
tion), shielded by the electrons with a characteristic decayhat Npp = 4mnA%r = (Z/3)(r/r.), which means that for
length A\p. Once the electrostatic potential is known, the Z = 1, Npp > 1 for r > 3r.. Therefore, the weak plasma
charge distribution for the linearized solution can be obtainedpproximation is expected to break around

from Eq. (1)

2 ~ exp(—r/Ap) ~ 1 (16)

pulr) = 2= [4m8(0

3re

_ eXI)(—T/)\D)} . ©)

2
TAD for short distances.
The subtlety in obtaining (9) is discussed in Appendix. The  However, in order to fully understand what all this means,

effect of the shielding can be appreciated by computing thét is important to quantify these statements. The main pur-

charge within a sphere of radius pose of this paper is to compare the numerical soluign)
to Eq. (13), with the analytic solutiofr, (p), (14), to the lin-

r

'y " earized equation.
Q(r) = Ze |1 —/7” pe(r’)dr The numerical solutions are obtained by means of a
0 fourth-order Runge-Kutta routine [13], which is started at the
— Ze(1+7/Ap) exp(—r/Ap). (10) tail of the solution, and integrated backwards, from larger to

smaller distances. The initial valuggfor the integration can
Thus, the charge i€e atr = 0, and decays to O for large be chosen to be smaller for larger values\g$, because the
r. At the Debye radius the charge@§\p) = 2exp(—1)Ze validity of the approximation breaks at shorter distances. The
~ 0.736Ze, and falls to half its value at the origif,5Ze, way in which they were chosen was such that in the first step
atr/\p ~ 1.68, well beyond the Debye radius. This result of integration we satisfj#, — | < 10~ . It was found that
is interesting, when considering, as the cut-off impact pa- if this condition was not met, the integration would not be in-
rameter, when Coulomb collisions are considered. dependent of the initial condition, which is something else
we sought. This of course, also depends on the step of inte-

. . gration. Another criterion used in order to choose the step of
3. Comparison between an accurate (numeri integration was based on the tolerance at which the approx-

cal) and the approximate (analytical) solu-  imation would break. For this purpose, three different toler-

tion ances,r, were tried: 1, 5, and 10%. By trial and error, the

. ) _integration steps were chosen in such a way that the distance
For the sake of comparison with Ref. 12, let us normalise

_ ) X pq at which (¢, — ¢|/¥) x 100 = 7 occurred, would be
the distance: and the potentia®(r) in terms of the Debye

| h. chanai he followind di ion bles: such thatr could be determined within a 0.1% uncertainty.
ength, changing to the following dimensioniess variables: A first result of this calculation we found, is that the ap-

(11) proximate solution underestimates the exact one. Table |
shows, for several values 6fp, the initial valuesp, of the
U(p) = dregAp®(r)/Ze = (e®(r)/kT)Np, (12)  integration, and the values; for which tolerances of 1, 5
] ) ) and 10% between the two solutions fail. The same results are
Thus, Poisson’s Eg. (2) for the potential can be rewritten as y|qtted in logarithmic scale in Fig. 1. For classical, weakly
d2 coupled plasmas, relevaXy values run from 40, for the
Tpg[PW(P)] = —Npp[l —exp(¥(p)/Np)], (13)  Solar atmosphere, some gas discharges, and laser produced
plasmas, to 10for the interstellar gas, while for the Solar
whose numerical solution we shall call the “exact” solution, corona and thermonuclear plasmas, they are arouﬁﬁ]_;}ﬂ)
while the normalized approximate solution would then be  |n addition, we have explored smaller values\o#, includ-
ing some smaller than one, for which a strongly coupled

p:r//\D’

U.(p) = w, (14) plasma is expected.
P For large values oNp, the distance values at which the
valid for approximation breaks down are very similar regardless of
cd(r) 1 the tolerance. In .the plot in Fig. 1, they .overlap dowq to
T = Npp exp(p) < 1. (15) Np = 40. As Np, is further reduced, the distance at which

the approximation breaks down increases, and is larger for
The main purpose of this paper is to compare the numericamaller tolerances. However, it is interesting to observe that
solution¥(p) to Eqg. (13), with the analytic solution (14) to the differences obtained for different tolerances tend to di-
the linearized equation. minish for fractional values aVp. While we have followed
Indeed, the approximation should be good for large disthe calculations into very small values 8y, it should be
tances, but Eq. (13) also tells us that it will break down fornoted that the description of the charge density, used in the
short distance$exp(—p) ~ 1) whenNpp < 1. This will Poisson’s equation, in terms of a Boltzmann distribution for
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TABLE I. Initial value po at which the integration of (13) was started, and distamgcat which tolerances of 1, 5, and 10% between the
approximate and exact solutions are reached, for different valu¥s,of

po pd
Np 1% 5% 10%
0.1 13 3.569 2.314 1.828
0.3 11 2.686 1.510 1.077
11 1.775 0.734 0.401
11 1.288 0.368 0.137
7 0.708 5.1%10°2 1.94x1072
10 5 0.340 8.4310°° 7.22x1073
40 5 1.83<1073 1.40x1073 1.34x1073
1x10° 5 5.51x10* 4.86x10™* 4.71x107*
5x10° 4 8.70x107° 8.05x107° 7.87x107°
1x10° 2 4.02¢<107° 3.75x107° 3.68x107°
1x10* 2 3.27107° 3.10x10°° 3.06x107°
1x10° 0.1 2.7%1077 2.66x107"7 2.63x1077
1x10° 0.01 2.41x1078 2.33x10°8 2.31x1078
1x10° 0.001 2.14107° 2.08x107° 2.07x107°
s L 2 4 6 8 This should be compared to the cutwg,, p=—log;, Np
(upper line in Fig. 1), which stands for the limpp = 1.
ol 1o Therefore, our result gives a quantitative meaning to the
statementVpp < 1. We should note that this result differs
3 -2f 1-2 with that found in Ref. 12:
g4l ded Npp = 0.01 (18)
-6 1-6 Our work goes further than that of Ref. 12, in that we
study the cases of smaller values/¥f,. Besides, only the
-8 18 case in which the tolerance is 10% was reported. We did
i) 8 not exploreNp as large as in that previous work (£, be-
Logio(No) cause itis to be expected that the approximation will improve

FIGURE 1. (In colour in the on-line version) Distances at which as Np increases, while we are more interested in exploring
the approximate solution breaks, for different values\o§. The  when the approximation breaks down.

blue dots are for the case in which a 1% tolerance is taken, the

green squares for 5%, and the red diamonds for 10%. The blue line

(below) is the fit for results that go frolvp = 40to1 x 107. The 4. Conclusions

red line (above) is the cundeg,, p = —log,, Np.
In order to study the Debye shielding, the numerical (ex-

such a case may lose its meaning, due to the increasing inact) solution for the electrostatic potentiadp) was obtained,

portance of the temporal fluctuations about the average. Irfrom Eq. (13), and it was compared to the approximate so-

deed, the use of the Maxwell-Boltzmann distribution assumesition, given by the Yukawa potential (14), found for the lin-

the particle species are in equilibrium, which requires theearized approximation. The latter underestimates the exact

density to be large enough for collisions to allow relaxationsolution, but is a good approximation for values¥f, as

to such a state. o small as 40. Even folNp = 5, the approximation is still
Thus, the linear approximation is very good whdi  good, down tor = 0.05)\p if one requires only a 5% toler-

ranges between 40 and’, and it is possible to fit the results ance. The distances;, at which the approximation breaks,

to the curveog, pa = 1.18828 — 1.07493Np (lower linein  given fixed values ofVp,, for tolerances of 1, 5 and 10%

Fig. 1), which yields the empirical law were obtained, and it was observed that they are practically
the same, regardless of the tolerance, g5 > 40. Using
1.07493
Np pa = 0.06482. (A7) these data, the empirical law (17) was found, which gives a
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clear quantitative meaning to the stateméitp < 1, for In the Debye shielding case, we provide two ways to pro-
the validity of the linear approximation. ceed. The first one, suggested by Greiner in Ref. 15, is to
From the didactical point of view, this result is illustra- sum and subtract the point charge potential in (8). Therefore,
tive of the validity of the usual approximation, which is never
quantitatively explained in textbooks, even when a Maxwell- EVQ {1 + exp(=7/Ap) — 1]
Boltzmann equilibrium distribution is assumed, which may dmeg r r
not necessarily be right in many cases. Ze
Finally, it must be noted that the results reviewed in this = Tne [—47“5(7”) +
paper are valid for classical plasmas, such that the distance
of maximum approach. , is much greater than the elec- which yields (9), using (1). The second way may be by us-
tron’s thermal wavelengthh., = v2mkT. If Np > 1, ing the identity of the Laplacian for a product of two scalar
the electrons become degenerate, and the interference HenctionsV2(fg) = V2(f)g + Vf - Vg + fV?(g), where
tween wave functions must be considered for high temperf = Ze/(4weor), andg = exp(—r/Ap). By these means,
atures. In this case, the classical model is no longer validwe get
and the shielding is provided by the Thomas-Fermi length

V20,(r) =

exp(—r/Ap)
r)\%] (A.3)

rep = (7/3ne)/h?/4me? (Ref. 8). V20, (r) = Ze | 478(r) exp(—r/Ap)

@ 471'50
Appendix X exp(—r/Ap) s
A. The calculation of the charge density rAp ’

The charge density distribution (9) can be obtained fromwhich is equivalent to (A.3), since when integration is made
Poisson’s equation, from the potential (8), by appropriatelyto obtain the charge within the sphere of radiui yields the
dealing with the singularity. As explained in Classical Elec-same result (10) for the total charge in a sphere of radius
trodynamics textbooks (take for instance Ref. 13), the potendue to the property of the Dirac delta function

tial produced by a point charge Ze at the origin

Ze [ 103t = v = firo) (A5)
O,(r) = pP— (A.1)
0 when integrating over a domain containing

satisfies the Poisson equation In plasma physics textbooks, this basic electrostatics is-
, Zed(r) sue i_s seldor_n discus_sed, although Refs. 3to 5, and 7 do
Ve, (r) = — , (A.2) mention the first term in the charge density, but not as a result

€0 of the Laplacian of (8). We believe it is a good example to

whered(r) is the Dirac delta function. stress the importance of properly dealing with singularities.

1. D.R. Nicholson,Introduction to Plasma Theor{New York: 8. V. Fortov, I. lakubov and A. KhrapalRhysics of Strongly Cou-

John Wiley & Sons, 1983) p. 1-5. pled PlasmgOxford: Clarendon Press, 2006).

2. R.J. Goldston and P.H. Rutherfoidtroduction to Plasma The- 9. D.A. Bryant,J. Plasma Phys56 (1996) 87.
ory (Bristol: 10P Publishing Ltd., Bristol, 1995) p. 13-16. 10. G. Livadiotis and D.J. Comas, Plasma Phys80 (1993) 341.
3. P.H. Bellan, Fundamentals of Plasma Physi¢€ambridge:
ysi€ g 11. N. Meyer-VernetAm. J. Phys61(1993) 249.

Cambridge University Press, 2003) p. 7-11.
4. J.A. Bittencourt,Fundamentals of Plasma Physitsird Edi- 12 55'; Mak, Plasma Physics and Controlled Fusi@4 (1992)

tion (New York: Springer Verlag, 2004) p. 273-279.
5. A. Piel, Plasma Physics: An Introduction to Laboratory, Space 13- S.E. Koonin and D.C. MereditiGomputational Physicg\Vest-
view Press, 1990) p. 32.

and Fusion PlasmaBerlin: Springer Verlag, 2010) p. 35-39.

6. R. Hazeltine and F. L. Waelbroeckhe Framework of Plasma 14. J.D. Huba,NRL Plasma FormularfWashington, D.C: Naval
PhysicgReading, Mass: Perseus Books, 1998) p. 7. Research Laboratory, 2016) p. 40.
. R. Fitzpatrick,Plasma Physics: An IntroductiofBoca Raton:  15. W. Greiner,Classical ElectrodynamicéNew York: Springer

CRC Press, 2015) p. 6.

Verlag, 1996) p. 34-36.

Rev. Mex. Fis. B3(2017) 63-67



