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On the accuracy of the Debye shielding model
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The expression for the Debye shielding in plasma physics is usually derived under the assumptions that the plasma particles are weakly
coupled, so that their total kinetic energy is much greater than their electrostatic interaction energy, and that the velocity distributions of the
plasma species are Maxwellian. The first assumption also establishes that the number of particles within a sphere with a Debye radius, known
as the plasma parameterND, should be significantly greater than 1, and determines the difference between weakly and strongly coupled
plasmas. Under such assumptions, Poisson’s equation can be linearized, and a simple analytic expression is obtained for the electrostatic
potential. However, textbooks rarely discuss the accuracy of this approximation. In this work we compare the linearized solution with a more
precise numerical (or “exact”) solution, and show that the linearization, which underestimates the “exact” solution, is reasonably good even
for ND ∼ 40. We give quantitative criteria to set the limit of the approximation when the number of particles is very small, or the distance
to the test charge too short.
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1. Introduction

One of the most elementary concepts in classical plasma
physics is that of Debye shielding, which establishes the char-
acteristic distanceλD in which the electrostatic field from a
charged test particle can be shielded by particles of the oppo-
site sign. If a test charge is placed in a homogenous plasma,
in which the unperturbed electron and ion densities are the
same (i.e.: satisfy the quasi-neutrality condition), it repels the
charges of its own sign, while it “dresses” itself with charges
of the opposite sign, resulting in an electrostatic shielding.
The derivation ofλD has been well presented with similar
arguments in many textbooks, such as Refs. 1 to 7. In do-
ing so, two assumptions are generally made: (i) The total
kinetic energy of the particles is much greater than the elec-
trostatic interaction energy between them, which means that
the plasma is weakly coupled, and allows the linearization of
the problem, (ii) Each particle species is in thermodynamic
equilibrium, so their velocity distributions are Maxwellian.
The latter assumption requires the density to be large enough
to allow collisions to an equilibrium state, and does not ap-
ply for collision-less, non-equilibrium plasmas, such as those
often found in space plasmas.

Modern textbooks discuss the case of strongly coupled
plasmas, for which the first constraint does not apply [3,5,8],
although they usually ignore the fact that many collision-less
plasmas, particularly in space physics, even in steady state,
are non-equilibrium systems, and therefore not Maxwellian.
The case of shielding in quantum plasmas, in which Fermi
statistics should be considered, has been presented in Ref. 8,
but it will not concern us in this paper.

The question on the relaxation of assumption (ii) has
been addressed by Bryant [9], who studied the shielding pro-

duced when the species are described by the so called kappa-
distributions for non-equilibrium plasmas. This is a more
general family of distributions that include the Maxwell-
Boltzmann one as a special case, and is motivated by observa-
tions in space plasmas. While Bryant’s conclusion is that the
shieldingλD is shorter than for the Maxwellian case, given
the same number density and mean energy, the weakly cou-
pled assumption is kept. More recently, Livadiotis and Co-
mas have reviewed the subject, providing a better theoretical
ground for the kappa-distributions, under the point of view
of non-extensive entropy [10]. At a didactical level Meyer-
Vernet [11] studied the case in which a Boltzmann equilib-
rium is not assumed, from a different point of view.

On the other hand, the weakly coupled plasma assump-
tion, also poses the requirement that the number of particles
ND within a sphere of radiusλD be much greater than 1,
so the case of classical strongly coupled plasmas, in which
ND ∼ 1 (in the opposite limit of that of quantum plasmas, for
whichND À 1) is left open. It is also important to note that
the linearized solution for the electrostatic potential, which
results from the weakly coupled plasma assumption, is also
limited in space, and breaks down forr < λD. The relaxation
of the weakly coupled plasma assumption has been addressed
by Mak [12], who compared the usual linearized solution for
the electrostatic potential with the exact solution of Poisson’s
equation for several cases in whichND À 1. While the
conclusion was that the approximate solution is good beyond
expectation for the cases studied, a few questions went unan-
swered. Particularly, when does the approximate solution
breaks down asND and the distancer are reduced?

The purpose of this paper is to provide a better insight
into the subject, using the same normalised approach as in
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Ref. 12, for comparison. In Sec. 2 we go through the usual
discussion of the problem, reviewing what has been presented
in textbooks, for the sake of completeness and in order to es-
tablish the notation. In Sec. 3 we compare the approximate
analytical solution to the linearized problem with the exact
numerical one, and in Sec. 4 we summarise the main con-
clusions. The paper is written with sufficient detail, for easy
reading by an advanced undergraduate or graduate physics
student.

2. Linearized Debye shielding

2.1. The Poisson equation

Let us consider a homogeneous plasma, in which the unper-
turbed large-scale average electron and ion densitiesneo, and
nio, are equal:neo = nio = n. If a point test charge is
introduced at the origin, it will create an electrostatic poten-
tial Φ(r), which only depends on the radial coordinater, and
which must satisfy Poisson’s equation

1
r2

d

dr

(
r2 dΦ(r)

dr

)
= −ρc(r)

ε0
, (1)

whereρc(r) is the charge density distribution. We make the
usual assumptions (i) and (ii) mentioned in the introduction,
and following Ref. 12, we make an additional assumption:
(iii) The positive ions are protons with infinite inertia, so they
form a uniform background of density n. Since the electron
density would then be given byne(r) = n exp(eΦ(r)/kT ),
where −e is the charge of the electron,k is Boltz-
mann’s constant, andT is the electron temperature, then
ρc(r) = ne[1−exp(eΦ(r)/kT )], and Eq (1) can be rewritten
as

d2

dr2
[rΦ(r)] = −ner

ε0
[1− exp(eΦ(r)/kT )]. (2)

The numerical solution to this equation is what we shall call
the “exact solution”.

2.2. The limit between weakly and strongly coupled
plasmas

In this subsection we follow the discussion of Refs. 6 and 7,
with some adaptations. The boundary between weakly and
strongly coupled plasmas can be established when the elec-
trostatic energy between the plasma particles is equal to the
kinetic energy between them, so weakly coupled plasmas are
those for which the former is smaller than the latter, and
the strongly coupled plasmas are represented by the opposite
case. If we consider an electron with velocityv and charge
−e in the presence of an ion with chargeZe at rest, the dis-
tance of maximum approachrc will be defined by

1
2
mv2 − Ze2

4πε0rc
= 0 (3)

Takingv as the thermal velocityvth, in the case of three di-
mensions for an isotropic plasma, we can write(1/2)mv2

th =
(3/2)kT . SinceΦ(r) = Ze/4πε0rc,

eΦ(r)
kT

=
3
2
, (4)

which can be taken as the limiting case in Poisson’s equation,
such that weakly coupled plasmas happen for the right hand
side is smaller than 3/2, and the opposite case for strongly
coupled plasmas. For a weakly coupled plasma,

eΦ(r)/kT ¿ 1, (5)

in which we may take 1 instead of 3/2. Let us now define the
Debye lengthλD ≡

√
ε0kT/ne2 [1-7], whose significance

will become clear in the linearized case. By taking the av-
erage distance between particlesrd = n−1/3, (3) translates
into

rd

rc
=

12π

Z

λ2
D

r2
d

(6)

from which it becomes clear that weakly coupled plasmas
are those for which bothrd andλD are greater than the max-
imum approach distancerc. Using this result, it is easy to
find that, if we defineΛ = λD/rc, as the ratio between the
Debye length (the distance in linearized theory at which the
electrostatic potential decays toe−1 in the linear theory stud-
ied in the next subsection,) and the distance of maximum ap-
proach, we find that in the limit between weakly and strongly
coupled plasmas,Λ = (3/Z)ND, where3ND ≡ 4πnλ3

D is
the number of particles within a sphere defined by the Debye
length (This definition forND is for the sake of comparison
with Ref. 12.) The familiar statement that in weakly cou-
pled plasmasND > 1 , while the opposite is true for strongly
coupled plasmas, is recovered, as well as(Z/3)Λ > 1, for
which the limit increases linearly withZ. All follow from
assumption (5).

2.3. The weakly coupled limit

The linearization for the weakly coupled plasmas arises after
consideringΦ(r)/kT ¿ 1, which states the potential energy
between the particles is much smaller than their kinetic en-
ergy, and is equivalent toND ∼ nλ3

D À 1 . This allows
an expansion of the exponential in (2). Keeping the first two
terms this yields for the approximate potentialΦa(r)

d2

dr2
[rΦa(r)] =

rΦa(r)
λ2

D

, (7)

whose solution is the well known Yukawa potential:

Φa(r) = A
exp(−r/λD)

r
. (8)

By taking the integration constantA = Ze/(4πεo), this al-
lows the usual interpretation of the potential produced by a
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point charge of an ionZe, with atomic numberZ, at the ori-
gin (ρc(r) = Zeδ(r)), whereδ(r) is the Dirac delta func-
tion), shielded by the electrons with a characteristic decay
length λD. Once the electrostatic potential is known, the
charge distribution for the linearized solution can be obtained
from Eq. (1)

ρc(r) =
Ze

4π

[
4πδ(r)− exp(−r/λD)

rλ2
D

]
. (9)

The subtlety in obtaining (9) is discussed in Appendix. The
effect of the shielding can be appreciated by computing the
charge within a sphere of radiusr:

Q(r) = Ze


1−

r∫

0

r
′2ρc(r′)dr′




= Ze(1 + r/λD) exp(−r/λD). (10)

Thus, the charge isZe at r = 0, and decays to 0 for large
r. At the Debye radius the charge isQ(λD) = 2 exp(−1)Ze
∼ 0.736Ze, and falls to half its value at the origin,0.5Ze,
at r/λD ∼ 1.68, well beyond the Debye radius. This result
is interesting, when consideringλD as the cut-off impact pa-
rameter, when Coulomb collisions are considered.

3. Comparison between an accurate (numeri-
cal) and the approximate (analytical) solu-
tion

For the sake of comparison with Ref. 12, let us normalise
the distancer and the potentialΦ(r) in terms of the Debye
length, changing to the following dimensionless variables:

ρ = r/λD, (11)

Ψ(ρ) = 4πε0λDΦ(r)/Ze = (eΦ(r)/kT )ND, (12)

Thus, Poisson’s Eq. (2) for the potential can be rewritten as

d2

dρ2
[ρΨ(ρ)] = −NDρ[1− exp(Ψ(ρ)/ND)], (13)

whose numerical solution we shall call the “exact” solution,
while the normalized approximate solution would then be

Ψa(ρ) =
exp(−ρ)

ρ
, (14)

valid for

eΦ(r)
kT

=
1

NDρ
exp(ρ) ¿ 1. (15)

The main purpose of this paper is to compare the numerical
solutionΨ(ρ) to Eq. (13), with the analytic solution (14) to
the linearized equation.

Indeed, the approximation should be good for large dis-
tances, but Eq. (13) also tells us that it will break down for
short distances(exp(−ρ) ∼ 1) whenNDρ ≤ 1. This will

happen ifND < 1, in very diluted plasmas, or for short dis-
tances, whenr < λD. Also, remembering Subsec. 2.1, note
thatNDρ = 4πnλ2

Dr = (Z/3)(r/rc), which means that for
Z = 1, NDρ > 1 for r > 3rc. Therefore, the weak plasma
approximation is expected to break around

r

3rc
∼ exp(−r/λD) ∼ 1 (16)

for short distances.
However, in order to fully understand what all this means,

it is important to quantify these statements. The main pur-
pose of this paper is to compare the numerical solutionΨ(ρ)
to Eq. (13), with the analytic solutionΨa(ρ), (14), to the lin-
earized equation.

The numerical solutions are obtained by means of a
fourth-order Runge-Kutta routine [13], which is started at the
tail of the solution, and integrated backwards, from larger to
smaller distances. The initial valuesρ0 for the integration can
be chosen to be smaller for larger values ofND, because the
validity of the approximation breaks at shorter distances. The
way in which they were chosen was such that in the first step
of integration we satisfy|Ψa−Ψ| < 10−11. It was found that
if this condition was not met, the integration would not be in-
dependent of the initial condition, which is something else
we sought. This of course, also depends on the step of inte-
gration. Another criterion used in order to choose the step of
integration was based on the tolerance at which the approx-
imation would break. For this purpose, three different toler-
ances,τ , were tried: 1, 5, and 10%. By trial and error, the
integration steps were chosen in such a way that the distance
ρd at which (|Ψa − Ψ|/Ψ) × 100 = τ occurred, would be
such thatτ could be determined within a 0.1% uncertainty.

A first result of this calculation we found, is that the ap-
proximate solution underestimates the exact one. Table I
shows, for several values ofND, the initial valuesρ0 of the
integration, and the valuesρd for which tolerances of 1, 5
and 10% between the two solutions fail. The same results are
plotted in logarithmic scale in Fig. 1. For classical, weakly
coupled plasmas, relevantND values run from 40, for the
Solar atmosphere, some gas discharges, and laser produced
plasmas, to 108 for the interstellar gas, while for the Solar
corona and thermonuclear plasmas, they are around 107 [14].
In addition, we have explored smaller values ofND, includ-
ing some smaller than one, for which a strongly coupled
plasma is expected.

For large values ofND, the distance values at which the
approximation breaks down are very similar regardless of
the tolerance. In the plot in Fig. 1, they overlap down to
ND = 40. As ND is further reduced, the distance at which
the approximation breaks down increases, and is larger for
smaller tolerances. However, it is interesting to observe that
the differences obtained for different tolerances tend to di-
minish for fractional values ofND. While we have followed
the calculations into very small values ofND, it should be
noted that the description of the charge density, used in the
Poisson’s equation, in terms of a Boltzmann distribution for
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TABLE I. Initial value ρ0 at which the integration of (13) was started, and distanceρd at which tolerances of 1, 5, and 10% between the
approximate and exact solutions are reached, for different values ofND.

ρ0 ρd

ND 1% 5% 10%

0.1 13 3.569 2.314 1.828

0.3 11 2.686 1.510 1.077

1 11 1.775 0.734 0.401

2 11 1.288 0.368 0.137

5 7 0.708 5.11×10−2 1.94×10−2

10 5 0.340 8.43×10−3 7.22×10−3

40 5 1.83×10−3 1.40×10−3 1.34×10−3

1×102 5 5.51×10−4 4.86×10−4 4.71×10−4

5×102 4 8.70×10−5 8.05×10−5 7.87×10−5

1×103 2 4.02×10−5 3.75×10−5 3.68×10−5

1×104 2 3.27×10−6 3.10×10−6 3.06×10−6

1×105 0.1 2.77×10−7 2.66×10−7 2.63×10−7

1×106 0.01 2.41×10−8 2.33×10−8 2.31×10−8

1×107 0.001 2.14×10−9 2.08×10−9 2.07×10−9

FIGURE 1. (In colour in the on-line version) Distancesρd at which
the approximate solution breaks, for different values ofND. The
blue dots are for the case in which a 1% tolerance is taken, the
green squares for 5%, and the red diamonds for 10%. The blue line
(below) is the fit for results that go fromND = 40 to 1× 107. The
red line (above) is the curvelog10 ρ = − log10 ND.

such a case may lose its meaning, due to the increasing im-
portance of the temporal fluctuations about the average. In-
deed, the use of the Maxwell-Boltzmann distribution assumes
the particle species are in equilibrium, which requires the
density to be large enough for collisions to allow relaxation
to such a state.

Thus, the linear approximation is very good whenND

ranges between 40 and107, and it is possible to fit the results
to the curvelog10 ρd = 1.18828− 1.07493ND (lower line in
Fig. 1), which yields the empirical law

N1.07493
D ρd = 0.06482. (17)

This should be compared to the curvelog10 ρ=− log10 ND

(upper line in Fig. 1), which stands for the limitNDρ = 1.
Therefore, our result gives a quantitative meaning to the
statementNDρ ¿ 1. We should note that this result differs
with that found in Ref. 12:

NDρ = 0.01 (18)

Our work goes further than that of Ref. 12, in that we
study the cases of smaller values ofND. Besides, only the
case in which the tolerance is 10% was reported. We did
not exploreND as large as in that previous work (1015), be-
cause it is to be expected that the approximation will improve
asND increases, while we are more interested in exploring
when the approximation breaks down.

4. Conclusions

In order to study the Debye shielding, the numerical (ex-
act) solution for the electrostatic potentialΨ(ρ) was obtained,
from Eq. (13), and it was compared to the approximate so-
lution, given by the Yukawa potential (14), found for the lin-
earized approximation. The latter underestimates the exact
solution, but is a good approximation for values ofND as
small as 40. Even forND = 5, the approximation is still
good, down tor = 0.05λD if one requires only a 5% toler-
ance. The distancesρd, at which the approximation breaks,
given fixed values ofND, for tolerances of 1, 5 and 10%
were obtained, and it was observed that they are practically
the same, regardless of the tolerance, forND > 40. Using
these data, the empirical law (17) was found, which gives a
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clear quantitative meaning to the statementNDρ ¿ 1, for
the validity of the linear approximation.

From the didactical point of view, this result is illustra-
tive of the validity of the usual approximation, which is never
quantitatively explained in textbooks, even when a Maxwell-
Boltzmann equilibrium distribution is assumed, which may
not necessarily be right in many cases.

Finally, it must be noted that the results reviewed in this
paper are valid for classical plasmas, such that the distance
of maximum approachrc , is much greater than the elec-
tron’s thermal wavelengthλe =

√
2mkT . If ND À 1,

the electrons become degenerate, and the interference be-
tween wave functions must be considered for high temper-
atures. In this case, the classical model is no longer valid,
and the shielding is provided by the Thomas-Fermi length
rTF = (π/3ne)

√
~2/4me2 (Ref. 8).

Appendix

A. The calculation of the charge density

The charge density distribution (9) can be obtained from
Poisson’s equation, from the potential (8), by appropriately
dealing with the singularity. As explained in Classical Elec-
trodynamics textbooks (take for instance Ref. 13), the poten-
tial produced by a point charge Ze at the origin

Φp(r) =
Ze

4πε0r
(A.1)

satisfies the Poisson equation

∇2Φp(r) = −Zeδ(r)
ε0

, (A.2)

whereδ(r) is the Dirac delta function.

In the Debye shielding case, we provide two ways to pro-
ceed. The first one, suggested by Greiner in Ref. 15, is to
sum and subtract the point charge potential in (8). Therefore,

∇2Φa(r) =
Ze

4πε0
∇2

[
1
r

+
exp(−r/λD)− 1

r

]

=
Ze

4πε0

[
−4πδ(r) +

exp(−r/λD)
rλ2

D

]
(A.3)

which yields (9), using (1). The second way may be by us-
ing the identity of the Laplacian for a product of two scalar
functions∇2(fg) = ∇2(f)g + ∇f · ∇g + f∇2(g), where
f = Ze/(4πε0r), andg = exp(−r/λD). By these means,
we get

∇2Φa(r) =
Ze

4πε0

[
− 4πδ(r) exp(−r/λD)

+
exp(−r/λD)

rλ2
D

]
, (A.4)

which is equivalent to (A.3), since when integration is made
to obtain the charge within the sphere of radiusr, it yields the
same result (10) for the total charge in a sphere of radiusr,
due to the property of the Dirac delta function

∫
f(r)δ(r − r0)dV = f(r0), (A.5)

when integrating over a domain containingr0.
In plasma physics textbooks, this basic electrostatics is-

sue is seldom discussed, although Refs. 3 to 5, and 7 do
mention the first term in the charge density, but not as a result
of the Laplacian of (8). We believe it is a good example to
stress the importance of properly dealing with singularities.
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