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A novel approach to the Child-Langmuir law
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We analyze the motion of charged particles in a vacuum tube diode using a new set of variables. We obtain the space charge limited current for
a charged particle moving non-relativistically in one dimension for the case of zero and non zero initial velocity without solving a nonlinear
differential equation. We introduce what we call themicroscopicChild-Langmuir law which is valid for the classical and relativistic cases
that allows to determine the space charge limited current without solving a nonlinear differential equation.
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1. Introduction

The Child-Langmuir (CL) law is one of the most well known
and often applied laws of plasma physics which states that the
behavior of the current density in a planar vacuum tube diode
is proportional to the three-halves power of the bias potential
and inversely proportional to the square of the gap distance
between the electrodes. For more than 100 years the CL law
has been obtained through the solution of a second-order non-
linear differential equation. More recently, a method for es-
timating the space charge limited current in a vacuum planar
tube diode without solving a nonlinear differential equation
was described in Ref. 1 by considering the vacuum capac-
itance of the gap. However, the vacuum capacitance model
is only an approximation and is not valid in the relativistic
regime.

In this article we present a novel approach to this fun-
damental law which avoids the need of solving a nonlinear
differential equation and provides a microscopic physical in-
sight into the origins of the CL law. Our approach is based
by using a new set of variables and requires only what we
call themicroscopicCL law to derive the space charge lim-
ited current. We use themicroscopicCL law to obtain the
exact analytical result for the relativistic and non-relativistic
regimes.

The article is organized as follows, first we review the tra-
ditional solution to the CL law. We then present our new ap-
proach where we show how one can obtain the CL law with-
out solving a nonlinear differential equation and introduce
what we call themicroscopicCL law. We also show that the
microscopicCL law is valid for the relativsitic regime, which
makes it a fundamental law for the electron dynamics inside
a planar vacuum tube diode. At the end we summarize our
conclusions.

2. Traditional approach to the Child-
Langmuir law

For infinite planar electrodes having a potential differenceV
and separated by a distanceD, the CL law is obtained by
solving Poisson’s equation

d2V

dz2
= − ρ

ε0
(1)

whereV is the electrostatic potential,ρ is the volume charge
density andε0 is the permittivity of free space [2]. We can
define the current density by

J(z) = ρ(z)v(z) = −JCL (2)

wherev is the velocity of the electrons. By charge conserva-
tion the current density can not vary withz, hence the current
density is constant. We can obtain the velocity using conser-
vation of energy,i.e.

mv2

2
− eV = 0 (3)

wherem ande are the electron’s mass and charge. In Eq.(3)
we have assumed that the electron is initially at rest in the
grounded cathode. Solving Eq. (3) for the velocity and sub-
stituting in Eq. (2) we obtain the volume charge density

ρ(z) = − JCL√
2eV/m

(4)

Substituting Eq. (4) into Eq. (1) we have a second-order
nonlinear differential equation for the electrostatic potential

d2V

dz2
=

JCL

ε0
√

2eV/m
(5)

with the following boundary conditions

dV

dz

∣∣∣∣∣
z=0

= 0 and V (z)

∣∣∣∣∣
z=0

= 0 (6)
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The solution for Eq. (5) is given by

V (z) = V0

( z

D

)4/3

(7)

and the volume charge density in the gap is

ρ(z) = −4ε0V0

9D2

(
D

z

)2/3

(8)

substituting Eq. (7) and Eq. (8) into Eq. (4) we find that the
space charge limited current density is given by

JCL =
4ε0
9D2

√
2e

m
V

3/2
0 (9)

Equation (9) is the well known Child-Langmuir law [3,4].
Since the derivation of this fundamental law many impor-
tant and useful variations on the classical CL law have been
investigated to account for special geometries, [5–7] rela-
tivistic electron energies, [8] non zero initial electron veloc-
ities, [9, 10] quantum mechanical effects, [11–13] nonzero
electric field at the cathode surface, [14] slow varying charge
density, [15] and quadratic damping [16].

3. New Approach

Consider now that the electrostatic potential is given as a
function of the volume charge density,i.e. V = V (ρ). This
means that the electric field is given by

E = −dV

dz
= −dV

dρ

dρ

dz
(10)

and Gauss law is given by

ρ

ε0
=

dE

dρ

dρ

dz
(11)

Using Eq. (11) we obtain

z(ρ) =

ρ∫

−∞

ε0
ρ

dE

dρ
dρ (12)

Combining Eq. (10) and Eq. (11) we have

ε0E
dE

dρ
= −ρ

dV

dρ
(13)

Solving Eq. (13) for the electrostatic potential we have

V (ρ) = −
∫

1
ρ

d

dρ

(ε0
2

E2
)

dρ (14)

If we know the electric field as a function of the volume
charge density we can use Eq. (14) and Eq. (12) to obtain
the electrostatic potential as a function of position. Our task
then is to findE = E(ρ), to do this we use Poisson’s equation

d2V

dz2
= − ρ

ε0
= − J

ε0
√

2/m

1√
K0 + eV

(15)

whereK0 = mv2
0/2 is the initial kinetic energy. Multiplying

Eq. (15) bydV/dz and integrating from zero toz we have

1
2
E2 = − 2J

eε0
√

2/m

√
K0 + eV + C (16)

whereC = E2
0/2 + Jmv0/eε0 is a constant of integration

given as a function of the value of the electrostatic fieldE0

and velocityv0 at z = 0. Substituting Eq. (15) into Eq. (16)
we have

(ε0
2

E2 − ε0
2

E2
0

)
ρ = −mJ2

e
+

Jmv0

e
ρ (17)

Using the relationJ = ρv in Eq. (17) we end up with

∆δE = −J

e
∆p (18)

whereδE = ε0E
2/2 is the electrostatic energy density and

p = mv is the linear momentum. Equation (18) is what
we call themicroscopicChild-Langmuir law, which states
that the change in electrostatic energy density is propor-
tional to the change in linear momentum. For the case when
E0 = v0 = 0 we have

δE = −J

e
mv = −J2m

eρ
(19)

Substituting Eq. (19) into Eq. (14) and integrating we obtain
the electrostatic potential

V =
J2m

2eρ2
=

m

2e
v2 (20)

Note that the electrostatic potential in Eq. (20) equals the
kinetic energy per unit charge. Substituting Eq. (19) into
Eq. (12) and integrating we obtainz = z(ρ)

z =
2
3

√
ε0J2m

2e
(−ρ)−3/2 (21)

Solving Eq. (21) forρ and substituting into Eq. (20) we end
up with

V =
(

9Jz2

4ε0

√
m

2e

)2/3

(22)

If we evaluate Eq. (22) whenz = D and solve for the charge
current density we find the space charge limited current den-
sity which is given in Eq. (9).

An interesting case is when the initial velocity atz = 0
is non zero,i.e. v0 6= 0, for this case the microscopic Child-
Langmuir law is given by

δE = −J

e
(mv −mv0) = −J2m

eρ
+

Jmv0

e
(23)

The electrostatic potential will be given by

V =
m

2e
v2 − K0

e
=

J2m

2eρ2
− K0

e
(24)
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Substituting Eq. (23) into Eq. (12) we have

z = ε0

ρ∫

−∞

1
ρ

√−mJ

2eε0

(
J

ρ
− v0

)−1/2
J

ρ2
dρ (25)

The integral given in Eq. (25) can be transformed by the
change of variablev = J/ρ to a more suitable form

z =

√
−mε0
2eJ

v∫

v0

vdv√
v − v0

=
2
3

√
−mε0
2eJ

√
v − v0(v + 2v0) (26)

Solving forv in Eq. (26) we have

v = −v0 +
3
√

2v2
0(

a2 + 2v3
0 +

√
a4 + 4a2v3

0

)1/3
(27)

+

(
a2 + 2v3

0 +
√

a4 + 4a2v3
0

)1/3

3
√

2

wherea = 3z
√
−2eJ/mε0/2. Substituting Eq. (27) into

Eq. (24) we have the electrostatic potential as a function ofz.
However, if we evaluate Eq. (26) whenz = D and use

the fact thatv(z = D) =
√

v2
0 + 2eV0/m we can solve for

the charge current density directly, which is given by

J = −2mε0
9eD2

[√
v2
0 +

2eV0

m
− v0

]

×
[√

v2
0 +

2eV0

m
+ 2v0

]2

(28)

Note that equation (28) reduces to the Child-Langmuir result
whenv0 = 0. Equation (28) can be rewritten in the following
form

J = JCL

[√
1 +

K0

eV0
−

√
K0

eV0

]

×
[√

1 +
K0

eV0
+ 2

√
K0

eV0

]2

(29)

One can see from Eq. (29) that a non zero initial velocity has
a strong influence on the space charge limited current.

There have been other expressions proposed for the space
charge limited current in a planar vacuum tube diode with
nonzero initial velocity, the one given by Liu and Dougal [17]

JBF = JCL

[(
1 +

K0

eV0

)3/4

+
(

K0

eV0

)3/4
]2

(30)

and the one given by Jaffé [10]

JSCL = JCL

[√
1 +

K0

eV0
+

√
K0

eV0

]3

(31)

It has been shown that Eq. (30) represents the current at
the bifurcation point and hence do not represents the space
charge limit correctly [18]. On the other hand, Eq. (31) is
obtained by imposing a boundary condition for the current,
i.e. “the number of electrons entering the discharge space
must be equal or smaller than a given numberN0 per cm2

per sec., and is for each potential as high as the potential per-
mits” [10]. Our result given by Eq. (29) is obtained by using
a integral of motion of the electron dynamics inside the vac-
uum tube diode given by the energy momentum relation in
Eq. (18) and only assumes that the volume charge density
does not depends explicitly on time,i.e. it only depends on
the coordinates.

In Fig. (1) we show all three expressions as a function
of K0/eV0. Note how our expression given by Eq. (29)
follows closely the relation given by Jaffé for small values
of K0/eV0, but for large values ofK0/eV0 the expressions
given by Eq. (30) and Eq. (31) grow more rapidly than ours.

For the case of relativistic velocities the equation of mo-
tion of the electron in one dimension is given by

m
dv

dt
= −eE

(
1− v2

c2

)3/2

(32)

if we substitute the velocity in Eq. (32) byv = J/ρ we obtain

−mJ2

ρ3

dρ

dz
= −eE

(
1− J2

ρ2c2

)3/2

(33)

If we multiply by dE/dρ and use Gauss law in Eq. (33) we
have

FIGURE 1. The figure shows the space charge limited currents
as a function ofK0/eV0 obtained by Liu and Dougal, Jaffé and
Gonźalez for explicit comparison between them. We see in the in-
set figure that our expression follows closely the relation given by
Jaff́e for small values ofK0/eV0.
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mJ2

ε0ρ2
= eE

dE

dρ

(
1− J2

ρ2c2

)3/2

(34)

separating variables in Eq. (34) we have

−mJ2

e
d

(
1

ρ
√

1− J2/ρ2c2

)
= d

(ε0
2

E2
)

(35)

Integrating Eq. (35) and using the relationJ = ρv we have

−J

e
∆p = ∆δE (36)

wherep = mv/
√

1− v2/c2. We see that themicroscopic
Child-Langmuir law also holds for the relativistic regime.
Thus, for the case whenv0 = E0 = 0, and considering that
the charge density times the velocity remains constant, then
the integral of motion is given by

ε0
2

(
−dV

dz

)2

+
Jmv

e
√

1− v2/c2
= 0 (37)

substitutingv =
√

eV (2 + eV/mc2)/m/(1 + eV/mc2) in
Eq. (37) and separating variables we have

V∫

0

dV

(eV/m)1/4(2 + eV/mc2)1/4

= −
√−2mJ

eε0

z∫

0

dz (38)

Equation (38) is the same as Eq. (10) given in Ref. 8 with the
change of variableω4 = U2 + 2U , whereU = eV/mc2. If

we evaluate Eq. (38) whenz = D and useV = V0 we can
solve for the charge current density directly, which is

J = JCL

(
2F1

(
1
4
,
3
4
,
7
4
,− eV0

2mc2

))2

(39)

where 2F1(a, b; c; z) is the hypergeometric function [19].
Equation (39) reduces to the classical Child-Langmuir law
for c →∞.

4. Conclusions

In summary, we have shown a new method of deriving the
Child-Langmuir law for the case of the electron motion in-
side a planar vacuum tube diode which avoids the need of
solving a nonlinear differential equation and presents a new
insight into the way of approaching the problem of the charge
dynamics inside a planar vacuum tube diode. We found what
we call themicrosocopicChild-Langmuir law, which states
that the change in electrostatic energy density is proportional
to the change in linear momentum. We have shown that the
microscopicChild-Langmuir law is valid for the classical and
relativistic regimes.

Acknowledgments

This work was supported by the program “Cátedras CONA-
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(2015) 388-391.

17. S. Liu and R.A. Dougal,J. Appl. Phys.78 (1995) 5919.

18. P.V. Akimov, H. Schamel, H. Kolinsky, A. Ya. Ender and V.I.
Kuznetsov,Phys. Plasmas8 (2001) 3788.

19. N.N. Lebedev,Special functions and their applications, (Dover
Publications Inc., New York, 1972)

Rev. Mex. F́ıs. E 63 (2017) 83–86


