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A novel approach to the Child-Langmuir law
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We analyze the motion of charged particles in a vacuum tube diode using a new set of variables. We obtain the space charge limited current fo
a charged particle moving non-relativistically in one dimension for the case of zero and non zero initial velocity without solving a nonlinear
differential equation. We introduce what we call tiécroscopicChild-Langmuir law which is valid for the classical and relativistic cases

that allows to determine the space charge limited current without solving a nonlinear differential equation.
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1. Introduction 2. Traditional approach to the Child-
Langmuir law

The Child-Langmuir (CL) law is one of the most well known For infinite planar electrodes having a potential differelice
and often applied laws of plasma physics which states that thend separated by a distanée the CL law is obtained by
behavior of the current density in a planar vacuum tube diodsolving Poisson’s equation
is proportional to the three-halves power of the bias potential &2V
- - . p
and inversely proportional to the square of the gap distance PR (2)
between the electrodes. For more than 100 years the CL law ) ] o
has been obtained through the solution of a second-order noMhereV’ is the electrostatic potential,is the volume charge
linear differential equation. More recently, a method for es-density ande is the permittivity of free space [2]. We can
timating the space charge limited current in a vacuum planaf€fine the current density by
tube diode_ With_out solving a nonl_inea}r differential equation J(2) = p(2)v(z) = —Jor, @)
was described in Ref. 1 by considering the vacuum capac-
itance of the gap. However, the vacuum capacitance mod&yherev is the velocity of the electrons. By charge conserva-

is only an approximation and is not valid in the relativistic tion the current density can not vary withhence the current
regime. density is constant. We can obtain the velocity using conser-

vation of energyi.e.
In this article we present a novel approach to this fun- 9
muv

damental law which avoids the need of solving a nonlinear eV =0 (3)
differential equation and provides a microscopic physical in- 2

sight into the origins of the CL law. Our approach is basedvherem ande are the electron’s mass and charge. In Eq.(3)
by using a new set of variables and requires only what wave have assumed that the electron is initially at rest in the
call themicroscopicCL law to derive the space charge lim- grounded cathode. Solving Eg. (3) for the velocity and sub-
ited current. We use thenicroscopicCL law to obtain the  stituting in Eq. (2) we obtain the volume charge density
exact analytical result for the relativistic and non-relativistic Jor @

regimes. plz) = 7\/7%

The article is organized as follows, first we review the tra-Substituting Eq. (4) into Eq. (1) we have a second-order
ditional solution to the CL law. We then present our new ap-nonlinear differential equation for the electrostatic potential
proach where we show how one can obtain the CL law with-

2
out solving a nonlinear differential equation and introduce d ‘2/ = Jor (5)
what we call thanicroscopicCL law. We also show that the dz €0y/2eV/m

microscopicCL law is valid for the relativsitic regime, which  with the following boundary conditions
makes it a fundamental law for the electron dynamics inside
a planar vacuum tube diode. At the end we summarize our av =0 and V(z) -0 (6)

conclusions. dz
z2=0 2=0
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The solution for Eq. (5) is given by

whereK, = mv3 /2 is the initial kinetic energy. Multiplying
Eq. (15) bydV/d= and integrating from zero towe have

2 \4/3
Viz) =V (5) ") 1 2.7
—F?=—— " \/Ky+eV+C (16)
and the volume charge density in the gap is 2 e€or/2/m
4e0Vo (D\Y? whereC' = E32/2 + Jmug/eeq is a constant of integration
p(z) = — 902 <z> 8 given as a function of the value of the electrostatic field

and velocityvy atz = 0. Substituting Eq. (15) into Eq. (16)
substituting Eq. (7) and Eq. (8) into Eq. (4) we find that thewe have

space charge limited current density is given by 2o
(@EQ_SOEg)pz_me 4 ”:’(’p (17)

_ deo [2e 30
T 9D2\Vm ©

Equation (9) is the well known Child-Langmuir law [3,4].
Since the derivation of this fundamental law many impor-
tant and useful variations on the classical CL law have been
investigated to account for special geometries, [5-7] relawheredr = ¢ E?/2 is the electrostatic energy density and
tivistic electron energies, [8] non zero initial electron veloc-p = mu is the linear momentum. Equation (18) is what
ities, [9, 10] quantum mechanical effects, [11-13] nonzerave call themicroscopicChild-Langmuir law, which states
electric field at the cathode surface, [14] slow varying chargehat the change in electrostatic energy density is propor-

Jor )

Using the relation/ = pv in Eq. (17) we end up with

Adp = —gAp (18)

density, [15] and quadratic damping [16].

3. New Approach

Consider now that the electrostatic potential is given as a

function of the volume charge densitye. V = V(p). This
means that the electric field is given by

tional to the change in linear momentum. For the case when
Ey = vg = 0 we have

(19)
e ep

Substituting Eq. (19) into Eq. (14) and integrating we obtain
the electrostatic potential

av dV dp 2
P=-_—_=_"-_"" (10) _J*m om o,
dz dp dz T 27 2*611 (20)
and Gauss law is given by Note that the electrostatic potential in Eq. (20) equals the
p _dEdp 1 kinetic energy per unit charge. Substituting Eq. (19) into
e dpdz (1) Eq. (12) and integrating we obtain= z(p)
Using Eqg. (11) we obtain 2
L2 M(_p)ﬁ/? (1)
P 3 2e
€0 dFE . i i i
z(p) = ;dfpdﬂ (12)  solving Eq. (21) forp and substituting into Eq. (20) we end
—oc0 up with
. 9J22 [m 2/3
Combining Eqg. (10) and Eqg. (11) we have V= ( /) (22)
4e 2e
dE dV ’
eoEd— =-rg (13) If we evaluate Eq. (22) when= D and solve for the charge
P P current density we find the space charge limited current den-
Solving Eq. (13) for the electrostatic potential we have sity which is given in Eq. (9).
An interesting case is when the initial velocity at= 0
Vip) = — / l1d (LOE2) dp (14)  isnon zeroj.e. v # 0, for this case the microscopic Child-
pdp \2 Langmuir law is given by
If we know the electric field as a function of the volume J2m Jmw
charge density we can use Eqg. (14) and Eqg. (12) to obtain 0 = ——(mv — mug) = — 270 (29)
the electrostatic potential as a function of position. Our task ¢ ep ¢
thenis to findE = E(p), to do this we use Poisson’s equation The electrostatic potential will be given by
>V p J 1 Ko J*m K
=—-==- 15 _ My fo_Jm fo
dz? €0 eor/2/m VKo + eV (13) V= 2" e 2ep? e (24)
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Substituting Eqg. (23) into Eqg. (12) we have

RN, 12
Z =€ / - ( — 110) —dp (25)
pV 2een \p p

85

It has been shown that Eq. (30) represents the current at
the bifurcation point and hence do not represents the space
charge limit correctly [18]. On the other hand, Eq. (31) is
obtained by imposing a boundary condition for the current,
i.e. “the number of electrons entering the discharge space

The integral given in Eq. (25) can be transformed by themust be equal or smaller than a given numbgr per cn?

change of variable = .J/p to a more suitable form

v
[ —meg / vdv
z =
2eJ VU — g
vo

2 [ome o
=3\ 507 VY vo(v + 2v9) (26)
Solving forv in Eq. (26) we have
3 2 2
v=—vy + V20 (27)

173
<a2 + 203 + \/a* + 4a2v8’)

1/3
(a2 + 208 4+ /at + 4a2118’>
V2
wherea = 3z4/—2eJ/meg/2. Substituting Eq. (27) into

Eq. (24) we have the electrostatic potential as a function of
However, if we evaluate Eq. (26) when= D and use

the fact that(z = D) = \/v3 + 2eV,/m we can solve for
the charge current density directly, which is given by

2meg [ v% n 2eVy _ Uo]
m

+

J =

 9eD?2

2€V0

X [1/vd +

+ 209 (28)

per sec., and is for each potential as high as the potential per-
mits” [10]. Our result given by Eq. (29) is obtained by using

a integral of motion of the electron dynamics inside the vac-
uum tube diode given by the energy momentum relation in
Eqg. (18) and only assumes that the volume charge density
does not depends explicitly on timieg. it only depends on

the coordinates.

In Fig. (1) we show all three expressions as a function
of Ky/eVy. Note how our expression given by Eq. (29)
follows closely the relation given by Jéfffor small values
of Ky/eVy, but for large values of{y/eV; the expressions
given by Eq. (30) and Eq. (31) grow more rapidly than ours.

For the case of relativistic velocities the equation of mo-
tion of the electron in one dimension is given by

(1 - 1J2>3/2
2

if we substitute the velocity in Eq. (32) hy= J/p we obtain

J2 3/2
2CQ>

—eF (1 —
p

If we multiply by dE/dp and use Gauss law in Eq. (33) we
have

)
m— = —eF

dt (32)

_mJ2 dp

p3 dz

(33)

Note that equation (28) reduces to the Child-Langmuir result

whenvy = 0. Equation (28) can be rewritten in the following

form
Ky Ky
14+ — — /] —
+ €V0 CVQ
K K ?

1 20 2 20

V + eVo + V eVo

J=Jcr

X (29)

One can see from Eq. (29) that a non zero initial velocity has s

a strong influence on the space charge limited current.

There have been other expressions proposed for the spac °r
charge limited current in a planar vacuum tube diode with 4}
nonzero initial velocity, the one given by Liu and Dougal [17]

Jpr = Jcr

- . 2

K() 3/4 K() 3/4
1+ — —_— 30
<+6V0) e (30)

and the one given by J&f{10]
174 3
0
\/ v (31)

K
14+ =+

J =J
scL CcL Vo

— Gonzalez — Liu-Dougal — Jaffé
J

Jor
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FIGURE 1. The figure shows the space charge limited currents
as a function ofK,/eVs obtained by Liu and Dougal, Jé&ffand
Gonalez for explicit comparison between them. We see in the in-
set figure that our expression follows closely the relation given by
Jaffé for small values of<y /eV5.
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—¢E 34
w? dp p2c? (34

separating variables in Eq. (34) we have

2
_my ! =d (iOE2) (35)
e o) 2

Integrating Eq. (35) and using the relatidn= pv we have

~IAp = Aoy (36)
e

mJ2 dE( J2 \*?
ae (o >

wherep = mov//1 —v?/c2. We see that thenicroscopic

we evaluate Eq. (38) when= D and usel/ = 1, we can
solve for the charge current density directly, which is

137 % \\
7= JCL( (4 44 2mc2>) (39)
where 5 F (a, b; ¢; z) is the hypergeometric function [19].

Equation (39) reduces to the classical Child-Langmuir law
for ¢ — .

4. Conclusions

Child-Langmuir law also holds for the relativistic regime. In summary, we have shown a new method of deriving the
Thus, for the case whemy = Ey = 0, and considering that Child-Langmuir law for the case of the electron motion in-
the charge density times the velocity remains constant, theside a planar vacuum tube diode which avoids the need of

the integral of motion is given by

€0 dV) Jmuv
2 ( dz e\/1 —v2/c? 37)

substitutingy = /eV (2 + eV/mc2?)/m/(1 + eV/mc?) in
Eq. (37) and separating variables we have

v
/ dav
(eV/m)1/4(2 + eV/mc?)1/4

0
_ =2 / dz (38)
€€p
0

solving a nonlinear differential equation and presents a new
insight into the way of approaching the problem of the charge
dynamics inside a planar vacuum tube diode. We found what
we call themicrosocopicChild-Langmuir law, which states
that the change in electrostatic energy density is proportional
to the change in linear momentum. We have shown that the
microscopicChild-Langmuir law is valid for the classical and
relativistic regimes.
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