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Materials characterization by analysis of force-distance curves: an introduction to
nano-mechanical measures and experimentation for undergraduate students
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We present an analysis and interpretation of force-distance curves by contact mode AFM in order to obtain the elastic modulus of different
materials. For quantitative data analysis, the spring constant of the cantilever was calculated using the thermal tune method achieving
consistent results. Although various assumptions were made, the computed Young’s Modulus of the samples converges with the ones found
in literature. This paper is part of a series of experimental practices that serves as an introduction to the principles of nanotechnology and
scientific research for third-year physics undergraduate students. During the development of this work, students are expected to reflect their
knowledge and writing skills in the fields of literature review, Hertz’s contact mechanics, and computational statistics, and data analysis.
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1. Introduction

Nanotechnology is a topical issue of scientific rigor about
studying phenomena and manipulation of materials at its
smallest scale. Its applications and areas of development
make it an essential subject in the curriculum of any under-
graduate engineering student. However, applying these con-
cepts into practice in a laboratory can be difficult because of
the required instrumentation. This paper presents a labora-
tory practice on the characterization of materials by atomic
force microscopy (AFM). The main objective is to get, in
a quantitative manner, the modulus of elasticity of different
samples by analyzing the experimental force-distance curves
acquired in an AFM working in contact mode.

Being that the AFM is a characterization technique of sur-
face materials, it’s a suitable technique in a vast area of ap-
plications such as synthesis, friction, wear, and functionality
of diverse surface modified materials. During the develop-
ment of this practice, students are expected to show evidence
which reflects the concepts studied and to present the infor-
mation in a professional and consistent style. Meanwhile,
students will be able to improve their presentation and writ-
ing skills related to the themes of research and analysis of the
current literature, Hertz’s contact mechanics, Computational
statistics, and data analysis.

The present paper intendeds to specify the theoretical
background of AFM force plots as well as to present a se-
lection of measurements that can be implemented with this
apparatus. The next section is a general introduction to AFM
contact mode including: working principle, the technique
employed for the calibration of the instruments, and the fun-
damentals of the theory concerning the force-distance curves.
The analytic procedure to obtain the substrate stiffness is
stated in detail. After an overview of calibration problems
and model limitations, the main experiments concerning the

measurements of the Young’s Modulus are exposed, pointing
out the main established results.

2. Theoretical Framework

AFM was first introduced in 1986 by Binning, Quate and
Gerber. The universal character of the repulsive forces be-
tween the tip and the sample, which are employed for sur-
face analysis in AFM, enables the examination of a practi-
cally unlimited range of materials [1]. AFM has developed
into a multifunctional technique suitable for characterization
of topography, adhesion, mechanical, and other properties on
scales from hundreds of microns to nanometers [2-4].

Results gathered from the piezoelectric sensor in the
AFM is crucial for characterizing materials in the Nano and
Pico scale. A force-distance curve is obtained by monitoring
the vertical displacement of the cantilever (δc or deflection)
with respect to the piezoelectric actuator height (Zp) [5]. The
tip-sample force can be expressed in terms of Hooke’s law:

F = −kcδc (1)

For characterizing the spring constant of the cantilever
(kc) the thermal tune method was used by analyzing the
power spectral density of the cantilevers free oscillation af-
fected due to thermal noise. If the microlever is modeled as
a harmonic oscillator, the equipartition theorem implies that
in thermal equilibrium the oscillator has an average energy
related via the mean square deflection〈∆Z2

c 〉 and the tem-
perature [6] by the equation:

1
2
kc〈∆Z2

c 〉 =
1
2
kBT (2)

This method is used owing its geometry and composition
independency. However, two corrections should be consid-
ered for an improvement. The first, a factor relating that we
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can’t measure all the oscillation modes (sometimes only the
first mode orZ1) of the cantilever in the〈∆Z2

c 〉 parameter.
The second, a geometric factor (cantilever type dependent)
involving the tip position in the microlever’s free end and
the effective deflection that it causes at the optical lever sen-
sor [7]. For rectangular and triangular cantilevers the correc-
tion factor (β∗) is 0.817 and 0.764 respectively [8]. Obtaining
as a result a better approximation:

kc〈∆Z∗21 〉 = β ∗ kBT (3)

Unfortunately, the distance controlled by the AFM’s con-
trol loop (Zp) is not the real tip-sample distance (S or sepa-
ration) but the original distance between sample surface and
the cantilever. These are different because of cantilever de-
flection (δc) and sample deformation (δs or indentation) [9]
but are linked in a way that:

S = (Zp + δc)− δs (4)

Since the only distance that one can control is the piezo-
displacement, after theF−Zp plot is acquired an axis change
can be made (F − Zp + δc) so that the indentation values
(that will be used for further analysis) can be visible as nega-
tive values from aF − S curve (real force-distance curve) as
stated by Eq. 4 and presented in Fig. 1.

The AFM tip is able to probe a very small interaction
area. With this, the tip gives it a high sensitivity to very small
forces [10]. This will let us work in the elastic regimen of
our materials. In this type of experiment (contact between a
rigid sphere and a flat surface) Hertz contacts mechanics [11]
states that for the case of a nonrigid spherical indenter and
sample, the distance of mutual approach (δ′) between two
distant points within the indenter and the sample is given by:

δ′3 =
(

4k

3E

)2
F 2

R
(5)

FIGURE 1. Schematic of a typical deflection-vs.-separation plot
(δc − vs − S), with S = δc + Zp. Indention depth appears as
negative values ofS. The abscissae axis is not at scale.

whereR is the relative curvature of the indenter and the sam-
ple, E the elastic modulus of the sample andk is an elastic
mismatch factor [12] given by:

k =
9
16

[
(1− v2

s)− Es

Et
(1− v2

t )
]

(6)

In Eq. 6, Es, vs and Et, vt are the Young’s Modulus
and Poisson ratio for the sample and the indenter respectively.
When the indenter is perfectly rigid,k = 9(1 − v)/16, and
the distance of mutual approachδ′ is the penetration depthδs

below the original sample [12].
Following Johnson insights, [13] it can be stated as an ef-

fective or equivalent elastic modulus of the system (ETOT )
Eq. 7, so that Eq. 5 can be written in function of this value.

1
ETOT

=
1− v2

t

Et
+

1− v2
s

Es
(7)

δ3
s =

(
3

4ETOT

)2
F 2

R
(8)

whereF is the load applied andR can be approximate as the
indenter radius for small indentations. It can be noted that
the effective elastic modulus of the system decreases as the
indenter becomes less rigid. Therefore, the distance of mu-
tual approachδ′ for a nonrigid indenter is greater than that
for a rigid indenter due to its deformation [12]. Fortunately,
that kind of displacement is recorded by the AFM’s photode-
tector so that from the data recorded indentation values can
be obtained.

Although AFM has a great potential for characterization
of surface properties, it is important to realize that contact
mode force spectroscopy is a technique with some limita-
tions and difficulties, being AFM nanoindentation a better
approach [14,15]. One of the most crucial aspects is can-
tilever calibration. Indeed, to withstand the force exerted by
the probe, the microlever’s sensitivity (deflection vs. voltage
ratio) should be well known; calibration with an infinitely
hard surface that could leave us to pure cantilever deflection
(and zero sample deformation) is required. The harder the
calibrating surface the more accurate the sensibility, though
the damage of the tip apex is increased.

A second source of problem is related to the size and
shape of the AFM probe. The tip’s radius of curvature is an
important variable in our calculations, and manufacture pa-
rameters are not that precise. Therefore, characterization of
the cantilever’s probe should be realized (e.g. electron mi-
croscopy) at the beginning, taking into account that it won’t
be a constant parameter due to the flattening of the tip that
may occur in the course of the experiments.

Ultimately, an important limitation is the contact model
used. Several theories define the elastic deformation of the
sample, and their differences arise due to the adhesion in
the tip-sample system. In the Hertz model, the adhesion of
the sample is neglected, whereas other theories take account
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of it outside (Derjaguin-M̈uller-Toporov) or inside (Johnson-
Kendall-Roberts) the contact area. Butt and Capella [8] stated
that in these last theories, the work of adhesionW can be
calculated from the jump-off-contact, if the tip radiusR is
known. Then it is possible to calculateδ as a function of the
effective elastic modulusETOT . The JKR model is used in
the case of large tips and soft samples with a large adhesion,
while the DMT model is used for small tips and stiff sam-
ples with a small adhesion [8]. Notwithstanding, all of these
models are only approximations.

3. Materials and Methods

All samples were observed in an open environment on a Mul-
timode NanoScope IIIa (Veeco Metrology Group) coupled
with a Signal Access Module (SAM). Data were exported to
text files using the microscope’s software package. All force
values were calculated using non-conductive silicon nitride
(Si3N4) triangular cantilevers (Veeco model NPS-10/NP-20)
with a length of 120/205µm and nominal spring constant
from 0.5 to 0.06 N/m depending on which of the 5 types
of cantilevers were used (different for each alumni team).
Due to our didactic approach, samples with easily differen-
tiated values are necessary so that, even with our theoret-
ical assumptions, measurement errors and students’ misin-
terpretations can converge to one of the possible samples,
which are High Density Polyethylene (HDPE), Highly Or-
dered Pyrolytic Graphite (HOPG ZYH), Laminate (glass)
GFRP, Glass D263M, Gold, Copper UNS C11000, Stainless
Steel type 304, and Tungsten Carbide/Cobalt 94/06.

In order to get the spring constant of the cantilever, the
appropriate connections between the SAM and the Micro-
scope had to be made first, using a BNC cable so the data
of the photosensor sensibility can be obtained (“In 0 Output”
to the “Aux B Input”) Then the cantilever, which was to be
calibrated, was placed in the microscope and engaged on a
hard surface, after configuring it in contact mode.

After this, the first force curve in units of Volts is ac-
quired. Because deflection in units of distance is required

instead of voltage, the cantilever’s sensitivity needs to be at-
tained from this force curve, using the marker tools on the
monitor. Next, to achieve thermal oscillation data, a scan of
0.1 nm, 512 lines, and 61 Hz of the “Aux B channel” are
required. The raw data, which represents the thermal noise
oscillations, are exported as a vector to a text file for further
analysis.

To capture the force-distance curves for the given sam-
ples, the microscope in contact mode is used. Entering the
values of sensibility and spring constant, force values can be
acquired. Once the force curves were transformed into inden-
tation curves by Eq. 4, the Young’s Modulus of the materials
analyzed can be calculated through the Hertz model (Eq. 8).
Different values for the elastic constant are retrieved from one
curve so that a Gaussian fitting of the results is expected [16].

4. Results and Discussion

After importing the thermal oscillation data into MATLAB,
we obtained a vector of length 262144 (which is 512 * 512,
the amount of readings taken with the microscope). It is im-
portant to remember that the time interval (∆t) between each
one of these values is 16.01µs (corresponding to the recipro-
cal of 61 Hz*512*2); because of this, a new vector “t” with
262144 values of time starting at 0, and increasing in inter-
vals of 16.01µs, is created. The plotted deflection against
time vectors are presented in Fig. 2a and consists of thermal
noise from which quantitative data can’t be obtained directly.

In order to analyze the data, it is necessary to transform
the values from the time domain to the frequency domain,
performing a power spectral density (PSD) analysis.

Said analysis can be easily performed using the MAT-
LAB function “pwelch”, which calculates an estimate of a
function’s PSD using Welch’s method for spectral estimation
using modified periodogram; [17] the function receives as an
input: the thermal noise data vector, the sampling frequency
of 62462 Hz, N=4096 data point segments, a window length
equal to N for the Hamming window, and a default overlap
value of 50 %.

FIGURE 2. Three different steps in the process of measuring the cantilever spring constant. (a) Typical thermal noise plot obtained from the
raw data of thermal oscillation measured with the microscope. (b) PSD analysis of (a). (c) Close-up of the resonant peak, with a smoothing
fit.
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TABLE I. Nominal and experimental values for the cantilever
spring constant of different cantilevers.

Cantilever Nominal Obtained Relative

type Kc (N/m) Kc (N/m) error

NPS10-C 0.24 0.2018 15.9 %

NPS10-B 0.12 0.1144 4.6 %

NP20-B 0.12 0.1146 4.5 %

NP20-A 0.58 0.3684 36.4 %

NPS10-A 0.35 0.3377 3.6 %

Two new vectors are then obtained from the previous rou-
tine: a frequency vector (Hz) and a PSD vector (m2/Hz). Af-
ter plotting said vectors, a graph like the one in Fig. 2b is
obtained where it can be seen that a specific frequency dissi-
pates most of the energy.

The next step is to get the area under that resonant peak,
for which MATLAB’s curve fit toolbox proves useful. After
loading the desired data with the “data” feature, the “fitting”
feature must be used to apply an appropriate smooth fit to the
peak data (as shown in Fig. 2c); and finally an integration can
be performed with the “analysis” feature to obtain the value
of the area under the resonant peak (subtracting the area be-
low the “baseline” of average thermal noise) that represents
〈∆Z2

c 〉. This value is then plugged in Eq. 3.
If the peak area was obtained in units of m2, then the

constant will be in units of N/m as expected; different
cantilevers’ spring constant values were obtained with this
method. The comparison with their nominal values are con-
densed in Table I:

It must be noted that the nominal values for spring con-
stants are subject to much variation; they are given by the
company as an expected value for the general manufactur-
ing process (and specific tips may deviate too much from that
value); also, the spring constant may be altered by frequent
use of the cantilever.

The data obtained from the samples with the AFM’s force
mode were again exported to .txt files so they can be read by

MATLAB, which we’ll use to perform the numerical analy-
sis. The exported values consist of a four column vector, each
measuring 512 in length. Two for the approaching curve and
two for the retracting curve. To compute elasticity, the anal-
ysis should be done with the approaching curve. One col-
umn corresponds only to the values ofδc in nm. The other
relates the separation values (Zp + δc), also in nanometers.
Multiplying the latter by the spring constant of the cantilever
previously calculated, force values can be obtained.

When plotted, these values produce a graph, such as the
one presented in the dotted line of Fig. 1. Interpreting the
graph, and reading it from right to left, the tip of the can-
tilever approaches the sample with very little variation on the
force; when the tip is just about to make contact, the force
drops slightly because of the attractive Van der Waals inter-
action, but it soon rises because of the short-range Coulomb
repulsion forces that come into play. Then the force reaches
a stable value and stays there on the left side of the graph.
Another important aspect to notice in this graph is the point
where the tip of the cantilever is already in contact with the
sample and is being deflected upward.

This point can be detected either visually (“data cursor”
tools ) or by calculating the differences between the load-
ing and unloading curves, using peak find instructions and
changes in sign of the first and second derivate.

The contact point is translated to the origin in order to
obtain a loading-indentation curve like the one presented in
Fig. 3c. When multiplied by the spring constant of the can-
tilever, theY axis corresponds to the applied loadF , for
which there is a specific indentationδ. These are the val-
ues that are to be plugged in the Hertz model (Eq. 8) to get
the effective elastic modulus (ETOT ) of the samples. Once
obtained, the Young’s Modulus of the sample (Es) can be
calculated with Eq. (7).

However, several effective elasticity moduli can be ob-
tained for each material with this method. Thus, the data
points are presented in a histogram (Fig. 3b). A Gaussian
Fitting is implemented to visualize the mean and distribution
of each modulus, for every material. These results are pre-

FIGURE 3. Elastic properties of materials. (A) A typical force curve for a gold substrate. (B) Histogram of the effective elastic modulus
computed for the approach curve in (A). (C) Contrast of the theoretical indentation (segmented line) and the experimental indentation curve.
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TABLE II. Mean values of the effective elastic modulus (ETOT )
compared to the theoretical values ofETOT . Relative error is pre-
sented for each material analyzed.

Material Theoretical Experimental Relative

ETOT [GPa] ETOT [GPa] error

HDPE 0.96 1.3± 0.4 35.4 %

HOPG ZYH 19.5 16.9± 4.7 13.7 %

GFRP 25.5 21.9± 6.3 14.1 %

Glass D263M 59.4 47.7± 7.1 19.8 %

Gold 69.9 73.7± 9.5 5.3 %

UNS C11000 89.2 75.4± 9.3 15.5 %

SS304 123.6 99.2± 14.9 19.8 %

Tungsten

Carbide/Cobalt 177.6 128.4± 23.4 27.7 %

sented in Table II. Values of Young’s Modulus and Poisson
ratio for theoretical values can be found elsewhere [18], for
Si3N4 cantilevers, the values used where 290 GPa and 0.3
respectively [19].

5. Conclusions

We have presented an analysis and interpretation of force-
distance curves in order to obtain the elastic modulus of dif-
ferent materials. For quantitative data analysis, the spring
constant of the cantilever was obtained also practically with
the thermal tune method achieving great accuracy. The con-

tact mode in AFM was used for data acquisition and, al-
though some model limitations, the procedure can be con-
sidered as effective for the most part as the values obtained
are related to the expected values. These discrepancies are
attributed to tip geometry and adhesion forces. Further anal-
ysis can derive from the calculation of Hamaker constants
from the distance of interaction of the pull-down force in the
approach curves due Van der Waals body-body interaction.

Being that the AFM is an affordable characterization
technique for any engineering laboratory, its implementation
as a teaching tool is simple and productive.The final product
of this practice is a report including all the subjects discussed
in this paper. At the implementation in the classroom, stu-
dents failed to identify the scope and limitations of the the-
ory and experimentation. Also, a large number of incorrect
citations and and an improper theoretical framework were
present, showing the students’ poor ability to understand con-
cepts and transform knowledge from them. This field was
the most emphasized in later works, showing improvement.
However, this work fulfills its purpose of introducing under-
graduate students not only to the concepts of nanotechnology
but also to the concepts of experimental analysis, which made
this a rewarding experience.
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Testing31 (2012) 425.

15. M.A. Monclus, T.J. Young, D. Di Maio,J. Mater Sci. 45 (2010)
3190.

16. Mi Li, C. Zhang, Liu Wang, L. Liu, Ning Xi, Y. Wang, Z. Dong,
Surf. Interface Anal. 45 (2013) 780.

17. MATLAB version 7.9.0.529, (The MathWorks Inc., Mas-
sachusetts, USA, 2010).

18. K.G. Budinski and M.K. Budinski,Engineering materials:
properties and selection, 9th ed. (Prentice Hall, N.J., USA,
2010), pp 198, 254, 349, 352, 516, 749-760.

19. A. Khan, J. Philip,J. Appl. Phys. 95 (2004) 1667.

Rev. Mex. Fis. E63 (2017) 95–99


