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Theoretical and experimental study of the normal
modes in a coupled two-dimensional system
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In this work, the normal modes of a two-dimensional oscillating system have been studied from a theoretical and experimental point of view.
The normal frequencies predicted by the Hessian matrix for a coupled two-dimensional particle system are compared to those obtained for
a real system consisting of two oscillating smartphones coupled one to the other by springs. Experiments are performed on an air table in
order to largely reduce the friction forces. The oscillation data are captured by the acceleration sensor of the smartphones and exported to
file for further analysis. The experimental frequencies compare reasonably well with the theoretical predictions, specifically, within 1.7% of
discrepancy.
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1. Introduction

The study of the normal modes is a central issue in un-
derstanding the properties of solids and molecules, such as
solid phonons and vibrations of polyatomic molecules [1–4].
Therein, the formalism of the Hessian matrix is a common
approach [1–3, 5]. Therefore, this topic is included in the
courses of Physics and Chemistry degrees later in the syl-
labus. In this respect, for instance, the collective oscillations
of a periodic solid, the phonons, which reveal important in-
formation,e.g. about thermal and electrical conductivity can
be derived experimentally from neutron scattering. In the
case of polyatomic molecules, normal modes are connected
to the vibrational spectrum, which can be measured using a
number of spectroscopic techniques. From a teaching point
of view, the simplest classical model to characterize the vi-
brational modes of a polyatomic molecule can be a particle
system coupled by pair potentials [6].

In general physics courses, the topic of coupled systems
has been basically analyzed by means of linear 1D mod-
els [7]. It is also possible to find a number of works in the
literature on the experimental characterization of coupled 1D

systems connected to external drivers [8],i.e. by using video-
analysis techniques [9], electromechanical systems [10] or
sensors [11]. However, when it comes to everyday life, most
oscillations are more than one-dimensional. This is a good
reason for including two-dimensional oscillation experiments
in physics teaching [12,13].

Simple experiments involving oscillations are largely fa-
cilitated by introducing smartphones as oscillating bodies in
one [14] and two dimensions [15]. The acceleration sensor
carried by these devices can be used to collect the oscillation
data which can be exported to file for further analysis [16].
This is a major advantage since the way of studying two-
dimensional oscillations in previous work [12] was somewhat
tedious. For example, the trajectory of an oscillating puck
on an air table can be followed by the trace described by it
onto paper, which is later digitalized to extract the informa-
tion of the trajectory [12]. The introduction of the smart-
phone acceleration sensor to measuring this kind of two di-
mensional oscillations represented a major progress in our
previous work [15] where mechanical Lissajous figures were
obtained in a very simple way.
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In this work, we present an exhaustive theoretical and ex-
perimental study of the normal modes in a coupled 2D sys-
tem. The experimental setup consists of two smartphones on
an air table connected to each other by springs and to fixed
ends. The air table allows us to largely reduce the friction
forces. In these experiments the mobile phones themselves
are the bodies under study. The coupled oscillations are cap-
tured with the acceleration sensors of the smartphones and
the data are exported to file for ulterior analysis.

It should be pointed out that the smartphones are just
measurement tools here. Its use is not the main contribu-
tion of this work. In fact, two-dimensional oscillations could
be also analyzed by using other techniques,i.e. video anal-
ysis techniques [9, 17]. However we have preferred to use
smartphones since they allow for a fast and direct acquisi-
tion of data. Based on the collected data, the normal modes
in the 2D system of coupled oscillators can be deeply ana-
lyzed, which is the main objective of this work. The theoret-
ical frequencies derived from this analysis based on the Hes-
sian matrix are compared with those obtained from process-
ing the smartphone sensor data. In this way, we provide an
example of a physics teaching experiment on 2D coupled os-
cillations which contributes to further close the existing gap
in the General Physics courses. In this simple way, students
may be introduced to the vibrational properties of solids and
molecules.

The outline of the paper is the following. In Sec. 2,
the setup used to carry out the experiments is described. It
consists basically of two smartphones as oscillating bodies
and an air table. It follows, in Sec. 3, the description of
the Hessian matrix formalism which is applied to a coupled
two-dimensional particle system. The results and discussions
on the experiments and the comparison with the theoretical
model are included in Sec. 4. Finally, in Sec. 5, some con-
clusions are drawn.

2. Experimental setup

A photograph of the experimental setup used for obtaining
the vibrational normal modes in a coupled 2D systems is
shown in Fig. 1a. It consists of the air table, the air sup-
plier, the springs, and two smartphones Samsung Galaxy S2
GT-I9100 bearing an Android version 4.03. The mass of the
smartphones (plus the carrying tray) ism=(174.4± 0.1) g
for both smartphones. As indicated in the figure, the lay out
of the springs is a two-plus-signs geometry. The air table is
a square each side measuring (0.464± 0.001) m. The force
constant of the springs isk=(20.6± 0.1) N/m and its natu-
ral length isd=(0.058±0.001) m. The remaining geometric
parameters of the system are shown in Fig. 1b.

3. Hessian matrix formalism

First of all, the normal frequencies for the coupled system of
Fig. 1 are calculated by a methodology based on the Hessian

FIGURE 1. Photograph of the experimental setup. In panel a), a
global view of the squared air table, the air supplier, the springs,
and the smartphones are shown. The geometric parameters of the
system at rest are shown in panel b).

matrix formalism [5]. This formalism was successfully used
in previous work, for instance, to calculate the phonons of
rare gas solids [1–3]. In this respect, the total potential en-
ergy of the system can be calculated taking into account the
geometric variables defined in Fig. 1b and the displacement
vectors,

∆−→r1 = −→r1 −−→r1,0 = (x1 − x1,0, y1 − y1,0),

∆−→r2 = −→r2 −−→r2,0 = (x2 − x2,0, y2 − y2,0),
(1)

where−→r1,0 = (x1,0, y1,0) and−→r2,0 = (x2,0, y2,0) are the vec-
tor positions of the smartphones at the equilibrium positions,
and−→r1 = (x1, y1) and−→r2 = (x2, y2) are the corresponding
vector positions when the smartphones are in motion.

It should be noted that the springs stretch approximately
three times their natural length. In this respect, we have
made an independent experiment to check the linearity of the
springs. In these conditions and considering the harmonic
approximation, the total potential is given by,

U =
k

2

7∑

i=1

(di − d0)2, (2)

where the elongation of each spring,di, can be determined
from the points represented in Fig. 1b and from the displace-
ments in Eq. 1,
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FIGURE 2. Schematic representation of the normal modes. Arrows
of the same color in each panel indicate the direction of a simulta-
neous movement of the smartphones.

d1 = |−−→q1p1 + ∆−→r1 |,
d2 = |−−→q2p2 + ∆−→r1 |,
d3 = |−−→q3p3 + ∆−→r1 |,
d4 = |−−→q4p6 + ∆−→r2 |,
d5 = |−−→q5p7 + ∆−→r2 |,
d6 = |−−→q6p8 + ∆−→r2 |,

d7 = |−−→p4p5 + ∆−→r2 −∆−→r1 |.

(3)

Here,d0 is the natural length of the spring. Thus, at rest
(∆−→r1 = ∆−→r2 = (0, 0)), the seven springs are still elongated
and the energy of the system represented by Eq. (2) is mini-
mal but not zero.

From Fig. 1, it appears that there are seven degrees of
freedom in general, three for the center of mass of each smart-
phones and one for the rotation about the center of mass of
the system. However, we have not considered rotations in our
two-dimensional model consisting of two coupled particles.
Under these conditions, and taking into account that oscilla-
tions take place on thex, y plane, we have a system with four
degrees of freedom, namely, translations alongx− andy−
axes for each smartphone. The dynamical matrix (Hessian
matrix) [5] is then expressed as,

Diα,jβ
=

1
m

(
∂2U

∂uiα∂ujβ

)∣∣∣∣
uiα=0;ujβ

=0

, (4)

whereU is the total potential energy anduiα (ujβ
) is the dis-

placement of thei-th or j-th particle (i, j = 1, 2) along theα
orβ axis (α, β = x, y). As a result, a two-dimensional matrix
is obtained.

The evaluation of this matrix at the equilibrium positions
and further diagonalization yields the four vibrational eigen-
frequencies squared. These normal frequencies will be de-
noted asωS

x , ωS
y , ωA

x , andωA
y , corresponding to the symmet-

ric and antisymmetric modes and for thex− andy− axes,
respectively.

By using the potential energy expression,U =
U(x1, y1, x2, y2) given by Eq. (2), the above Hessian matrix,
evaluated at the equilibrium positions is,

D =




388.493 0.000 -118.119 0.0
0.000 341.233 0.000 -50.953
-118.119 0.000 388.493 0.000
0.000 -50.953 0.000 341.233


 (rad/s)2. (5)

The eigenvalue problem that has been solved can be
stated as follows,

(D − λI)v = 0 (6)

whereD is the Hessian matrix,I the unitary matrix,v a non-
zero vector (called “eigenvector”) andλ = ω2, the corre-
sponding eigenvalue. The eigenvalues result from the diago-
nalization of the matrix,D − λI.

The resulting normal modes (the square root of the eigen-
values) are,ωS

x = 16.443 rad/s, ωS
y = 17.038 rad/s,

ωA
x = 22.508 rad/s, andωA

y = 19.804 rad/s. It should
be noted that these values are only valid for small displace-
ments about the equilibrium positions. It can also be noted
that the eigenfrequencies obtained for thex−axis are signif-
icantly different from the ones from the 1D model, that is:
(ωA

x )2 = 3(ωS
x )2. This is due to the effect of the vertical

springs (p2q2, p3q3, p6q4 and p7q5) on the horizontal oscil-
lations (for us, “horizontal” is when the oscillation is along
thex−axis and “vertical” along they−axis). In addition, and
as expected, the eigenfrequencies along they−axis also dif-
fer from the ones obtained for thex−axis. For instance, the
symmetric mode along they−axis is affected by the horizon-
tal springs, namely, p1q1 and p8q6 (p4p5 does not stretch in
this case), while the symmetric mode along thex−axis is af-
fected by the four springs aforementioned. However, in the
case of the antisymmetric mode along they−axis, the hori-
zontal spring p4p5 is affected.

It is also possible to perform a more exhaustive study of
the normal modes of oscillation by using Newton’s Second
Law. For example, as for the horizontal symmetric mode,
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the total potential given by Eq. (2) can be particularized as,
∆−→r1 = ∆−→r2 = (∆x, 0) where∆x = x − x0 is a synchro-
nized displacement of both bodies along thex−axis direc-
tion. In this situation, the potential energy only depends on
the global displacement∆x. Taking into account that all in-
volved forces are conservative, the net force acting on the
system is,

−→
F = −−→5U . For the particular case under consid-

erationF (x) = −dU/dx. On the other hand, Newton’s Sec-
ond Law can also be expressed asF (x) = mTotal(d2x/dt2),
wheremTotal = 2m is the total mass of the system. There-
fore, the resulting linear second-order differential equation
governing the system is,

−dU

dx
= 2m

d2x

dt2
. (7)

It should be pointed out that in Eq. 7, which governs the
symmetric horizontal mode, elastic forces of both horizontal
and vertical springs are present. The vertical springs stretch
even when the particles move along thex axis only. Contrary
to a simple 1D model of coupled oscillations, there is no ana-
lytical solution of Newton’s Second Law for the 2D case and
so a numerical solution is required.

By using the function NDSolve of the software Mathe-
matica [18], Eq. 7 can be solved numerically using∆x0 and
dx/dt = 0 as initial conditions. NDSolve uses an LSODA
approach, switching between a non-stiff Adams method and
a stiff Gear backward differentiation formula method. For an
initial displacement∆x0 = 0.02 m, the numerical solution of
Eq. 7 provides the trajectory displayed in Fig. 3 (solid line).
Additionally, the harmonic oscillation∆x(t) = A cos(ωS

x t)
with A = ∆x0 is shown in the same figure (dashed line). It
can therefore be seen that curves overlap visually.

From Fig. 3, the exact period of oscillations can be
determined,T = 0.3818 s, and from it the exact (from
solving Eq. 7) value of the frequency,ω = 16.457 rad/s.
The discrepancy between this value and the harmonic result
(ωS

x = 16.443) is only0.09%. The small discrepancy be

FIGURE 3. Simultaneous displacement of the bodies along thex
axisversustime. The curves of the numerical (exact) (yellow solid
line) and harmonic (black dashed line) trajectories overlap visually.

tween both results is due to the influence of the vertical
springs. The horizontal projections of the forces exerted by
these springs is linear only for small displacements. This
study can be repeated for the antisymmetric mode by impos-
ing ∆−→r1 = −∆−→r2 in the potentialU .

A similar analysis for the symmetric and antisymmetric
normal modes along they−axis, and using0.02 m as ini-
tial displacement, yields discrepancies between the harmonic
and the exact frequencies within 1% in all cases. The smaller
the initial displacement the smaller the discrepancy. For in-
stance, discrepancies within 0.3% are obtained if 1 cm is
used as initial displacement. The smaller the displacements
the better the harmonic approximation approaches the physi-
cal experiment. Thereby, the Hessian matrix formalism con-
stitutes a very good approximation for obtaining the normal
frequencies of a coupled 2D system in basic Physics courses.

4. Results and discussions

In order to check the normal frequencies predicted from the
Hessian matrix, experiments using the experimental setup of
Fig. 1 are carried out. The oscillation data are captured by
the acceleration sensor of the smartphones. From previous
experiments, we already know that the acceleration sensor in
our smartphone’s models is located at the center of the smart-
phone, which is coincident with the center of mass of the
system [19]. However, the position of the acceleration sensor
may not be at the geometrical center for other models [20].

For the interaction with the mobile sensor, the free
Android application “Accelerometer Toy ver 1.0.10” is
used [21]. This application takes 316 kB of SD card memory
and can be downloaded from the Google play website. The
values of the acceleration components onx, y andz-axes are
registered at each time step. The precision in the measure-
ment of the acceleration isδa = 0.03 m/s2 and of time is
δt = 0.01 s. This application also allows to save the out-
put data to file from which further analysis can be performed.
Once the app. is downloaded to the mobile device, a small
test can be done to ensure the device is working correctly.
If the mobile is left undisturbed on a horizontal surface, the
application output curves for the acceleration should indicate
values very close to zero for all axes. This app. was suc-
cessfully used in other experiments to study uniform and uni-
formly accelerated circular motions [19].

Five experiments are performed using the setup of Fig. 1.
In the first four experiments, the system is set to oscillate
by hand with approximately normal frequencies (symmetric
and antisymmetric) alongx− andy−axes, respectively. For
the case of the symmetric mode, mobile phones are displaced
about 1 cm towards the positivex−axis and towards the pos-
itive y− axis, respectively. For the antisymmetric mode, one
of the mobile phones is displaced to the left and the other to
the right for thex−axis, and downward and upward for the
y−axis, respectively.
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FIGURE 4. Symmetric and antisymmetric acceleration oscillations of the mobiles 1 and 2 alongx− andy−axes respectively (open circles).
The red solid lines indicate the fit. The square of the curvilinear correlation coefficient,R2, has been included on the upper right hand side
of each graph.
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FIGURE 5. Free oscillations of the smartphones (open circles). The red solid lines indicate the fit.

TABLE I. Frequencies and uncertainties from the fit of the acceler-
ation data toa(t) = A sin(ωt + φ) alongx− andy−axes for the
mobiles 1 and 2, respectively.

Mobile 1 Mobile 2

ωS
x (rad/s) 16.158±0.016 16.207±0.016

ωS
y (rad/s) 16.854±0.013 16.732±0.010

ωA
x (rad/s) 22.158±0.012 22.115±0.012

ωA
y (rad/s) 19.988±0.017 19.860± 0.020

TABLE II. Comparison between the experimental results (average
values from Table I) and those obtained from the Hessian matrix
formalism.

Experimental Hessian matrix Discrepancies

results formalism (%)

ωS
x (rad/s) 16.18± 0.03 16.443 1.6

ωS
y (rad/s) 16.79± 0.02 17.038 1.5

ωA
x (rad/s) 22.14± 0.02 22.508 1.7

ωA
y (rad/s) 19.92± 0.04 19.804 0.6

The data registered by the acceleration sensor of each
smartphone for the symmetric and antisymmetric oscil-
lations (see Fig. 3) can be fitted to a harmonic func-
tion, a(t)=A sin(ωt + φ) where A is the amplitude,ω

the frequency andφ the phase. The fitting was carried
out by using the non-linear fitting algorithm Levenberg-
Marquardt [22,23]. The results for the frequencies are regis-
tered in Table I. There are 8 cases in total, where four eigen-
frequencies correspond to each smartphone, for the symmet-
ric and anti-symmetric modes, respectively. The graphs of the
acceleration measurements and the corresponding fit curve
are included in Fig. 4 for each smartphone, normal mode and
axis.

The analogue values to the frequencies of the smart-
phones for the symmetric and antisymmetric modes and for
thex− andy−axes are shown in Table II. The correspond-
ing normal frequencies obtained from the Hessian matrix for-
malism are also included. A very good agreement is obtained
between the experimental and the theoretical results.

Finally, in the fifth experiment, an arbitrary oscillation is
started by just shifting one of the mobiles out of the equilib-
rium position. It consisted of a diagonal displacement of the
left-hand side mobile while the other smartphone was held
at the equilibrium position. Then, both mobiles were left
free. In this case, the arbitrary oscillation (non-normal) of
the studied system can be represented as a superposition of
the corresponding four normal oscillations,

a(t) = AS
x sin

(
ωS

x t + φS
x

)
+ AA

x sin
(
ωA

x t + φA
x

)

+ AS
y sin

(
ωS

y t + φS
y

)
+ AA

y sin
(
ωA

y t + φA
y

)
. (8)
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Figure 5 shows the data points for an arbitrary oscillation
(with open circles). A window of 3 seconds has been ex-
tracted from the total time series. The fitting for Eq. 8 (solid
line in Fig. 5) was carried out in the same manner as for the
pure modes in Table I: that is to say by using the nonlinear
fitting algorithm Levenberg-Marquardt [22,23].

In all cases shown in Fig. 5 the values ofR2 are around
0.99 which indicates the good quality of the fitting proce-
dure. The corresponding fitted frequencies are not shown (for
brevity), since they are very similar to those reported in Ta-
bles I and II. Alternatively, the main frequencies of the sys-
tem can be also explored by using the Fourier transform of a
free oscillation of acceleration data: our objective was rather
to prove the validity of the Hessian matrix formalism in pre-
dicting the normal frequencies of a 2D coupled system. To
connect basic and simple oscillation experiments like the one
in this article with this formalism helps prepare the student’s
mindset for physics courses further on in the syllabus.

5. Conclusions

The normal frequencies of a coupled two-dimensional system
are studied both theoretically and experimentally. The nor-

mal modes were first calculated for a particle system from the
Hessian matrix. An experimental setup using smartphones
instead of particles and with real springs is used to test the
theoretical model. The oscillation data were collected by the
acceleration sensor of the smartphones. For all cases, the
percentage discrepancies between the theoretical and experi-
mental frequencies are within 1.7 %.
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