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The development of numericalN -body simulations have allowed studying the formation process and evolution of galaxies at different scales.
This paper presents the fundamental concepts ofN -body systems applied to the cosmological evolution of theΛ-Cold Dark Matter (ΛCDM)
model. To perform structure formation in the Universe, we provide an introduction to the basic equations and their implementation on the
GADGET-2 software. We also present a simple guide to modifying this code. First, we briefly describe the dark matter in the Universe
as well as the theoretical and experimental basis of theΛCDM model. Then, we focus on the simulation codes and provide the equations
that govern most of theN -body simulations to model the dark matter. We describe the Smoothed Particle Hydrodynamics method used for
simulating the gas, star dynamics, and structure formation in these simulations. Then, cautiously, we guide the reader to the installation of
GADGET-2 on a Linux-based computer, as well as to carry out a couple of examples to operate the code. Finally, by using a computational
cluster, we show several results of a large structure simulation, analyze the outputs to display the matter power spectrum, and compare the
outcome with theoretical predictions.
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1. Introduction

Over recent decades cosmology has played an important role
in the development of science and technology. Its main goal
seeks to explain the origin and evolution of the Universe as
a whole, and hence, the fundamental physics behind those
process to, therefore, gain a deeper understanding of the laws
of physics [1]. It is well known that the observable matter,
galaxies, stars, gas clouds, planets and so on only contribute
to about∼ 5% of the total content of the Universe, whereas
27% corresponds to an unknown dark matter – with the prop-
erty to be gravitationally attractive – responsible to be the
main component of structure formation, and the remaining
∼ 68% corresponds to the dark energy – the main candidate
to explain the current accelerated expansion of the Universe.
These results conform the most well-established model for
the evolution of the Universe, theΛ-Cold Dark Matter model
(ΛCDM).

Nonetheless,ΛCDM has been tested throughout the years
using diverse experiments, just like the Planck mission and
going back through other similar surveys, for example, the
WMAP mission results in 2007 [2], as well as the measured
fluctuations in the CMB temperature by the COBE satellite in
1994 [3]. All of them, amongst many others, have contributed

to reinforcing the foundation of theΛCDM model. One of
the essential tests come from theN -body simulations, which
can constrain several cosmological parameters. The key pro-
cedure of theN -body simulations is to evolve bound systems
by considering dark matter interacts only gravitationally with
ordinary matter. This paper focuses on the basis for these
kinds of simulations in order to provide an understanding of
the cosmological evolution, through some commonly used
codes.

The paper is structured as follows: first, we provide a
brief review about dark matter and its importance on the de-
velopment of theΛCDM model. Then, we present some
numerical codes and their use on astrophysical systems, fol-
lowed by theN -body simulations and their basic equations.
We include a section dedicated to Smoothed Particle Hydro-
dynamics (SPH) and how to simulate gas dynamics. Later,
we introduce the GADGET-2 software, aN -body-SPH hy-
brid free source code used in this work, and the basic instal-
lation procedure. Finally, by running the code, we present
some results given different simulations, in particular from
the evolution of two isolated galaxies colliding and merging
into a larger galaxy, and also from the cosmological evolu-
tion of a periodic box described by aΛCDM Universe. For
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the second example, we compute the matter power spectrum
-an important quantity used to constrain physical quantities
for a given cosmological model-.

Dark Matter

The beginning of dark matter history may be traced back to
1937 when the astrophysicist Fritz Zwicky examined the in-
ternal dynamics of the Coma Berenice galaxy cluster [4]. In
that work, Zwicky provided evidence that the luminous mass
in the cluster was much smaller than the total mass needed to
hold these galaxies together by gravitational forces. There-
fore, he concluded that there should be another type of mat-
ter that would allow galaxies to be gravitationally bounded.
These observations were the first hints of a missing matter in
galaxy clusters, – the “dark matter” made its first appearance
in the scientific community ever since –.

Despite numerous contributions from the scientific com-
munity, the issue of the dark matter was not seriously con-
sidered until the early years of the 1970 decade, when the as-
tronomer Vera Cooper Rubin indicated that the gravitational
stability of galaxies is due to an amount of mass greater than
the observed [5]. In her work, she calculated the rotational
curves of different spiral galaxies by measuring the radial ve-
locity of the stars located at a distancer from the galaxy cen-
ter, as seen in the following equation

v(r) =

√
GM(r)

r
, (1)

whereG is the Newton gravitational constant, andM(r) is
the mass contained within the radiusr. According to New-
ton’s laws, this movement is expected to be Keplerian; that
is, the velocity of the stars would decline as the distance in-
creases. The big surprise was that this curve does not follow
the expected behavior, as observations showed that the speed
of the stars remained almost constant, and even in some cases
it increased. If Newton’s theory is correct, then a new kind of
mysterious matter is needed whose mass distribution must in-
crease with the radius. This strange behavior is not observed
on the Baryonic matter, which is distributed compactly, and
its mass is not sufficient to maintain the flat rotation curve.
The introduction of a new component caused a great impact
on physics and astronomy, since it led to creating alternative
models that include the dark matter in the galaxies, and there-
fore, also in the Universe.

Another evidence is the Cosmic Microwave Background
(CMB) [6] as being the earliest photograph of the Universe.
The patterns seen on the CMB were set up by two competing
forces acting upon the matter: the gravity, causing the mat-
ter to fall inwards, and the radiation pressure, preventing the
gravitational collapse. This competition caused the photons
and matter to oscillate in and out in dense regions forming
patterns, that would be dramatically modified by the amount
and type of dark matter present at that epoch. That is, the ex-
istence of dark matter leaves a characteristic imprint on CMB
observations, as it clumps into dense regions and contributes

to the gravitational collapse of matter, but it is unaffected
by the pressure from photons. The CMB power spectrum
shows the strength of these oscillations at different scales,
and for instance, the Wilkinson Microwave Anisotropy Probe
(WMAP) [2] was able to measure with enough accuracy the
CMB spectrum and consequently favored the existence of
dark matter.

Dark matter is also highly favored when the Large Scale
Structure formation is studied. The oscillations imprinted on
the CMB evolved into more advanced structures, given the
amount of time available for objects to gravitationally col-
lapse, eventually forming what is called the Baryon Acoustic
Oscillations (BAO). At the time of CMB, the dark matter did
not undergo the same oscillations with matter and light, but
it was free to collapse on its own, this created dense regions
that helped structure formation. This mechanism allowed the
distribution of galaxies and clusters to be what it is observed
today [7].

Lambda Cold Dark Matter (ΛCDM)

As mentioned above, one of the first predictions of the exis-
tence of dark matter was made by Zwicky. This result came
from his observations on the Coma cluster to be able to ex-
plain its strange dynamics that would not match with a New-
tonian behavior. Although these observations were truly re-
markable by that time, it wasn’t until the 1980 decade that
both astronomers and physicists concluded that one way to
explain the movement of the galaxies, according to Newto-
nian dynamics, was to include the “missing” matter predicted
by Zwicky in the equations of motion.

The introduction of this missing matter (as well as the
cosmological constantΛ) conforms to theLambda Cold Dark
Matter model. It is a parametrization to describe the cosmo-
logical Big Bang model and nowadays is referred to as the
“standard cosmological model” which is based on the fol-
lowing theoretical and experimental facts:

• A theoretical framework based on General Relativity,
which provides a field theory for gravitation on cos-
mological scales.

• The cosmological principle: the Universe (lp: Uni-
verse) is spatially isotropic and homogeneous on large
scales [1].

• The perfect fluid model: the galaxies and the basic
components of the Universe are included within the
theory via the continuity equation [8].

• Hubble’s law establishes the expansion of the Universe
in which the galaxies, recession velocity is propor-
tional to their distance [9].

• The Cosmic Microwave Background radiation (CMB).
The measurements of the CMB radiation support the
cosmological principle on large scales [2,6,10].
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• The determination of the relative abundance of primor-
dial elements such as1H, 2D, 3He,4He, and7Li, made
up on nuclear reactions during the Big Bang Nucle-
osynthesis (BBN) era [11].

• The large scale structure analysis of the Universe us-
ing data from the Sloan Digital Sky Survey (SDSS) [7],
which aids the parameter determination of the standard
cosmological model.

Moreover, theΛCDM model adds some other special fea-
tures that allow explaining the evolution of the structure in the
Universe:

• The evolution of matter density perturbations, initially
coming from quantum density fluctuations, is required
to explain the large scale structure in the Universe [12].

• The Cosmic Inflation, originally introduced by Alan
Guth, postulates an accelerated expansion at very early
times that allows to explain the homogeneity and flat-
ness in the Universe, as it is observed today [13].

• The cosmological constantΛ, introduced by Einstein
on his equations of general relativity to force a static
Universe. Nevertheless, it is known today that the Uni-
verse is in an accelerated expansion and this constant
is referred to as a form of vacuum energy or some kind
of dark energy [14].

• Cold Dark Matter (CDM). A sort of matter that has
an exclusive gravitational attraction, does not interact
with any kind of radiation (it is dark), and its velocity
is not relativistic (it is cold).

Some known issues withΛCDM

Although this model has been successfully proved by sev-
eral observations and theoretical predictions, it has certain in-
consistencies or unexplained features mainly on small scales.
Two of them are:

CUSP-CORE problem. It refers to a discrepancy be-
tween the inferred dark matter density profiles of low-mass
galaxies and the density profiles predicted by cosmological
N -body simulations. Nearly all simulations with cold dark
matter form halos which have “cuspy” distributions, with
density increasing steeply at small radii, whereas the rota-
tion curves of most observed dwarf galaxies suggest that they
have flat central dark matter density profiles [15–17].

Missing satellite problem. It arises from a mismatch be-
tween observed dwarf galaxy numbers and numerical cos-
mological simulations that predict the evolution of the distri-
bution of matter in the Universe. In simulations, dark mat-
ter clusters hierarchically, increasing the numbers of halo
“blobs” as halo components become smaller-and-smaller.
However, there seem not to be enough observed normal-sized
galaxies to match the simulated size distribution; the number
of dwarf galaxies is orders of magnitude lower than expected
from simulation [18,19].

With these deficiencies in mind, several alternative mod-
els have been suggested. Of particular interest is to con-
sider that the Dark Matter is made up of bosonic excitations
of an ultra-light scalar field minimally coupled to gravity,
see [20–22], and references therein. We defer the numerical
analysis with scalar fields for future work.

2. Numerical Codes for astrophysical systems

To understand the large scale formation and structure of the
Universe, the gravitational instability on cosmological scales
and galaxy evolution, numericalN -body simulations are one
of the most used approaches. Over recent years, the com-
putational resources have allowed creating high-resolution
simulations that recreate the evolution of the Universe since
the CMB epoch (z ∼ 1100). Cosmological evolution is
simulated with linear gravitational clustering on large scales
(≥ 100 Mpc) and non-linear theory on small scales (between
10 kpc and 1 Mpc). On small scales, specific initial condi-
tions are created to evolve the dark matter particles, with the
consideration that the dynamics can be enhanced by intro-
ducing effects of gas dynamics, chemical process, radiative
transfer, and other astrophysical phenomena.

There is a large variety of numerical codes that use theN -
body theory and several applications, including gas dynamics
modeled by Smoothed Particle Hydrodynamics (SPH). These
codes have been used numerous times, and they have proved
to be a realistic approach according to observations. We list
some of the methods used below:

1. Direct methods: these do not introduce approxima-
tions, but they fully solve the equations of motions,
and thus deliver the highest accuracy at the price of
the longest computation time, of orderO(N2) per
timestep. Integration is performed using adaptive (in-
dividual) timesteps and commonly a fourth-order Her-
mite integrator [23].

2. Tree codes: The tree code method (Barnes & Hut
1986) provides a general integrator for collisionless
systems. They take into account that particles nearby
each other are important, and the contributions from
distant particles do not need to be computed with high
accuracy, while potentials from distant groups of parti-
cles are approximated by multipole expansions about
the group centers. The resulting computation time
scales asO(N log(N)), but the approximations intro-
duce small force errors. The long-range force errors
are controlled by a single parameter (the opening an-
gle) that determines how small and distant a group of
particles must be to use the approximation. Typical im-
plementations of the tree code are to expand the poten-
tials to quadrupole order and construct a tree hierarchy
of particles using a recursive binary splitting algorithm.
The tree does not need to be recomputed from scratch
at every timestep, saving significant CPU time [24].
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3. Particle-mesh codes: This method is used as another
approximation to speed up direct force calculation for
collisionless systems. In this case, the gravitational po-
tential of the particular system is constructed over a
grid starting from the density field, and solving the as-
sociated Poisson equation, by using Fast Fourier Trans-
form. Particles do not interact directly with each other
but only through a mean-field. This method essentially
softens the gravitational interactions at small scales.
The density field is constructed using a kernel to split
the mass of the particles to the grid cells around the par-
ticle position. In a short-range, accuracy of the force is
a poor approximation of Newton’s law up to grid spac-
ing distance [25].

4. Adaptive Mesh Refinement method: Particle-mesh
codes can be enhanced by using an adaptive method
rather than a static grid to solve the Poisson Equation.
In the Adaptive Mesh Refinement (AMR) method, the
grid elements are concentrated where a higher resolu-
tion is needed, for example, around the highest density
regions. To obtain an adaptive resolution the method
first uses a low-resolution solution of the Poisson equa-
tion, and then, progressively refining regions where a
higher resolution is required [26].

2.1. BasicN -body equations of motion

It is well known that Einstein field equations describe the
space-time behavior in the presence of matter, that is

Rαβ − 1
2
Rgαβ + Λgαβ =

8πG

3
Tαβ , (2)

whereRαβ is the Ricci tensor,R is the Ricci scalar,gαβ is the
metric tensor,Λ is the cosmological constant, andTαβ is the
energy-momentum tensor. For a homogeneous and isotropic
space-time, the energy-momentum tensor needs to be homo-
geneous and isotropic as well. This tensor is also known as a
perfect fluid tensor, and it has the following form

Tαβ = diag(−ρ, p, p, p), (3)

inserting Eq. (3) into Eq. (2) and settingΛ = 0, for an FRW
metric with scale factora, we obtain the Friedmann equa-
tions:

3
ȧ2 + k

a2
= 8πGρ,

−2
ä

a
− ȧ2 + k

a2
= 8πGp.

In the ΛCDM model, dark matter is assumed to be a non-
baryonic matter component, and its interaction is only grav-
itational, hence non-collisional. TheN -body problem for
these systems is described by the non-collisional Boltzmann
equation in comoving coordinates coupled with the Poisson
equation. A system ofN particles interacting gravitationally
defines a 6N + 1 dimensional phase space given by theN
positions and velocity vectors associated with each particle

at each timet. The solution of theN -body problem defines
a trajectory in this phase space. On the other hand, if the
number of particles is large enough, that is, if the two-body
relaxation time is long compared to the time-frame of inter-
est, then a statistical description of the problem is possible.
This allows to map the computation from a 6N + 1 dimen-
sion to a 6+1 dimension phase space. The idea is to construct
a mean field description of the dynamical system in terms of a
single particle distribution function. The Boltzmann equation
describes the behavior and evolution of a fluid in the phase-
space under external forces and has the following form

∂f

∂t
+ ~v · ~∇rf +

~F

m
· ~∇vf = 0, (4)

wheref = f(~r,~v, t) is the distribution function of the den-
sity of the fluid,~v is the velocity,~r is the position,~F is the
force andm is the mass of an individual particle of the sys-
tem, that can describe eventually all the fluid. If the force~F
is derived from a gravitational potentialΦ, it follows that

~F = −m~∇Φ. (5)

Substituting Eq. (5) in (4), it can be written as

∂f

∂t
+ ~v · ~∇rf − ~∇Φ · ~∇vf = 0. (6)

This potentialΦ must satisfy Poisson’s equation

∇2Φ(~r, t) = 4π

∫

S

∫

S

f(~r,~v, t)d3~vd3~r, (7)

whereS represents all space described by the total mass en-
closed in a cube of volumed3~r centered in~r and velocity~v
located in a cube of volumed3~v centered in~v. When inte-
grating all over the space, the result is that the mass density
may depend on time (ρ(t)), therefore, Poisson’s equation de-
scribed in equation (7) can be reduced to a more familiar way.

Given its high dimensionality (6+1), the collisionless
Boltzmann equation is usually solved by sampling the initial
distribution functionf(~r,~v, t), and then, evolving the result-
ing N -body system, for instance with a numerical method
that suppresses two-body interactions at small scales. The in-
teraction is softened not only for computational convenience
to limit the maximum relative velocity during close encoun-
ters but especially to prevent to artificial formation of bina-
ries.

In its discrete form, the Boltzmann equation describes the
evolution of a set of point masses that auto interacts gravita-
tionally. In anN -body system, if~ri is the coordinate and
mi is the mass of each particle, then Newton’s equations of
motion are

d2~ri

dt2
= −G

N∑

j=1,i 6=j

mj(~ri − ~rj)
|~ri − ~rj |3 , (8)

using comoving coordinates~x related with the physical coor-
dinates~r via the scale factora(t), it follows that~r = a(t)~x.
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The evolution of the scale factor defines the Hubble factor
H(a) ≡ ȧ/a, through the Friedmann equation, as

H(a) = H0[Ωr,0a
−4

+ Ωm,0a
−3 + (1− Ω0)a−2 + ΩΛ,0]1/2. (9)

H0 = 71 ± 1 km s−1 Mpc−1 is the Hubble’s constant value
at the present time,Ωr,0, Ωm,0 and ΩΛ,0 are the radiation,
matter, and dark energy densities, respectively, and their sum
Ω = Ωr + Ωm + ΩΛ must be one for a flat Universe.

In an expanding space modeled by a periodic box of size
L, Newton equations of motion can be deduced, in comoving
coordinates, as

d

dt
(a2~̇x) = −1

a
∇iφ(~xi), (10)

∇2φ(~x) = 4πG
∑

i

mi

×
[
− 1

L3
+

∑
n

δ(~x− ~xi − nL)

]
, (11)

where the sum overi is affecting theN particles andφ is the
peculiar gravitational potential

φ(~x) =
∑

i

miϕ(~x− ~xi), (12)

related to the Newtonian potential of a density fluctuation
around a constant background density. The sum over the
particles is also extended over their corresponding periodic
images, withn = (n1, n2, n3) being a triple integral vector.
The−1/L3 factor is there to make sure that the mean density
in Poisson’s equation (12) is different from zero; otherwise,
there would be no solution for an expanding space that tends
to infinity. For a more detailed review, refer to the following
reference [27].

2.2. Smoothed Particle Hydrodynamics (SPH)

Smoothed Particle Hydrodynamics is needed to simulate as-
trophysical phenomena that involve massive moving fluids in
a 3-dimensional space. This method uses analytical differ-
entiation with interpolation to compute the space derivatives,
unlike theN -body approach, which divides the space into
cells to compute the force between particles. The SPH con-
siders a set of discrete particles which represent the state of
the fluid with continuous quantities associated to its motion,
assuming that at any time, the position of the fluid elements
are randomly distributed but the density is conserved. Ob-
taining the density is equivalent to obtaining the distribution
probability of a fluid sample. An extended review of this
topic can be found here [28].

The existing methods are:

• Kernel softening. This method estimates the probabil-
ity density function that describes the fluid [29].

• The spline delta technique. A differentiable curve de-
fined by polynomials that allow the data analysis and
aids the continuous modeling of the fluid [30,31].

2.3. Equations of motion

The three fundamental equations are the energy density con-
servation equation, the momentum conservation equation and
the Poisson equation. These can be in their integral formula-
tion or their differential form. The set of equations is called
Navier-Stokes, and for fluids, without viscosity, they repre-
sent the Euler equations. For cosmological simulations, the
SPH approximation uses the perfect fluid model which is
governed by the Euler equations of fluid dynamics,i.e., the
continuity equation

∂ρ

∂t
+ ~∇ · (ρ~v) = 0, (13)

and the momentum conservation equation

∂~v

∂t
+ (~v · ~∇)~v = −1

ρ
~∇p− ~∇Φ, (14)

along with the Poisson equation

∇2Φ = 4πGρ, (15)

whereρ,~v, p are the density, velocity, and pressure of the
fluid at any timet. This set of equations gives a global view of
the fluid. In Lagrange’s representation, a point in the vector
field is chosen at timet = t0, and then, the temporal evolu-
tion is analyzed, which allows to study the particle dynamics
that make up the fluid individually. By expressing the total
derivative as

d

dt
=

∂

∂t
+ ~v · ~∇, (16)

then, Eq. (13) takes the following form

dρ

dt
= −ρ~∇ · ~v, (17)

and Eq. (14) can be written as

d~v

dt
= −1

ρ
~∇p− ~∇Φ. (18)

To describe a continuous fluid in a discrete approximation,
SPH [32] starts by defining the integral interpolation of any
functionA(~r) as

AI(~r) =
∫

S

A(~r′)W (~r − ~r′, h)d3~r′, (19)

where the integration goes over all space, andW is an inter-
polation kernel that must satisfy

∫

S

W (~r − ~r′, h)d3~r′ = 1, (20)
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lim
h→0

W (~r − ~r′, h) = δ(~r − ~r′). (21)

The limit corresponds to the interpolation of the integral, and
h is a length parameter in a 3-dimensional space. Numerical
computations lead to a sum approximation

AI(~r) =
∑

j

mj
Aj

ρj
W (~r − ~rj , h), (22)

where the indexj denotes each particle, and the sum is made
over all the particles. Particlej has massmj , position~rj ,
densityρj , and velocity~vj . Any other quantityA inside~rj

is denoted byAj . The keypoint of this method is that it can
build up a differentiable interpolator of any given function
from its particular values (interpolation points) using an in-
terpolation kernel that is also differentiable. There is no need
of using finite differences or separating the space into cells
just asN -body does. If it requires to compute~∇A, the cal-
culation is simply

~∇A(~r) =
∑

j

mj
Aj

ρj

~∇W (~r − ~rj , h). (23)

The original calculations by Gingold & Monaghan (1977)
[30] use a unidimensional gaussian kernel

W (x, h) =
1

h
√

π
e−(x2/h2), (24)

Nevertheless, to interpolate all over the nearest neighbors, a
spline cubic function is usually defined as in the following
reference (Springelet al. 2005 [33])

W (r, h) =
8

πh3





1− 6( r
h )2 + 6( r

h )3, 0 ≤ r
h ≤ 1

2

2
(
1− r

h

)3
, 1

2 < r
h ≤ 1

0, r
h > 1

.

(25)

This is the usual example that mimics a delta function in the
limit h → 0. The choice of this kernel is such that the in-
teraction recovers its Newtonian, original form at separations
greater than the softening length (See 2.4.1). For a physi-
cal interpretation of the SPH equations it is better to assume
a gaussian kernel, for example, the density at any point in
space is approximated by

ρ(~r) =
∑

j

mjW (~r − ~rj , h). (26)

Using this interpretation, the fluid density is now expressed
in a discrete form by using the interpolation functions. By
doing so, the continuity (13), momentum conservation (14),
and Poisson (15) equations pass from their continuous form
to their discrete form, as described in reference [34].

2.4. GADGET

GAlaxies with Dark matter and Gas intEracT (GADGET), is
a free source code that uses theN -body approach with SPH
interpolation for cosmological simulations with its first ver-
sion released in 2001 [33]. It is written in C language and
uses two main computational resources: Parallelization and
the Tree–Particle Mesh Algorithm (TreePM). If a traditional
method were used for computation purposes, it would require
N(N − 1) force calculations for theN particles, and the or-
der of the computation time goes asO(N2). The TreePM
method reduces the time to an order ofN ln N by collect-
ing all the particles within a cube of a given minimum size,
together with parallelization to allow the system of millions
of particles to be computed more efficiently, without losing
many resolutions.

2.4.1. Gravitational softening

Because a large number of particles and information man-
aged by theN -body simulations, if two particles are close
in space, that would lead to a divergence in the force acting
upon a pair of particles. To avoid this divergence and ex-
ceeding accelerations, if two particles are very close to each
other, a gravitational softening is introduced, which must be
acting on the whole space of the simulation. This gravita-
tional softening is there to prevent that particles within the
simulated box come very close to each other, in other words,
the gravitational softening acts as a constriction for the sim-
ulated particles, also allowing the particles to remain in the
non-collisional regime needed to solve the Boltzmann equa-
tions. This is achieved by introducing a parameterε2 into Eq.
(8), as follows

d2~ri

dt2
= −G

N∑

j=1,i 6=j

mj(~ri − ~rj)
(∆~r2

ij + ε2)3/2
, (27)

where∆~r2
ij = |~ri − ~rj |2 andε is the softening length (Bo-

denheimeret al., 2007 [35]). The physical interpretation ofε
is the distance between the two centers of two “bound” par-
ticles. There are no criteria for the choice of the value of
ε, but for non-collisional systems, numerical results suggest
using the mean separation between particles as a reference;
although, it depends on the size of the system that is being
computed.

2.4.2. Tree–Particle Mesh algorithm and Paralellization

The tree particle method (Barnes & Hut 1986) [24] provides a
fast, general integrator for collisionless systems, when close
encounters are not important and where the force contri-
butions from very distant particles do not necessarily need
to be computed with high accuracy. In fact, with a tree
code, at small scales, strong interactions are typically soft-
ened, while the potentials due to distant groups of particles
are approximated by multipole expansions about the group
centers of mass. The resulting computation time scales as
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FIGURE 1. Left Barnes and Hut algorithm for 100 particles (BH). Right: The density field is interpolated over the nested mesh to ease the
force interaction calculation between particles and their gravitational potential (TreePM).

O(N log(N)), but the approximations introduce small force
errors. The long-range force errors are controlled by a single
parameter (the opening angle) that determines how small and
distant a group of particles must be to use the approximation.
This strategy works well to keep the average force error low.

On the other hand, the concept of the Tree-PM algorithm
is that a large number of particles or bodies can be approxi-
mated by a very well defined mesh that has the properties of
the particles as a whole. They are organized in a branched
system where the “root” has the complete information of the
N -body system. The density field of the simulation is divided
into cubic cells, in which if any cell has no information (has
no particles), this cell is put aside, and if the cell has at least
one particle, the force calculations begin, and the cell now be-
comes a node. Each node is divided into8 cubes recursively
until only one particle is left and the algorithm stops (Fig. 1).

Parallelization: In order to perform calculations, GAD-
GET distributes the volume of the simulation all over the pro-
cessors of the computer in a Peano-Hilbert curve [33]. This
curve carries all particle information and divides it gradually
in the processors, which allow an equally distributed load.
Force interaction computation: For each particle, the Tree-
PM (Lp: Tree-PM) algorithm produces a branch from the
computer root. In this case, the root is the main node and
behaves as a mesh that spreads on the next nodes. If the cur-
rent node is at a smaller distance from the particle at which
the calculation is being made, then the node is added to an
interaction list.

If, on the other hand, the center of mass of the node is at
a greater distance from the particle, then the node opens, and
the following question is made: Is the distance of the center
of mass of the mesh greater than the size of the initial cube
divided by some parameter, say0 < θ ≤ 1? In other words,

the question is whether the following relation is fulfilled

r >
l

θ
, (28)

wherer is the distance of the particle to the center of mass of
the mesh,l is the size of the initial cube, andθ is a precision
parameter. If the expression (28) is true for every particle
in the simulation, it continues evolving; on the other hand,
if one or more particles do not satisfy this relation, the ini-
tial cube is divided into a smaller cube of sizel/2, and the
process is repeated. The algorithm computes multipole ex-
pansions and allocates the center of mass of each cube. After
that, the question is asked again for each process (Fig. 1).

Alternatively, the SPH method for cosmological simula-
tions is mainly used for modelling the interstellar medium
and uses the information obtained previously from the force
interaction, like the nearest neighbours list to the particle and
the force between them. By doing so, the computing time is
drastically reduced by avoiding loop calculations.

2.5. GADGET-2 Installation

GADGET-2 is a free source code, ready to download and
use it for making simulations. The instructions to compile
and run the code may depend on the operating system that
is being used; if the user has a Linux or UNIX based sys-
tem, the compilation is very straightforward. In the case of a
MacOS user, anXcode update is needed, which includes all
necessary compilation tools to install the code. For a Win-
dows system, the environmentCygwin is required to use any
UNIX based compilation system.

The following software is required:

1. https://wwwmpa.mpa-garching.mpg.de/
gadget/gadget-2.0.7.tar.gz Gadget-2.0.7.
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2. A 1.9 or higher version of https://www.
gnu.org/software/gsl/ GNU scientific library
(GSL).

3. The 2.1.5 version of http://www.fftw.org/
fftw-2.1.5.tar.gz FFTW fast Fourier Transform
in the West.

4. A parallel processing library, like Message
Passing Interface (MPI) or https://www.
open-mpi.org OpenMPI or https://www.
mpich.org MPICH.

5. THe HDF format library dependencieshttps:
//support.hdfgroup.org/ftp/HDF5/
prev-releases Hierarchical Data Format, version
1.6.10.

The parallel processing libraries can be directly installed
on a Linux based system. TheOpenMPI package comes
within the MacOS systems. On a side note, DO NOT down-
load any 3.xversion of FFTW, because it does not support
parallel processing.

Once the software is downloaded, proceed to unzip the
.tar.gz file and install it. The following process is made on a
Linux terminal, so be aware of that:

1. Extract the software:

user@PC∼/Documents/code: tar -xzvf fftw-2.1.5.tar.gz

user@PC∼/Documents/code: tar -xzvf gsl-1.9.tar.gz

user@PC∼/Documents/code: tar -xzvf gadget-2.0.7.tar.gz

user@PC∼/Documents/code: tar -xzvf hdf5-1.6.10.tar.gz

2. Install GSL:user@PC∼/Documents/code: cd gsl-1.9/

user@PC∼/Documents/code/gsl-1.9: ./configure

user@PC∼/Documents/code/gsl-1.9: make

user@PC∼/Documents/code/gsl-1.9: sudo make install

This is aroot installation. It may depend on the computer manager to give admin privileges to the user or, in other cases,
to install it on another folder, making sure the path to the necessary libraries is correct.

--prefix=/path/to/folder/

3. Install FFTW:

user@PC∼/Documents/code: cd fftw-2.1.5

user@PC∼/Documents/code/fftw-2.1.5: ./configure - -enable-mpi - -enable-type-prefix - -enable-float

user@PC∼/Documents/code/fftw-2.1.5: make

This step takes roughly 10 minutes, so feel free to go for a coffee or a snack. Finally, install the libraries as root:

user@PC∼/Documents/code/fftw-2.1.5: sudo make install

4. Install the HDF library:

user@PC∼/Documents/code: cd hdf5-1.6.10

user@PC∼/Documents/code/hdf5-1.6.10: ./configure

user@PC∼/Documents/code/hdf5-1.6.10: sudo make install

5. Edit the GadgetMakefile:

This code has a wide variety of parameters to compile, which are richly described on the User’s Guide. Inside the
Gadget’s compile folder go to theGadget-2 folder and open theMakefile in a terminal or a notepad, then edit the
Makefile to follow the path where the GSL and FFTW libraries were installed:

#-------Adjust settings for target computer
.................
#HDF5INCL =
#HDF5LIB = -lhdf5 -lz
endif
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FIGURE 2. Two disk galaxies colliding. The disk has 20000 particles, and the dark matter halo has 40000 particles. The galaxies are initially
placed close to each other with an axisymmetric disk and are attracted by their gravitational force. They collide forming a pair of spiral
perturbed galaxies to finally merge in just one elliptical galaxy.

By default, the libraries are located in/usr/local/. The installation of Gadget in a computational cluster is a little bit tricky,
please, take a look at this document made by HPC Advisory Councili. TheMakefile has to be edited depending on the system
that will be simulated.

3. Examples

Before executing any simulation, theMakefile inside theGadget-2 folder needs to be edited. These two following examples
are two different systems: a) two colliding disk galaxies and b) the large scale structure formation in aΛCDM Universe; and
they were run in a 4-CPU computer.

3.1. Colliding galaxies

This simulation consists of two disk galaxies approaching each other, leading to a fusion between them. Each galaxy has a
stellar disk and a dark matter halo using Newtonian Physics, with 20,000 disk particles and 40,000 dark matter halos (Fig. 2).
For this example, the following lines of theMakefile are modified:
#--------------------------------------- Basic operation mode of code
#OPT += -DPERIODIC
OPT += -DUNEQUALSOFTENINGS

#--------------------------------------- Things that are always recommended
OPT += -DPEANOHILBERT
OPT += -DWALLCLOCK

#--------------------------------------- TreePM Options
#OPT += -DPMGRID=256
..................

The rest of the file remains the same. To run this simulation, it is highly recommended to make a new working folder with
the parameter files and executables in order to avoid eventual troubles because of reediting theMakefile
user@PC∼/Documents/code/Gadget-2.0.7: mkdir galaxy

Then, copy the.exe file in thegalaxy folder:

user@PC∼/Documents/code/Gadget-2.0.7: cp Gadget2/Gadget2 galaxy/

The parameter files have all the information that the simulation needs to run: the particle number, the initial conditions, and so
on. This file is inside theparameter files folder, make sure to copy them to thegalaxy folder:

user@PC∼/Documents/code/Gadget-2.0.7: cp Gadget2/parameterfiles/ galaxy.param galaxy/

Now, edit the default parameter file namedgalaxy.param

user@PC∼/Documents/code/Gadget-2.0.7: cd galaxy

The two first lines have to look as follow:
% Relevant files

InitCondFile /path/to/Gadget-2.0.7/ICs/galaxy_littleendian.dat
OutputDir /path/to/Gadget-2.0.7/galaxy/
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FIGURE 3. Large scale structure formation. The simulation begins by placing the particles in a cubic mesh; a perturbation makes the particles
to evolve, and then they form galaxy clusters. Blue particles represent dark matter and red particles gas.

wherepath/to/Gadget-2/ICs and path/to/Gadget-2/galaxy are the paths where the Initial conditions are being read and
where the output files want to be created. Now all is set to run the first collision simulation:

user@PC∼/Documents/code/Gadget-2.0.7/galaxy: mpirun -np 2 ./Gadget2 galaxy.param

This line calls for an MPI script for parallel processing. The-np 2 indicates how many processors will be used for computation.

3.2. Large scale structure formation

This is an example of323 dark matter particles and323 gas particles. The structure formation is made within a periodic box
of size50h−1Mpc per side in aΛCDM Universe (Fig. 3). This simulation distributes the particles in a cubic mesh, where they
are placed in the mesh centers surrounded by dark matter particles. A perturbation on the position makes the particles move,
and eventually, they form structures. The code starts running fromz = 10 and finishes at the present epoch (z = 0). The
parameters of this simulation are indicated in Table I.

The GadgetMakefile needs to be edited as follows:

#--------------------------- Basic operation mode of code
OPT += -DPERIODIC
#OPT += -DUNEQUALSOFTENINGS

#------------------------------- Things that are always recommended
OPT += -DPEANOHILBERT
OPT += -DWALLCLOCK

#----------------------------------------- TreePM Options
OPT += -DPMGRID=128
......................

To run the software it is necessary to call the parameters
file lcdm gas.param. A variety of codes to generate initial
conditions for large scale structure formation exists, these
codes use the Lagrangian Perturbation theory (LPT) such as
the Zeldovich Approximation (ZA). For this example, the
initial conditions were created using theN-GenIC software,
which can be easily manipulated. To run the code, just exe-
cute it as follows:

user@PC∼/Documents/code/Gadget-2.0.7/lcdm gas:
mpirun -np 2/ ./Gadget2 lcdm gas.param

This example takes roughly 20 minutes to finish. This is
because the number of particles simulated is just a few com-
pared to a major resolution simulation, in which case it needs
to be executed on a computational cluster.

TABLE I. Parameters of aΛCDM simulation with Gadget.

Description Symbol Value

Dark matter density Ω0 0.3

Dark energy density ΩΛ 0.7

Baryonic matter density Ωb 0.04

Hubble parameter h 0.7

(h = H0/100 Mpc · km · s−1)

4. Creating initial conditions

GADGET is a code that evolves a system of particles. The
initial conditions need to be created using other codes and
resources, such as GalIC [36] and N-GenIC [37], to create
initial conditions for galaxies and large structures, respec-
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tively. Other codes can also be used for such purposes, as
MusIC [38] and 2LPTIC [39] that use a Second Order La-
grangian Perturbation Theory.

4.1. GalIC

This code uses an iterative method to computeN -body simu-
lations in equilibrium systems given its density distributions,
such as spherically symmetric functions, axisymmetrical sys-
tems and galaxy models with different density profiles. There
are two versions of GalIC, thegalic 1.0 version and thegalic
1.1 version. The installation of the first version is quite simi-
lar to installing GADGET. For the 1.1 version, it is also nec-
essary a Doxygen tool, because this version is intended to be
more accessible to other operating systems and programming
languages.

The folder includes a list of examples listed on Table I of
reference [36], and the parameters may be changed to make
major resolution simulations.

4.2. N-GenIC

This code uses the Zeldóvich Approximation [40,41], which
describes a non-linear evolution of the state of a matter den-
sity gravitational perturbation, which is considered to be ho-
mogeneous and non-collisional. In the file, the following pa-
rameters can be edited:

1. Simulation including either only dark matter or dark
matter with gas particles.

2. The number of particlesN .

3. The initial time of the simulationzi.

4. Dark matter density (Ω0).

5. Dark energy density (ΩΛ).

6. Baryonic matter density (Ωb).

7. Hubble’s parameter (h).

8. Box size of the simulation (L).

9. Power spectrum normalization (σ8) [42].

5. Results

Using the parameters of Table III, a structure formation sim-
ulation was carried out starting fromz = 23 to z = 0 in a
ΛCDM Universe. On the other hand, the matter power spec-
trum was generated with the code CAMB [43], and compared
with the outcome from the simulation (see Fig. 4).

To compute the mater power spectrum generated by the
simulation, the code POWMES [44] comes in handy because
it is designed to estimate the power spectrum ofN -body sim-
ulations in an iterative form. The power spectrumP (k) char-
acterises the scales and clustering of galaxies in the Universe.
In particular, many cosmological constrictions are based on
the P (k) measurement or its inverse Fourier transform, the
two-point correlation function.

Figure 5 shows the matter power spectrum computed by
CAMB, which is very close to the non-linear regime (k ¿ 1
indicates large scales) with a softening value ofε = 0.89 kpc.
The similarities are visible when comparing the solution of
the Boltzmann equations and the numerical solution via the

TABLE II. Initial conditions.

Description Symbol Value

Densities atz = zf Dark matter Ω0 0.268

Dark energy ΩΛ 0.683

Baryonic matter Ωb 0.049

Simulation Boxsize L 50 Mpc

No. of particles N 4096×122

Redshift Initial zinit 23

Final zf 0

Other quantities Hubble’s parameter h 0.7

Matter power spectrum normalisation σ8 0.8

TABLE III. Additional parameters.

Description Quantity Units

Unit system Length(cm) 3.08× 1021 1 kpc

Masa (g) 1.989× 1043 1010 M¯

Velocity (cm/s) 105 1 km/s

Softening ΛCDM(ε) 0.89, 20 kpc
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FIGURE 4. A front slice of a 3D view of the final output of the
simulation. Only dark matter particles were evolved.

CDM simulation. As expected, the number of particles does
affect the final result of the simulation; fewer particles lead
to low matter power spectrum compared to the rest of the
spectra, as well as to the one computed by CAMB. It is also
visible that when the softening parameter increases the simu-
lation creates less structure because is preventing the particles
to come closer than 2 kpc. These are important parameters to
bear in mind, as they need to be selected very carefully and
effectively to get accurate results. The simple difference in
one parameter can affect the whole result.

6. Conclusions and future work

In this work, we present a general description of the dark
matter enigma, its discovery, and incorporation into the stan-
dard cosmologicalΛCDM model. The model has been suc-
cessfully tested through several observations, and compared
with numerical simulations, in particular simulations at small
scales where dark matter halos in galaxies are formed due to
a spherical collapse model and on large scales by studying
the cluster formation.

N -body simulations have been used in the cosmology
field as an efficient tool to study the process of large scale
structure formation in the Universe. In this scheme, dark mat-
ter is modeled as a non-collisional fluid under the influence
of a gravitational potential. Other models such as the SPH
method involve gas dynamics for galaxy formation. Using
these two methods, the interaction between dark matter parti-
cles and gas particles can be observed via the accretion of the
gas into the dark matter halos. In this work, GADGET was
used as the main code for simulating the large scale struc-
ture of a 50 Mpc Box in aΛCDM Universe. The installation
process of GADGET is also mentioned as an effective and
simple guide to follow for young scientists.

The many parameters of anN -body code can be easily
modified, and variations of them can lead to a whole new
physical system in the simulation. Thus it is important to test
the various parameters and theories with a well-established
method (like the analytical solution to the Boltzmann equa-
tions) and then compare the variation of the parameters of
the simulation. In this work, we performed different tests on
various parameters, which led to similar results predicted

FIGURA 5. Matter power spectrum as estimated by CAMB (dashed
blue) and the estimated by POWMES (solid lines) for this simula-
tion for different softening lengths and number of particles. The
green line converges to a different value ofP (k) value meaning
that the simulation is not creating the same amount of structure at
these scales. The navy blue line has fewer particles and softening
length ofε = 1 kpc, which reassembles the results to the red line
on low scales. The constant part of the simulation is due to the
low resolution, which imposes a maximum scale limit of the power
spectrum (the lines are slightly displaced vertically for a better dis-
play).

from an analyticΛCDM model, but a variation on the num-
ber of particles as well as the softening length led to differ-
ent results. It is also important to highlight the key role that
the gravitational softening plays on the simulations; different
softening may recreate systems that resemble observations in
different surveys.

The data analysis requires the knowledge of statistical
and probabilistic methods, and density distributions often
studied in cosmology. Nevertheless, there exist some details
within the structure formation theory that lead to issues in
both observations and simulations; these issues are primarily
the CUSP-CORE problem and the missing satellite problem.
There are different alternatives to solve them; however, one
of the main approaches in future work will be to compare
different models toΛCDM using different codes and initial
conditions adapted for each one.

Several numerical codes were discussed, such as Tree,
Particle-mesh, AMR and so on, listing their characteristics
and differences. These codes are used for modeling di-
verse astrophysical systems, in particular, theN -body ap-
proach is used for galactic and cosmological systems, mainly
governed by the non-collisional Boltzmann equations. The
code N-GenIC comes very handy for generating initial con-
ditions without gas particles, this software will be very use-
ful to compare a GADGET modification which uses an axion
model for dark matter particles called Axion-GADGET [45].
With this model, the main goal is to provide an alternative
solution to several issues theΛCDM model is dealing with,
such as the CUSP-CORE problem [15–17] observed on the
density distribution of many galaxies and the missing satel-
lite problem [18, 19]. This modification continues in devel-
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opment, and we are aiming to improve the short-range inter-
action between systems.
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