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The Lagrangian formulation of the equations of motion for point particles is usually presented in classical mechanics as the outcome of a
series of insightful algebraic transformations or, in more advanced treatments, as the result of applying a variational principle. In this paper
we stress two main reasons for considering the Lagrange equations as a fundamental description of the dynamics of classical particles. Firstly
their structure can be naturally disclosed from the existence of integrals of motion, in a way that, though elementary and easy to prove, seem:
to be less popular —or less frequently made explicit— than others in support of the Lagrange formulation. The second reason is that the
Lagrange equations preserve their formamy coordinate system —even in moving ones, if required. Their covariant nature makes them
particularly suited to deal with dynamical problems in curved spaces or involving (holonomic) constraints. We develop the above and related
ideas in clear and simple terms, keeping them throughout at the level of intermediate courses in classical mechanics. This has the advantac
of introducing some tools and concepts that are useful at this stage, while they may also serve as a bridge to more advanced courses.
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1. Introduction gant and powerful demand that a function called action attain
a minimum value along the trajectory followed by the parti-
cle [1,3]. The Hamiltonian formulation, in its turn, represents

Classical dynamics has a mighty range of tools to describg further elaboration providing a no less elegant set of differ-

the motion of particles; among them we find in elementaryential equations. However, usually these derivations make

treatments the forces, potentials, constants of motion, sysrse of the more advanced calculus of variations, with which
tems of reference and, in a prominent place, the equationge assume the reader-student not to be acquainted.

of motion themselves. The first contact with the latter is un-

doubtedly through Newton’s widely-known second-order dif-  In this paper we arrive at the Lagrange equations by fol-

ferential equation that relates accelerations with forces. It isowing a procedure that allows us to expose in clear and sim-

of interest to recall that the invention of differential calcu- ple terms their connection with the integrals of motion —par-
lus by Newton was driven precisely by the need of a tool taticularly, the energy— as well as their covariance,, their
describe the motion of bodies. Usually it is only in more ad-form-invariance with respect to a change of coordinate sys-
vanced courses that the student learns about other approachesm. An additional benefit of this alternative route is that it
serving the same purpose, in particular the Lagrangian forallows us to disclose in a natural way the general structure
mulation (established about a century after Newton’s), an@f the Lagrange equations. Our intention is to develop the
the Hamiltonian formulation (developed about half a centuryabove ideas (and other related ones) in simple terms, work-
later). We thus have at least three different sets of equang all the time at the level of intermediate courses in classical
tions, all of them fundamental, and equivalent in that theymechanics.

can be used alternatively to describe the behavior of the same

classical system. However, what is considered fundamental The paper is structured as follows. In Sec. 2 the Lagrange

depends on the intended descriptive level. From a historiequations for a conservative system are derived, and the me-

cal perspective, Newton’s Second Law is fundamental, thehanical energy is shown to be the integral of motion asso-
others having been derived from it with the introduction of ciated with them. In Sec. 3 the invariance of the Lagrange
more elaborate principles and demands. In particular, thequations under a transformation of the coordinate system is

Lagrange equations have a most remarkable and importadiscussed, and the covariant form of Newton’s Second Law is

property, namely that they preserve their form in any systenterived. Special attention is paid to the emergence of inertial

of coordinates, even moving ones [1, 2]. This form-invariantforces as a result of the curvature of the coordinates (curvi-
property reflects the fundamental fact that they express a lalinear coordinates). A couple of illustrative examples are pre-
of nature, which is naturally independent of our description.sented in Sec. 3.4. Finally, Sec. 4 establishes the connection

Also interesting is the fact —expressing another law of na-between the Lagrangian and the Hamiltonian functions, and

ture— that the Lagrange equations result from the single elebriefly introduces Hamilton’s equations.
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2. The Lagrange equations and integrals of
motion

2.1. Integrals of motion

L. DE LA PENA, A.M. CETTO AND A. VALD ES-HERMANDEZ

The above equations establish a correspondence between
the constant of motiog and the vectoz®), which, accord-
ing to Eq. (6), is either zero or orthogonal to the velogjty
along the trajectory. Equation (7) exhibits in a natural way the
characteristic structure of the Lagrange equations. Indeed, in

For the description of the motion of a particle it is often y,q f5j10wing section we will see that an analysis of the com-

convenient to use a system of (generalized) coordin@tgs

suited for the particular problem, instead of Cartesian coordi
nates{z;}. In what follows we shall consider such a system
{¢:}, which is arbitrary except for the condition that the coor-
dinates can be expressed as regular, continuous and invertible

functions of the Cartesian coordinates }, so that

¢ = q¢i({zr}), zi=zi({a}) )

This is an instance of passivetransformation [1]j.e., one

ponentsGEE) takes us directly to the Lagrange equations, re-
vealing their equivalence with Newton’s Second Law, and to
the identification of the mechanical energy as the associated
integral of motion.

It is worthwhile to recall at this point that a closed me-
chanical system witlv degrees of freedom may have at most
2N — 1 nontrivial and functionally independent constants of
motion, that is, functions of, ¢ and¢ whose value does not
change with time. The complete set of these constants de-

involving a change of coordinate system only, without affect-termines the trajectory of the particle in th&/-dimensional
ing in any way the physical system. For simplicity we shallphase space. Among the possible constants of motion there
omit the appearance of the time as a parameter in the transfoae some that have a particular importance, the so-called

mation; this restricts our discussiongoint transformations
that is, to purelygeometrigransformations [1-6].

Let us consider a differentiable scalar functipfy, q),
with ¢ = dq/dt andq the vector withNV' componentgg; },

grals of motion These are (continuous, single-valued, differ-
entiable) time-independent functions of the generalized co-
ordinates and their corresponding momenta (or velocities),
defined over the entire accessible phase space and having a

N being the number of degrees of freedom. As a first stegonstant value along the trajectory. Thus each one serves in

we analyze the time derivative @f, which we obtain apply-
ing the chain rule,

dp dp . Op..
dt ; [3%‘% - g, "
dp . d Dy . . d Oy
= it | G| (2
2 [aqﬂ T (ang) Taog) @
A rearrangement of terms leads to the expression
d . Oy _ . (ddp  Op
yr (Zj:qlaqi w) = Zj:ql (dt 7, 8%) . ®
which can be written in the more compact form
dy
i nes 4
o zi:qu, 4)
with
. . Op _dOdp Oy
= i — Q, G,L 5 = — . 5
1(q,9) Zi:q e~ ¢ Gilad=g5- -5 ©

Assume now that the functiop is selected such that the
corresponding does not evolve in timd.e., dy/dt = 0. We
denote such constant function wighand the corresponding
¢ with ¢(&). Equations (4) and (5) give then

d¢ .
S _0=¢-Gg% 6
it q ; (6)
whereG'®) is the vector with components
d 9p&)  9p&)
= (7)

o dt 0 dg;

principle to eliminate a degree of freedom from the descrip-
tion.

2.2. The Lagrange equations of motion

Let us consider a particle of mass under the action of

a time-independent, conservative forfer) = —VV(x),

with V' (x) the potential energy. In Cartesian coordinates the

mechanical energy of this particle reads
&= imi®+ V(x). (8)

According to our previous results, for thiyx, ) we can

construct ap¢) such that

o©.

©
£ = Zzia"# - 9)

04

The general solutiop(®) (x, ) of this differential equation
reads

(@, &) = gm Y i - V(@) + ) Qi(@)d;, (10)

where the)); are arbitrary functions aof only. From Egs. (7)
and (10) we obtain for the componemég)

. 0Q; 0Q;) .
6 —mi -+ (52924,
Zj: 8a:j 8$Z J
0 g
=mi; — fi + ad o ; Qjx;. (12)

Rev. Mex. k5. E17 (1) 47-54



POWER AND BEAUTY OF THE LAGRANGE EQUATIONS 49

On the other hand, by separating the terms in Eq. (10Further (see Eqg. (11)),
that encode the dynamical information from the auxili@ry

(€) can be rewritten in the form (&) (&) , ,
’ i = (G ) @
&) =L@, &)+ Y Qi(x)ii, (13) ‘ i j i

a result that discloses the well-known and very useful prop-
. X = erty of invariance of the Lagrange equations with respect to
Lz, &) = 5m Z & —V(z). (14) " the addition of a total time derivative of a scalar function of
‘ x (and¢, we may add),

with

We thus obtain using Eq. (7)

q© _ 4099 0p® (15) L—L =L+ % = 0%, (24)
d oL oL\ dQ; 9 _ with K (x,t) freely selected [1, 2, 4, 6]C and L' areequiv-
= <dtaaz - 81;-) o %Z Q;z;. (16)  alent Lagrangiansmeaning that the presencelfis totally
' ! Y inconsequential, since it does not affect the integrals of mo-
Comparison of this with Eq. (12) gives tion in any way. Thus there is an infinity of Lagrangians
associated with each mechanical system. This gives us the
d oL _ oL — mi; — f; (17) freedom to select one that is appropriate for our purposes, as
dt 0x;  Oz; Con is sometimes done in the literature. From Eq. (19) we also
From here it follows that Newton's Second Law (for a con- Verify that£ can be multiplied by an arbitrary constant. Thus
servative system) any N_ewtonlan system accepts an infinity of equivalent La-
grangians.
mi; = _ov =f (18) As mentioned above, in more advanced textbooks it is
Ox; common to derive the Lagrange equations from a variational
is equiva'ent to the set of equations principle, known as Hamilton’s principle, app|led to the-
tion of the system, defined as
d oL oL _ 0 (19)
dt (“)xz 8,@2 o t2
which holdirrespectiveof the functions;, and hence of the S = /5[31(’5), @(t);t]dt. (25)
specific vectoG'©). The equivalence means that any one of th

the equations (18) and (19) implies the other one, via (17). o o .

The functionZ(z, &) is the Lagrangianof the system, The var|at|onal principle becomes then the .smgle one .that
and Egs. (19) are theagrange equations of motipwhich, ~ €nters in place of thg set of Newton's equations of motion;
as just seen, are equivalent to Newton’s Second Law. Notil states that the deviationS of the action for any infinites-
that £ is a scalar, and as such it remains invariant under 4nal arbitrary deviation from the real trajectory followed by

change of (spatial) coordinates. the particle, for initial and final times andt; fixed, is null.
Introducing Eqg. (19) into (16) one obtains Othgrwlse stated, the action acquires an extremum (usually
a minimum) value along the real trajectory framto ¢5. A
Gz('g) _ dQi iZQﬂtﬂ" (20) relatively immediate applicati_on of this d_emand to Eq. (25)
dt Oz; 7 leads to the Lagrange equations of motion [1-6]. Since the
variation of £’ given by equation (25) is the same as fofor
and hence, from Eq. (4), t1 andt, fixed, the variational principle holds for all equiva-
dE . ©) dQ; _dQ; lent Lagrangians.
at inGi = Zml dt Z%Tt] =0. (21) The fact that the whole set of equations of motion fol-
¢ ‘ J lows from asingleprinciple of minimum action is of course
This verifies Eq. (6) (fo€ = &), as expected. most appealing, and it is not surprising that it gives rise to

If the vectorQ is selected as irrotational, the terms underextremely valuable tools for the development of theoretical
the summation sign in Eq. (11) vanish aG#°) becomes the Physics. However, some caution is needed to understand its
null vector along the trajector\®) = mi; — f; = 0, which  Significance. Newton's Second Law is strictly local, mean-

? . . .
is the trivial solution of Eq. (6). Since in this case one caniNg that the particle respondsstantaneousiyo the force ap-
write Q; = 9K /0z; with K () an arbitrary scalar function plied just on it, at its position and at precisely that instant.

of z, Eq. (13) becomes The principle of least action, by contrast, refers to what hap-
pensalong the entire trajectorjrom ¢ to t¢o; it says that the
o — £ 4 3 3K(w)$i _ 4 K (22) Particle adjusts its trajectory from the initial to the final time
— O, dt so that the accumulated action will result in a minimum. Of
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course the principle applies only because it holds for eaclwhich confirms that the Lagrange equations look the same in
infinitesimal displacement, so the particle accumulates minanysystem of coordinatey; }. In more formal terms we say
imal actions one after the next along its trajectory. The parthat the Lagrange equations arevariant or that they are

ticle does not know at time, what it will be performing at

a future timets, in order to adjust itself to the demand of

written in covariant form.
But then, what is the importance of covariance? Newton'’s

a global minimum action: the global action is minimal be- law is aphysicallaw, and as such it is totally independent of
cause each microscopic action is minimal. For an elementaryhich system of coordinates is used to express it. The law
derivation of the Lagrange equations from Hamilton’s princi- expresses a fact of nature, whereas our coordinate system is

ple seege.g, [8].

3. Covariance of the equations of motion

In the foregoing section it became clear that for the single-
particle, conservative problem treated here, the Lagrang
equations of motion are equivalent to Newton’s equations o
motion, so one might wonder what is the advantage of us:
ing the former. One important difference is that the Lagrang

equations, unlike Newton’s, have teame formn all coor-

dinate systems, as we shall now see. This property ultimate
follows (in the present derivation) from the fact that the scala
product is invariant under geometric transformations. Speci
ically, Egs. (6) and (7) hold for all coordinate systems, so

that in terms of another set of coordinatgs= ¢.({¢}) for
instance, we have’¢) = ©(©[q(q')], and

d&€ . .
= =0=3"4G" =Y 46 (26)
i k
with e e
£ d O ep
G;s( ) = % aq/ - aq/ . (27)
k k

Since the Cartesian coordinates; } and the generalized
coordinateq ¢; } are related according to Eqg. (1), we have

Ox; 0q;
Z xqu, =3 ajkdxk, (28)
and therefore,
z;
Zw@ Z(Z )G [ (q)
= Yin(3 SoGOe()). (@)

Thus, the invariance of the scalar product in (26) gives the (ds

(),
ox;
Z

an

law of transformation OGE

' (z(q)). (30)

From Eqs (13) (16) and (19) we note that the chéige= 0
implies p(&) = £ andG = 0, hence aIscG;C(g) = 0 ac-
cording to Eq. (30). Therefore, from Eq. (27) we arrive at

d 0L(g,q) 9L(q,q)
dt  0q; 0¢;

=0, (31)

something external to it, freely and arbitrarily selected. Ex-
pressing the physical law in such a way that it does not de-
pend on the coordinate system, would of course be most ap-
propriate and satisfactory.

To guarantee the independence of the law from the se-
@cted basis vectors, the matrix that transforms the vector
gomponents must be tleverseof the matrix that transforms
the basis vectors. We say that such vector components trans-

dorm contravariantly with respect to the basis vectof&his

feature, which is crucial to guarantee that the laws of nature

pre the same imany coordinate system, applied to the sec-

nd of equations (28), implies that tketh component of the

fveIocmes transforms as

. 3%
k o, (32)
whereas the&-th component of the vectaw transformsin-
versely in terms of the matrix element:; /Jq;, instead of
dqy, /Ox;, as follows from Eq. (30). Below we come back to
this point.

3.1. Some geometry

In preparation for the following section we develop here
some mathematical tools that will be useful to distinguish be-
tween the geometric properties and the dynamical properties
of a system, when arbitrary coordinatgs} are employed.

Consider first the arc elemedit. We may express this el-
ement in both the Cartesian coordinate system and the more
general ond ¢, }; we then have

2= Z 7’]wdl‘1de
4,7

wheren;; and gi; are the components of theetric tensor
g in terms of the Cartesian and the generalized coordinates,
respectively. Using the first equation in (28) we are led to

i Ox
; = dgpd dgrdq; (34
Jzk:lnga 8q qedq = ;gm qedqr;  (34)

thusgr = >, ;mii(0%:/9qx)(0x;/0q). For a Euclidean
(flat) spacey;; = ¢;;, and therefore

Oq Oq”
Thus the componentg,; are constant for linear transforma-

tions; for curvilinear coordinates they are nontrivial functions
of the generalized variables.

= grdarda,
k,l

(33)

gkl = Gik = (35)
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The components of the inverse of the metric tensor An example of a contravariant vector is given in
g~ '=g are such that Eqg. (32) (another one is the law of transformation firin
Eq. (48) below), which transforms with the matrix elements
Zgugzn = din, (36) Oqr/0z;. An example of a covariant vector, transforming
! with dz;/dq;, appears in Eq. (30). In an orthogonal system
and they are given by of coordinates these vectors coincide (except for a possible
interchange of coordinates), so there is no need to distinguish
N Oqk O between them. However, in general both kinds of indices (of
gkl—glk—za_a_~ (37) ; e . . :
— 0T 0T; transformations) are necessary; this happens in particular in
the general theory of relativity where space-time is curved
A set of functions that will be of relevance, as we shall e to the presence of matter and energy, and is also the case
see below, are the Christoffel symbols (a kind of affine conp, Eq. (47) below. The scalar product corresponds then to

nections)l'},, defined as [2,9, 10] acontraction i.e., the sum over two equal indices, one from
S0 2 a factor that transforms covariantly (written as a subindex),
Fé‘k — Ficj = Z & Li (38) and the other from a factor that transforms contravariantly
' ; Ox; 9q;0q (written as a superindex), as I, ¢'G; = q - G, resulting

) . ) in an invariant (a scalar). Notice that, in line with classical
A comparison with Eq. (35) suggests that lﬁﬁ will be  mechanics terminology, we have avoided the distinction be-
useful to express the derivatives of the metric tensor anglyeen upper and lower indices when writing covariant and
viceversa. Indeed, by taking the derivativegef and using  contravariant components. For a more detailed discussion

Eqg. (38), one arrives at the expression seege.g, Refs. [1,2, 4].
09k ; ;
= gil'ks + girTls) - (39)
dqs Z ( F : ) 3.2. Covariant form of Newton'’s second law

i

To invert this relation and express the affine connection in, ihis section we go back to Eq. (18) and apply a geometric
terms of the metric tensor, one combines the above equatiop,nsformation, to express it in terms of generalized coordi-

and its two permutations, thereby obtaining nates. The process will lead us to the covariant form of New-
Ogr 095t Ogus ; ton’s Second Law, clearly revealing that thpertial forces
D4 + dar  Oq =2 Zgilrks' (40) (forces proportional to the mass of the particle) have a geo-
i metric origin associated with the curvature of the coordinates.
Multiplying the above equation by,, and sum ovefleads to We first express; in terms of the generalized coordinates

a formula for the Christoffel symbols in terms of the deriva- {¢; } and their time derivatives as follows,
tives of the metric tensor

I—. (99 | 9951  Ogks ii(q) = - Z dk = Z G
no=C o | == - . @ dt ) 9
L=y S (G )@ 0 5g. ~ 2Ty,
. . . . .. 0%y
Since the affine connections depend on the coordinates + Z%%M- (42)
only and not on the velocities (see Eq. (38)), they have a ge- Jik J

ometric meaning and are directly related to the metric of the__ i o _
space in question. Since we are looking for an equation fgy, it is convenient

With this we have the geometric tools required to de-t© Multiply the above expression By /0, sum over, and

scribe Newtonian dynamics in an arbitrary coordinate sysYS€ the equality
tem, which is the aim of the following section; but before 9z O 9
closing this one it is convenient to add a couple of comments Z (o _ g _ Okl, (43)
regarding the notation. T~ Oqk Oxi - Ogi
In the affine connections defined by Eq. (38) we intro- )
duced lower and upper indices: these represent different lawi® obtain

of transformation, so their meaning is important and goes be- o
yond a mere convenience in the writing. The upper indices qr + quqkl“é-k = Zéc‘i(q)a—ql. (44)
describe the components obntravariant tensorswhereas .k i Ti
the lower indices refer to theovariantones. Thecontravari-
ant components of a vector are obtained by projecting thel he dynamics enters by using Eq. (18) in the form
vectoronto the coordinate axesn their turn, the covariant
components are obtained by projectmgo the lines normal - if. - 1 Z 9V (q) 04; (45)
1 1 k)
m m 5 aq]‘ Bxl

to the coordinate hyperplang$0, 12].
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so that Assume we are interested in the study of a point particle
. B 1 aV(q) dg; dai moving ona plane. We may describe its mqtion using Carte-

in 9. m Z 9q; 0x; O, sian coordinates; = z, xo = y, polar coordinateg, = r,
i ¢ i, J v g2 = 0, or some other set of coordinates; the choice may de-
1 aV(q)_ penq on the symmetry prqperties of the force; acting on the

= Z 94, gjt- (46)  particle, or on constraints imposed on the motion.

j J Let us first consider the simple case of a central faree,
Substitution into Eq. (44) leads to the desired dynamicaf force that acts along the line joining the particle and the
equation, center of force (taken as the origin), and whose magnitude

does not depend on the angle. In such case, because of the
.. oV(q) C ol circular symmetry, the polar coordinates are the most appro-
mé; = — —m iR 47 : ! . ;
e EJ: Jq; gt ;q] =k (“7) priate ones. The transformation rules between the Cartesian
' and polar coordinates &fe

This is the explicit covariant form of Newton's Second Law

(for the single-particle, conservative and unconstrained prob- z(r, ) = rcos, y(r,0) = rsin6; (50)

lem), written in a general system of coordinates (though with-

out paying due attention to the position of the indices). The r(z,y) = va? +y?, 0(x,y) = tan""(y/x).  (51)

geometry of the specific coordinates being encoded in the (i

verse of the) metric tensgrand the Christoffel symbols (see,

e.g, Christoffel symbols itMathematicy. (ds)? = (dz)? + (dy)? = (dr)> +72(d0)®  (52)
Between Eq. (18) and Eq. (47) there is a world of dif-

ference. Yet when the coordinatég;} are the appropriate \yith Eq. (34) one gets

ones for the visualization of the dynamical problem of inter-

est, Eq. (47) gives us the most transparent description of the gi=1, gra=gn =0, goo=r2 (53)

behavior of the system, as we shall see below.

nI:Jpon comparison of the arc element

The components of the inverse metric tensor are obtained by

3.3. Curvilinear coordinates and geometric forces inverting the matrix
Equation (47) shows that there are in general two sources for (10

- : ; = 2 | (54)
the acceleratiorj;, namely thegeneralized forcg; generated 0 r
by the external forcgf according to ) .

which gives
~ 8ql 8V _
= = —Gil, 48 _ _ _ _ _
f Zi:f Ox; Zj: 0q; 9t (48) gu=1 G12=0n=0, goa=1r" (55)

The metric tensor and its inverse can also be obtained of
course by resorting to Egs. (35) and (50), and to Egs. (37)
and (51), respectively.

and the additionahertial force £}, always bilinear in the ve-
locitiesg; and given by

F = _mz q'jq'kré,k. (49) Using now Eq. (48) we obtain for the components of the
Gk generalized force
Now, if the transformation:; — ¢; is linear, all coefficients :  _ oV _ oV 56
0%x;/0q;0q in Eq. (38) vanish, resulting in a null inertial fr= R LY (56)

force. Thus, inertial forces appear only when the transforma-
tion z; — ¢; is nonlinear A reference system that is nonlin- Whence

early related to an inertial one constitutes thusoainertial - - 1% ov
reference system, in which inertial forces appear as a result fr=h= _91137]1 T or (57)
of the curvature of the space coordinates
x = _ oV 10V
f95f2:—9227=—*27~ (58)
3.4. Two elementary problems as seen from the general 092 r? 00

theory The affine connections follow from Eq. (41), the only ele-

The powerful mathematical tools developed above are essef1€nts different from zero being

tial to deal with complex problems, say within general rela- ) 1 9gos

tivity, so the present exposition may be taken as groundwork Iy ==59u 0 =" (59)
for those higher matters. However, it seems appropriate to «

analyze here a couple of elementary problems, to gain famil- 2, — T3, = 1,22 0922 _ 1. (60)
iarity with such tools. 2777 01

Rev. Mex. k5. E17 (1) 47-54



POWER AND BEAUTY OF THE LAGRANGE EQUATIONS 53

From Eq. (49) applied to this case, The corresponding Lagrange equation for the uncon-
. strained generalized coordinate reads
Fy = —m (2054142 + Thyd3) (61)
dorT 0T ov
we obtain thus @on  on on (71)
F. = —mT},q2 = mré?, (62)  where we wrotel = T — V, with T  the kinetic energy (see
. 5 .. L Egs. (74) and (77) below). Equation (71) can be solvét-
Fp = =2mIN5q1G2 = —2mr™ 70, 63)  out knowing the forces of constrainThis is a great advan-

i : . . for the for f constrain nd on the motion of th
Substitution of these results in Eq. (47) gives the equatlongage.’ or the forces of constraint depe dq t e otion of the
o ; particle, and therefore cannot be determined in general un-
of motion in polar coordinates: : L . I
til the motion is known. In some instances it is important to
i . know such forces; these can then be calculated from the La-
mr=-—a- mro”, (64) grange equations for the constrained coordinate (in our case,

,
the coordinateys):

1 2 .
ml = —781 Mg, (65)
200 dor _or __ov 72
Notice that these equations contain each an inertial force dt 0qx 02 g2

term. Let us recast them both in a more familiar form. Firstly,

multiplication of (65) byr2 gives Indeed, by substituting here the solution fgr(¢) obtained

from solving Eq. (71), we find the constraining force
o oo d 94 dL ov (—9V/9dq2). This shows that the Lagrange formalism is par-
mrd + 2mrif = - (mr°f) = - = 250 68 ticularly suited to deal with systems subject to holonomic

dt
. ) -~ constraints.
wheremr260 has been identified as the angular momentum

L. This is the dynamical equation for the angular momen-
tum, driven just by the external torque. In particular, it shows4. The relation between momenta and veloci-
that for radial forces¥{ = V (r)) the angular momentum is ties. The Hamiltonian
conserved (it is an integral of motion),
) In concluding, it seems convenient to briefly recall the con-
L = mr?# = constant (67)  nection between the two fundamental functions that serve to
define, each one in their own capacity, the dynamics of a
On the other hand, in terms &f (whether conserved or not), mechanical system, namely the Lagrangian and the Hamil-
Eq. (64) takes the form tonian. For this purpose we first introduce the (generalized)
momentuny;, definedvia the Lagrangian as

2
mi =~ 4 L—3 (68) ,
which contains the centrifugal force? /mr? = mr6?, an / 94

inertial force that propels the particle radially away from the,o variables;, p; are thus said to be canonically conjugate.

origin. _In order to calculate;, we transformt(x, &) to £(q, §)
Let us now take as a second example the case of a partb—y resorting to Egs. (14), (28) and (35)

cle that, in addition to being subject to a conservative force

f(x,y) = —=VV(x,y), is constrained to move along a pre- . 1 0x; 0x; . .

scribed trajectory on the plane; we may think of a frictionless L(g,4) = ™M Z @aiqjqkqj V(z(q))

rail that enforces this dynamics, by exerting at all times a ok

force on the particle perpendicular to its trajectory. The ge- 1 ..

ometrical shape of the rail can be expressed as a functional - §ngqu’“% — Vi@(q))- (74)

relation that must hold between the two position coordinates K

(with a constant) Equation (73) gives therefore a linear relation between the
9(z,y) = a, (69)  momenta and the velocities

which reduces the number of degrees of freedom by one. )
We may conveniently choose the generalized coordinates as pi = ngiqu’ (75)
¢ = qi(x,y), andgs = a (g2 will be fixed to a constant k
value through the constriction (69)), which can be invertedyhich can be inverted to obtain
using (69) to solve for the Cartesian coordinates, )
i = — ik Dk - 76
5 = 2(q1,02), ¥ = ylar,a0). (70 = o 2 G (7o)
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Only for rectilinear coordinates (when all thg, are con-

L. DE LA PENA, A.M. CETTO AND A. VALD ES-HERMANDEZ

It is a simple, illustrative exercise to use this result for the

stant) this relation is constant along the trajectory. Furtherderivation of the set of equations of motion [2-4]
Eqg. (75) allows us to write the kinetic energy as

1 B 1 ..
T = % Zgijpipj = §mkzl:glkqu. (77)
1,7 2

oH

s = dqi,

0q; B

—Di- (81)

Note that the kinetic energy is always a bilinear function of hese are the notorious Hamilton equations of motion that

either the velocities or the momenta.
Let us now combine Egs. (9) and (14), to get

. . oL ]
£(q.4) = Zqia—q_ — L= dipi— LH(q,p). (78)

The right-hand side of this equation corresponds todife
inition of the Hamiltonian™(q, p), which, as is clear from
the first equality, for a closed, conservative system coincide
with the mechanical energy

By using (76) we recover a most important relationship

completely describe the evolution of any system defined by
the Hamiltoniar?(q, p, t). We see that there ageV differ-

ential Hamilton equations of first order for a system wikh

between the Lagrangian and the Hamiltonian,

degrees of freedom, while according to Eq. (19) the dynam-
ics of the same system is described¥yLagrange differen-

tial equations of second order. For this reason, in some cases
the description of the dynamics of a system in terms of the
E|amilton equations of motion is simpler than in Lagrangian
ter
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argument inverse tangent, which takes into account the signs of
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