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The Lagrangian formulation of the equations of motion for point particles is usually presented in classical mechanics as the outcome of a
series of insightful algebraic transformations or, in more advanced treatments, as the result of applying a variational principle. In this paper
we stress two main reasons for considering the Lagrange equations as a fundamental description of the dynamics of classical particles. Firstly,
their structure can be naturally disclosed from the existence of integrals of motion, in a way that, though elementary and easy to prove, seems
to be less popular —or less frequently made explicit— than others in support of the Lagrange formulation. The second reason is that the
Lagrange equations preserve their form inany coordinate system —even in moving ones, if required. Their covariant nature makes them
particularly suited to deal with dynamical problems in curved spaces or involving (holonomic) constraints. We develop the above and related
ideas in clear and simple terms, keeping them throughout at the level of intermediate courses in classical mechanics. This has the advantage
of introducing some tools and concepts that are useful at this stage, while they may also serve as a bridge to more advanced courses.
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1. Introduction

Classical dynamics has a mighty range of tools to describe
the motion of particles; among them we find in elementary
treatments the forces, potentials, constants of motion, sys-
tems of reference and, in a prominent place, the equations
of motion themselves. The first contact with the latter is un-
doubtedly through Newton’s widely-known second-order dif-
ferential equation that relates accelerations with forces. It is
of interest to recall that the invention of differential calcu-
lus by Newton was driven precisely by the need of a tool to
describe the motion of bodies. Usually it is only in more ad-
vanced courses that the student learns about other approaches
serving the same purpose, in particular the Lagrangian for-
mulation (established about a century after Newton’s), and
the Hamiltonian formulation (developed about half a century
later). We thus have at least three different sets of equa-
tions, all of them fundamental, and equivalent in that they
can be used alternatively to describe the behavior of the same
classical system. However, what is considered fundamental
depends on the intended descriptive level. From a histori-
cal perspective, Newton’s Second Law is fundamental, the
others having been derived from it with the introduction of
more elaborate principles and demands. In particular, the
Lagrange equations have a most remarkable and important
property, namely that they preserve their form in any system
of coordinates, even moving ones [1, 2]. This form-invariant
property reflects the fundamental fact that they express a law
of nature, which is naturally independent of our description.
Also interesting is the fact —expressing another law of na-
ture— that the Lagrange equations result from the single ele-

gant and powerful demand that a function called action attain
a minimum value along the trajectory followed by the parti-
cle [1,3]. The Hamiltonian formulation, in its turn, represents
a further elaboration providing a no less elegant set of differ-
ential equations. However, usually these derivations make
use of the more advanced calculus of variations, with which
we assume the reader-student not to be acquainted.

In this paper we arrive at the Lagrange equations by fol-
lowing a procedure that allows us to expose in clear and sim-
ple terms their connection with the integrals of motion —par-
ticularly, the energy— as well as their covariance,i.e., their
form-invariance with respect to a change of coordinate sys-
tem. An additional benefit of this alternative route is that it
allows us to disclose in a natural way the general structure
of the Lagrange equations. Our intention is to develop the
above ideas (and other related ones) in simple terms, work-
ing all the time at the level of intermediate courses in classical
mechanics.

The paper is structured as follows. In Sec. 2 the Lagrange
equations for a conservative system are derived, and the me-
chanical energy is shown to be the integral of motion asso-
ciated with them. In Sec. 3 the invariance of the Lagrange
equations under a transformation of the coordinate system is
discussed, and the covariant form of Newton’s Second Law is
derived. Special attention is paid to the emergence of inertial
forces as a result of the curvature of the coordinates (curvi-
linear coordinates). A couple of illustrative examples are pre-
sented in Sec. 3.4. Finally, Sec. 4 establishes the connection
between the Lagrangian and the Hamiltonian functions, and
briefly introduces Hamilton’s equations.
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2. The Lagrange equations and integrals of
motion

2.1. Integrals of motion

For the description of the motion of a particle it is often
convenient to use a system of (generalized) coordinates{qi}
suited for the particular problem, instead of Cartesian coordi-
nates{xi}. In what follows we shall consider such a system
{qi}, which is arbitrary except for the condition that the coor-
dinates can be expressed as regular, continuous and invertible
functions of the Cartesian coordinates{xi}, so that

qi = qi({xk}), xi = xi({ql}). (1)

This is an instance of apassivetransformation [1],i.e., one
involving a change of coordinate system only, without affect-
ing in any way the physical system. For simplicity we shall
omit the appearance of the time as a parameter in the transfor-
mation; this restricts our discussion topoint transformations,
that is, to purelygeometrictransformations [1-6].

Let us consider a differentiable scalar functionϕ(q, q̇),
with q̇ = dq/dt andq the vector withN components{qi},
N being the number of degrees of freedom. As a first step
we analyze the time derivative ofϕ, which we obtain apply-
ing the chain rule,

dϕ

dt
=

∑

i

[
∂ϕ

∂qi
q̇i +

∂ϕ

∂q̇i
q̈i

]

=
∑

i

[
∂ϕ

∂qi
q̇i +

d

dt

(
∂ϕ

∂q̇i
q̇i

)
− q̇i

d

dt

∂ϕ

∂q̇i

]
. (2)

A rearrangement of terms leads to the expression

d

dt

(∑

i

q̇i
∂ϕ

∂q̇i
− ϕ

)
=

∑

i

q̇i

(
d

dt

∂ϕ

∂q̇i
− ∂ϕ

∂qi

)
, (3)

which can be written in the more compact form

dγ

dt
=

∑

i

q̇iGi (4)

with

γ(q, q̇)≡
∑

i

q̇i
∂ϕ

∂q̇i
− ϕ, Gi(q, q̇)≡ d

dt

∂ϕ

∂q̇i
− ∂ϕ

∂qi
. (5)

Assume now that the functionϕ is selected such that the
correspondingγ does not evolve in time,i.e., dγ/dt = 0. We
denote such constant function withξ, and the corresponding
ϕ with ϕ(ξ). Equations (4) and (5) give then

dξ

dt
= 0 = q̇ ·G(ξ), (6)

whereG(ξ) is the vector with components

G
(ξ)
i =

d

dt

∂ϕ(ξ)

∂q̇i
− ∂ϕ(ξ)

∂qi
. (7)

The above equations establish a correspondence between
the constant of motionξ and the vectorG(ξ), which, accord-
ing to Eq. (6), is either zero or orthogonal to the velocityq̇
along the trajectory. Equation (7) exhibits in a natural way the
characteristic structure of the Lagrange equations. Indeed, in
the following section we will see that an analysis of the com-
ponentsG(ξ)

i takes us directly to the Lagrange equations, re-
vealing their equivalence with Newton’s Second Law, and to
the identification of the mechanical energy as the associated
integral of motion.

It is worthwhile to recall at this point that a closed me-
chanical system withN degrees of freedom may have at most
2N − 1 nontrivial and functionally independent constants of
motion, that is, functions ofq, q̇ andt whose value does not
change with time. The complete set of these constants de-
termines the trajectory of the particle in the2N -dimensional
phase space. Among the possible constants of motion there
are some that have a particular importance, the so-calledinte-
grals of motion. These are (continuous, single-valued, differ-
entiable) time-independent functions of the generalized co-
ordinates and their corresponding momenta (or velocities),
defined over the entire accessible phase space and having a
constant value along the trajectory. Thus each one serves in
principle to eliminate a degree of freedom from the descrip-
tion.

2.2. The Lagrange equations of motion

Let us consider a particle of massm under the action of
a time-independent, conservative forcef(x) = −∇V (x),
with V (x) the potential energy. In Cartesian coordinates the
mechanical energy of this particle reads

E = 1
2mẋ2 + V (x). (8)

According to our previous results, for thisE(x, ẋ) we can
construct aϕ(ξ) such that

E =
∑

i

ẋi
∂ϕ(ξ)

∂ẋi
− ϕ(ξ). (9)

The general solutionϕ(ξ)(x, ẋ) of this differential equation
reads

ϕ(E)(x, ẋ) = 1
2m

∑

i

ẋ2
i − V (x) +

∑

i

Qi(x)ẋi, (10)

where theQi are arbitrary functions ofx only. From Eqs. (7)
and (10) we obtain for the componentsG

(E)
i

G
(E)
i = mẍi − fi +

∑

j

(
∂Qi

∂xj
− ∂Qj

∂xi

)
ẋj (11)

= mẍi − fi +
dQi

dt
− ∂

∂xi

∑

j

Qj ẋj . (12)
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On the other hand, by separating the terms in Eq. (10)
that encode the dynamical information from the auxiliaryQi,
ϕ(E) can be rewritten in the form

ϕ(E) = L(x, ẋ) +
∑

i

Qi(x)ẋi, (13)

with
L(x, ẋ) = 1

2m
∑

i

ẋ2
i − V (x). (14)

We thus obtain using Eq. (7)

G
(E)
i =

d

dt

∂ϕ(E)

∂ẋi
− ∂ϕ(E)

∂xi
(15)

=
(

d

dt

∂L
∂ẋi

− ∂L
∂xi

)
+

dQi

dt
− ∂

∂xi

∑

j

Qj ẋj . (16)

Comparison of this with Eq. (12) gives

d

dt

∂L
∂ẋi

− ∂L
∂xi

= mẍi − fi. (17)

From here it follows that Newton’s Second Law (for a con-
servative system)

mẍi = − ∂V

∂xi
= fi (18)

is equivalent to the set of equations

d

dt

∂L
∂ẋi

− ∂L
∂xi

= 0, (19)

which holdirrespectiveof the functionsQi, and hence of the
specific vectorG(E). The equivalence means that any one of
the equations (18) and (19) implies the other one, via (17).

The functionL(x, ẋ) is the Lagrangianof the system,
and Eqs. (19) are theLagrange equations of motion, which,
as just seen, are equivalent to Newton’s Second Law. Note
thatL is a scalar, and as such it remains invariant under a
change of (spatial) coordinates.

Introducing Eq. (19) into (16) one obtains

G
(E)
i =

dQi

dt
− ∂

∂xi

∑

j

Qj ẋj , (20)

and hence, from Eq. (4),

dE
dt

=
∑

i

ẋiG
(E)
i =

∑

i

ẋi
dQi

dt
−

∑

j

ẋj
dQj

dt
= 0. (21)

This verifies Eq. (6) (forξ = E), as expected.
If the vectorQ is selected as irrotational, the terms under

the summation sign in Eq. (11) vanish andG(E) becomes the
null vector along the trajectory,G(E)

i = mẍi−fi = 0, which
is the trivial solution of Eq. (6). Since in this case one can
write Qi = ∂K/∂xi with K(x) an arbitrary scalar function
of x, Eq. (13) becomes

ϕ
(E)
K = L+

∑

i

∂K(x)
∂xi

ẋi = L+
dK

dt
. (22)

Further (see Eq. (11)),

d

dt

∂ϕ
(E)
K

∂ẋi
− ∂ϕ

(E)
K

∂xi
=

∑

j

(
∂Qi

∂xj
− ∂Qj

∂xi

)
ẋj = 0, (23)

a result that discloses the well-known and very useful prop-
erty of invariance of the Lagrange equations with respect to
the addition of a total time derivative of a scalar function of
x (andt, we may add),

L → L′ = L+
dK

dt
= ϕ

(E)
K , (24)

with K(x, t) freely selected [1, 2, 4, 6].L andL′ areequiv-
alent Lagrangians, meaning that the presence ofK is totally
inconsequential, since it does not affect the integrals of mo-
tion in any way. Thus there is an infinity of Lagrangians
associated with each mechanical system. This gives us the
freedom to select one that is appropriate for our purposes, as
is sometimes done in the literature. From Eq. (19) we also
verify thatL can be multiplied by an arbitrary constant. Thus
any Newtonian system accepts an infinity of equivalent La-
grangians.

As mentioned above, in more advanced textbooks it is
common to derive the Lagrange equations from a variational
principle, known as Hamilton’s principle, applied to theac-
tion of the system, defined as

S =

t2∫

t1

L[x(t), ẋ(t); t]dt. (25)

The variational principle becomes then the single one that
enters in place of the set of Newton’s equations of motion;
it states that the deviationδS of the action for any infinites-
imal arbitrary deviation from the real trajectory followed by
the particle, for initial and final timest1 andt2 fixed, is null.
Otherwise stated, the action acquires an extremum (usually
a minimum) value along the real trajectory fromt1 to t2. A
relatively immediate application of this demand to Eq. (25)
leads to the Lagrange equations of motion [1-6]. Since the
variation ofL′ given by equation (25) is the same as forL for
t1 andt2 fixed, the variational principle holds for all equiva-
lent Lagrangians.

The fact that the whole set of equations of motion fol-
lows from asingleprinciple of minimum action is of course
most appealing, and it is not surprising that it gives rise to
extremely valuable tools for the development of theoretical
physics. However, some caution is needed to understand its
significance. Newton’s Second Law is strictly local, mean-
ing that the particle respondsinstantaneouslyto the force ap-
plied just on it, at its position and at precisely that instant.
The principle of least action, by contrast, refers to what hap-
pensalong the entire trajectoryfrom t1 to t2; it says that the
particle adjusts its trajectory from the initial to the final time
so that the accumulated action will result in a minimum. Of
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course the principle applies only because it holds for each
infinitesimal displacement, so the particle accumulates min-
imal actions one after the next along its trajectory. The par-
ticle does not know at timet1 what it will be performing at
a future timet2, in order to adjust itself to the demand of
a global minimum action: the global action is minimal be-
cause each microscopic action is minimal. For an elementary
derivation of the Lagrange equations from Hamilton’s princi-
ple see,e.g., [8].

3. Covariance of the equations of motion

In the foregoing section it became clear that for the single-
particle, conservative problem treated here, the Lagrange
equations of motion are equivalent to Newton’s equations of
motion, so one might wonder what is the advantage of us-
ing the former. One important difference is that the Lagrange
equations, unlike Newton’s, have thesame formin all coor-
dinate systems, as we shall now see. This property ultimately
follows (in the present derivation) from the fact that the scalar
product is invariant under geometric transformations. Specif-
ically, Eqs. (6) and (7) hold for all coordinate systems, so
that in terms of another set of coordinatesq′i = q′i({ql}) for
instance, we haveϕ′(ξ) = ϕ(ξ)[q(q′)], and

dE
dt

= 0 =
∑

i

q̇iG
(E)
i =

∑

k

q̇′kG
′(E)
k , (26)

with

G
′(E)
k =

d

dt

∂ϕ′(E)

∂q̇′k
− ∂ϕ′(E)

∂q′k
. (27)

Since the Cartesian coordinates{xi} and the generalized
coordinates{qi} are related according to Eq. (1), we have

dxi =
∑

k

∂xi

∂qk
dqk, dqi =

∑

k

∂qi

∂xk
dxk, (28)

and therefore,

∑

i

ẋiG
(E)
i (x) =

∑

i

( ∑

k

∂xi

∂qk
q̇k

)
G

(E)
i [x(q)]

=
∑

k

q̇k

( ∑

i

∂xi

∂qk
G

(E)
i [x(q)]

)
. (29)

Thus, the invariance of the scalar product in (26) gives the
law of transformation ofG(E)

i (x),

G
(E)
k (q) =

∑

i

∂xi

∂qk
G

(E)
i (x(q)). (30)

From Eqs. (13), (16) and (19) we note that the choiceQi = 0
impliesϕ(E) = L andG

(E)
i = 0, hence alsoG′(E)

k = 0 ac-
cording to Eq. (30). Therefore, from Eq. (27) we arrive at

d

dt

∂L(q, q̇)
∂q̇i

− ∂L(q, q̇)
∂qi

= 0, (31)

which confirms that the Lagrange equations look the same in
anysystem of coordinates{qi}. In more formal terms we say
that the Lagrange equations arecovariant, or that they are
written in covariant form.

But then, what is the importance of covariance? Newton’s
law is aphysicallaw, and as such it is totally independent of
which system of coordinates is used to express it. The law
expresses a fact of nature, whereas our coordinate system is
something external to it, freely and arbitrarily selected. Ex-
pressing the physical law in such a way that it does not de-
pend on the coordinate system, would of course be most ap-
propriate and satisfactory.

To guarantee the independence of the law from the se-
lected basis vectors, the matrix that transforms the vector
components must be theinverseof the matrix that transforms
the basis vectors. We say that such vector components trans-
form contravariantly with respect to the basis vectors. This
feature, which is crucial to guarantee that the laws of nature
are the same inany coordinate system, applied to the sec-
ond of equations (28), implies that thek-th component of the
velocities transforms as

q̇k =
∑

i

∂qk

∂xi
ẋi, (32)

whereas thek-th component of the vectorG transformsin-
versely, in terms of the matrix elements∂xi/∂qk instead of
∂qk/∂xi, as follows from Eq. (30). Below we come back to
this point.

3.1. Some geometry

In preparation for the following section we develop here
some mathematical tools that will be useful to distinguish be-
tween the geometric properties and the dynamical properties
of a system, when arbitrary coordinates{qi} are employed.

Consider first the arc elementds. We may express this el-
ement in both the Cartesian coordinate system and the more
general one{qi}; we then have

(ds)2 =
∑

i,j

ηijdxidxj =
∑

k,l

gkldqkdql, (33)

whereηij andgkl are the components of themetric tensor
g in terms of the Cartesian and the generalized coordinates,
respectively. Using the first equation in (28) we are led to

(ds)2 =
∑

i,j,k,l

ηij
∂xi

∂qk

∂xj

∂ql
dqkdql =

∑

k,l

gkldqkdql; (34)

thusgkl =
∑

i,j ηij(∂xi/∂qk)(∂xj/∂ql). For a Euclidean
(flat) space,ηij = δij , and therefore

gkl = glk =
∑

i

∂xi

∂qk

∂xi

∂ql
. (35)

Thus the componentsgkl are constant for linear transforma-
tions; for curvilinear coordinates they are nontrivial functions
of the generalized variables.
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The components of the inverse of the metric tensor
g−1=ḡ are such thati

∑

l

gilḡln = δin, (36)

and they are given by

ḡkl = ḡlk =
∑

i

∂qk

∂xi

∂ql

∂xi
. (37)

A set of functions that will be of relevance, as we shall
see below, are the Christoffel symbols (a kind of affine con-
nections)Γl

jk, defined as [2,9,10]

Γl
jk = Γl

kj ≡
∑

i

∂ql

∂xi

∂2xi

∂qj∂qk
. (38)

A comparison with Eq. (35) suggests that theΓl
jk will be

useful to express the derivatives of the metric tensor and
viceversa. Indeed, by taking the derivative ofgkl and using
Eq. (38), one arrives at the expression

∂gkl

∂qs
=

∑

i

(
gilΓi

ks + gikΓi
ls

)
. (39)

To invert this relation and express the affine connection in
terms of the metric tensor, one combines the above equation
and its two permutations, thereby obtaining

∂gkl

∂qs
+

∂gsl

∂qk
− ∂gks

∂ql
= 2

∑

i

gilΓi
ks. (40)

Multiplying the above equation bȳgln and sum overl leads to
a formula for the Christoffel symbols in terms of the deriva-
tives of the metric tensor

Γn
ks =

1
2

∑

l

ḡln

(
∂gkl

∂qs
+

∂gsl

∂qk
− ∂gks

∂ql

)
. (41)

Since the affine connections depend on the coordinates
only and not on the velocities (see Eq. (38)), they have a ge-
ometric meaning and are directly related to the metric of the
space in question.

With this we have the geometric tools required to de-
scribe Newtonian dynamics in an arbitrary coordinate sys-
tem, which is the aim of the following section; but before
closing this one it is convenient to add a couple of comments
regarding the notation.

In the affine connections defined by Eq. (38) we intro-
duced lower and upper indices: these represent different laws
of transformation, so their meaning is important and goes be-
yond a mere convenience in the writing. The upper indices
describe the components ofcontravariant tensors, whereas
the lower indices refer to thecovariantones. Thecontravari-
ant components of a vector are obtained by projecting the
vectoronto the coordinate axes; in their turn, the covariant
components are obtained by projectingonto the lines normal
to the coordinate hyperplanes[10,12].

An example of a contravariant vector is given in
Eq. (32) (another one is the law of transformation forfi in
Eq. (48) below), which transforms with the matrix elements
∂qk/∂xi. An example of a covariant vector, transforming
with ∂xi/∂qk, appears in Eq. (30). In an orthogonal system
of coordinates these vectors coincide (except for a possible
interchange of coordinates), so there is no need to distinguish
between them. However, in general both kinds of indices (of
transformations) are necessary; this happens in particular in
the general theory of relativity where space-time is curved
due to the presence of matter and energy, and is also the case
in Eq. (47) below. The scalar product corresponds then to
a contraction, i.e., the sum over two equal indices, one from
a factor that transforms covariantly (written as a subindex),
and the other from a factor that transforms contravariantly
(written as a superindex), as in

∑
i qiGi = q · G, resulting

in an invariant (a scalar). Notice that, in line with classical
mechanics terminology, we have avoided the distinction be-
tween upper and lower indices when writing covariant and
contravariant components. For a more detailed discussion
see,e.g., Refs. [1,2,4].

3.2. Covariant form of Newton’s second law

In this section we go back to Eq. (18) and apply a geometric
transformation, to express it in terms of generalized coordi-
nates. The process will lead us to the covariant form of New-
ton’s Second Law, clearly revealing that theinertial forces
(forces proportional to the mass of the particle) have a geo-
metric origin associated with the curvature of the coordinates.

We first express̈xi in terms of the generalized coordinates
{qi} and their time derivatives as follows,

ẍi(q) =
d

dt

∑

k

q̇k
∂xi

∂qk
=

∑

k

q̈k
∂xi

∂qk

+
∑

j,k

q̇j q̇k
∂2xi

∂qj∂qk
. (42)

Since we are looking for an equation forq̈k, it is convenient
to multiply the above expression by∂ql/∂xi, sum overi, and
use the equality

∑

i

∂xi

∂qk

∂ql

∂xi
=

∂ql

∂qk
= δkl, (43)

to obtain

q̈l +
∑

j,k

q̇j q̇kΓl
jk =

∑

i

ẍi(q)
∂ql

∂xi
. (44)

The dynamics enters by using Eq. (18) in the form

ẍi =
1
m

fi = − 1
m

∑

j

∂V (q)
∂qj

∂qj

∂xi
, (45)
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so that
∑

i

ẍi
∂ql

∂xi
= − 1

m

∑

i,j

∂V (q)
∂qj

∂qj

∂xi

∂ql

∂xi

= − 1
m

∑

j

∂V (q)
∂qj

ḡjl. (46)

Substitution into Eq. (44) leads to the desired dynamical
equation,

mq̈l =
∑

j

−∂V (q)
∂qj

ḡjl −m
∑

j,k

q̇j q̇kΓl
jk. (47)

This is the explicit covariant form of Newton’s Second Law
(for the single-particle, conservative and unconstrained prob-
lem), written in a general system of coordinates (though with-
out paying due attention to the position of the indices). The
geometry of the specific coordinates being encoded in the (in-
verse of the) metric tensorg and the Christoffel symbols (see,
e.g., Christoffel symbols inMathematica)ii.

Between Eq. (18) and Eq. (47) there is a world of dif-
ference. Yet when the coordinates{qi} are the appropriate
ones for the visualization of the dynamical problem of inter-
est, Eq. (47) gives us the most transparent description of the
behavior of the system, as we shall see below.

3.3. Curvilinear coordinates and geometric forces

Equation (47) shows that there are in general two sources for
the acceleration̈ql, namely thegeneralized forcẽfl generated
by the external forcef according to

f̃l =
∑

i

fi
∂ql

∂xi
= −

∑

j

∂V

∂qj
ḡjl, (48)

and the additionalinertial forceF̃l, always bilinear in the ve-
locities q̇i and given by

F̃l = −m
∑

j,k

q̇j q̇kΓl
jk. (49)

Now, if the transformationxi → qi is linear, all coefficients
∂2xi/∂qj∂qk in Eq. (38) vanish, resulting in a null inertial
force. Thus, inertial forces appear only when the transforma-
tion xi → qi is nonlinear. A reference system that is nonlin-
early related to an inertial one constitutes thus anoninertial
reference system, in which inertial forces appear as a result
of the curvature of the space coordinatesiii.

3.4. Two elementary problems as seen from the general
theory

The powerful mathematical tools developed above are essen-
tial to deal with complex problems, say within general rela-
tivity, so the present exposition may be taken as groundwork
for those higher matters. However, it seems appropriate to
analyze here a couple of elementary problems, to gain famil-
iarity with such tools.

Assume we are interested in the study of a point particle
moving on a plane. We may describe its motion using Carte-
sian coordinatesx1 = x, x2 = y, polar coordinatesq1 = r,
q2 = θ, or some other set of coordinates; the choice may de-
pend on the symmetry properties of the forces acting on the
particle, or on constraints imposed on the motion.

Let us first consider the simple case of a central force,i.e.,
a force that acts along the line joining the particle and the
center of force (taken as the origin), and whose magnitude
does not depend on the angle. In such case, because of the
circular symmetry, the polar coordinates are the most appro-
priate ones. The transformation rules between the Cartesian
and polar coordinates areiv

x(r, θ) = r cos θ, y(r, θ) = r sin θ; (50)

r(x, y) =
√

x2 + y2, θ(x, y) = tan−1(y/x). (51)

Upon comparison of the arc element

(ds)2 = (dx)2 + (dy)2 = (dr)2 + r2(dθ)2 (52)

with Eq. (34) one gets

g11 = 1, g12 = g21 = 0, g22 = r2. (53)

The components of the inverse metric tensor are obtained by
inverting the matrix

g =
(

1 0
0 r2

)
, (54)

which gives

ḡ11 = 1, ḡ12 = ḡ21 = 0, ḡ22 = r−2. (55)

The metric tensor and its inverse can also be obtained of
course by resorting to Eqs. (35) and (50), and to Eqs. (37)
and (51), respectively.

Using now Eq. (48) we obtain for the components of the
generalized force

f̃l = −ḡl1
∂V

∂q1
− ḡl2

∂V

∂q2
, (56)

whence

f̃r ≡ f̃1 = −ḡ11
∂V

∂q1
= −∂V

∂r
, (57)

f̃θ ≡ f̃2 = −ḡ22
∂V

∂q2
= − 1

r2

∂V

∂θ
. (58)

The affine connections follow from Eq. (41), the only ele-
ments different from zero being

Γ1
22 = −1

2
ḡ11

∂g22

∂q1
= −r, (59)

Γ2
12 = Γ2

21 =
1
2
ḡ22

∂g22

∂q1
=

1
r
. (60)
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From Eq. (49) applied to this case,

F̃l = −m
(
2Γl

12q̇1q̇2 + Γl
22q̇

2
2

)
, (61)

we obtain thus

F̃r = −mΓ1
22q̇

2
2 = mrθ̇2, (62)

F̃θ = −2mΓ2
12q̇1q̇2 = −2mr−1ṙθ̇. (63)

Substitution of these results in Eq. (47) gives the equations
of motion in polar coordinates:

mr̈ = −∂V

∂r
+ mrθ̇2, (64)

mθ̈ = − 1
r2

∂V

∂θ
− 2m

r
ṙθ̇. (65)

Notice that these equations contain each an inertial force
term. Let us recast them both in a more familiar form. Firstly,
multiplication of (65) byr2 gives

mr2θ̈ + 2mrṙθ̇ =
d

dt
(mr2θ̇) =

dL

dt
= −∂V

∂θ
, (66)

wheremr2θ̇ has been identified as the angular momentum
L. This is the dynamical equation for the angular momen-
tum, driven just by the external torque. In particular, it shows
that for radial forces (V = V (r)) the angular momentum is
conserved (it is an integral of motion),

L = mr2θ̇ = constant. (67)

On the other hand, in terms ofL (whether conserved or not),
Eq. (64) takes the form

mr̈ = −∂V

∂r
+

L2

mr3
, (68)

which contains the centrifugal forceL2/mr2 = mrθ̇2, an
inertial force that propels the particle radially away from the
origin.

Let us now take as a second example the case of a parti-
cle that, in addition to being subject to a conservative force
f(x, y) = −∇V (x, y), is constrained to move along a pre-
scribed trajectory on the plane; we may think of a frictionless
rail that enforces this dynamics, by exerting at all times a
force on the particle perpendicular to its trajectory. The ge-
ometrical shape of the rail can be expressed as a functional
relation that must hold between the two position coordinates
(with a constant)

g(x, y) = a, (69)

which reduces the number of degrees of freedom by one.
We may conveniently choose the generalized coordinates as
q1 = q1(x, y), andq2 = a (q2 will be fixed to a constant
value through the constriction (69)), which can be inverted
using (69) to solve for the Cartesian coordinates,

x = x(q1, q2), y = y(q1, q2). (70)

The corresponding Lagrange equation for the uncon-
strained generalized coordinate reads

d

dt

∂T

∂q̇1
− ∂T

∂q1
= − ∂V

∂q1
, (71)

where we wroteL = T − V , with T the kinetic energy (see
Eqs. (74) and (77) below). Equation (71) can be solvedwith-
out knowing the forces of constraint. This is a great advan-
tage, for the forces of constraint depend on the motion of the
particle, and therefore cannot be determined in general un-
til the motion is known. In some instances it is important to
know such forces; these can then be calculated from the La-
grange equations for the constrained coordinate (in our case,
the coordinateq2):

d

dt

∂T

∂q̇2
− ∂T

∂q2
= − ∂V

∂q2
. (72)

Indeed, by substituting here the solution forq1(t) obtained
from solving Eq. (71), we find the constraining force
(−∂V/∂q2). This shows that the Lagrange formalism is par-
ticularly suited to deal with systems subject to holonomic
constraintsv.

4. The relation between momenta and veloci-
ties. The Hamiltonian

In concluding, it seems convenient to briefly recall the con-
nection between the two fundamental functions that serve to
define, each one in their own capacity, the dynamics of a
mechanical system, namely the Lagrangian and the Hamil-
tonian. For this purpose we first introduce the (generalized)
momentumpi, definedvia the Lagrangian as

pi =
∂L(q, q̇)

∂q̇i
. (73)

The variablesqi, pi are thus said to be canonically conjugate.
In order to calculatepi, we transformL(x, ẋ) toL(q, q̇)

by resorting to Eqs. (14), (28) and (35),

L(q, q̇) =
1
2
m

∑

i,j,k

∂xi

∂qk

∂xi

∂qj
q̇k q̇j − V (x(q))

=
1
2
m

∑

j,k

gkj q̇k q̇j − V (x(q)). (74)

Equation (73) gives therefore a linear relation between the
momenta and the velocities

pi = m
∑

k

gikq̇k, (75)

which can be inverted to obtain

q̇i =
1
m

∑

k

ḡikpk. (76)
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Only for rectilinear coordinates (when all thegik are con-
stant) this relation is constant along the trajectory. Further,
Eq. (75) allows us to write the kinetic energy as

T =
1

2m

∑

i,j

ḡijpipj =
1
2
m

∑

k,l

glk q̇lq̇k. (77)

Note that the kinetic energy is always a bilinear function of
either the velocities or the momenta.

Let us now combine Eqs. (9) and (14), to get

E(q, q̇) =
∑

i

q̇i
∂L
∂q̇i

− L =
∑

i

q̇ipi − LH(q, p). (78)

The right-hand side of this equation corresponds to thedef-
inition of the HamiltonianH(q,p), which, as is clear from
the first equality, for a closed, conservative system coincides
with the mechanical energyvi.

By using (76) we recover a most important relationship
between the Lagrangian and the Hamiltonian,

H =
1
m

∑

i,k

ḡikpkpi − L, (79)

which gives

H(q, p) =
1

2m

∑

i,j

ḡijpipj + V (q). (80)

It is a simple, illustrative exercise to use this result for the
derivation of the set of equations of motion [2-4]

∂H
∂pi

= q̇i,
∂H
∂qi

= −ṗi. (81)

These are the notorious Hamilton equations of motion that
completely describe the evolution of any system defined by
the HamiltonianH(q, p, t). We see that there are2N differ-
ential Hamilton equations of first order for a system withN
degrees of freedom, while according to Eq. (19) the dynam-
ics of the same system is described byN Lagrange differen-
tial equations of second order. For this reason, in some cases
the description of the dynamics of a system in terms of the
Hamilton equations of motion is simpler than in Lagrangian
terms.
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i. The transition from thex-system to theq-system of coordi-
nates can be viewed as a mere change of variables, where the
coefficientsJkl = (∂xi/∂qk) are the elements of the Jaco-
bian of the transformation (for the transition fromxk to qk)
and, similarly, the elements of the inverse matrixJ−1 = J̄ are
J̄lk = (∂qk/∂xl) (for the inverse transition fromqk to xk).

ii. Though this form is not common in classical mechanics, it can
be found from time to time [2,11].

iii. The observation that forces can be associated with curvatures of
the coordinate system —so fundamental for the general theory
of relativity—and that a covariant description is needed, is older
than one would think; it was mentioned already by the brilliant
German mathematician Bernhard Riemann (1826-1866), fol-
lowed by another brilliant mathematician, the British William
K. Clifford (1845-1879), as discussed in Ref. [13], Chapter 5.

iv. In Eq. (51) it should be understood thattan−1(y/x) is the two-
argument inverse tangent, which takes into account the signs of
bothx andy.

v. Here we have dealt withholonomicconstraints, which depend
on the position coordinates. In the more general case, con-
straints may include restrictions on the velocity. If these con-
straints can be integrated so as to lead to an expression of the
form (69), they are still holonomic. There are cases, however,
in which the equations of constraint cannot be integrated (take
for instance, a circular wire rolling on a plane without slipping);
we then speak ofnonholonomicconstraints. For a more detailed
discussion and additional examples see Ref. [6], Chapter 9.

vi. The functionE(q, q̇), whose value is just that of the Hamil-
tonianH(q, p) but expressed in terms of velocities instead of
momenta, is called theenergy function; see Ref. [1], Sec. 2.7.
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