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A simple electronic device to experiment with the Hopf bifurcation
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We present a simple low-cost electronic circuit that is able to show two different dynamical regimens with oscillations of voltages and
with constant values of them. This device is designed as a negative feedback three-node network, inspired in the genetic repressilator. The
circuit’s behavior is modeled by a system of differential equations which is studied in several different ways by applying the dynamical system
formalism, making numerical simulations and constructing and measuring it experimentally. We find that the most important characteristics
of the Hopf bifurcation can be found and controlled. Particularly, a resistor value plays the role of the bifurcation parameter, which can be
easily varied experimentally. As a result, this system can be employed to introduce many aspects of a research in a real physical system, and
it enables us to study one of the most important kinds of bifurcation.
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1. Introduction

Physical systems, generally, are mathematically modeled by
differential equations and studied in the framework of the dy-
namical system theory [1, 2]. This formalism is also applied
to many other systems like biological and economic ones [3].
The main goal of this theory is to find the behavior of the
solutions or the trajectories in the space of system variables
and, in particular, how they evolve to different kind of at-
tractors, like fixed points and limit cycles. Notably, many
systems have the property of having several qualitatively dif-
ferent solutions as a function of a certain parameter. The bi-
furcation analysis is the part of dynamical systems that stud-
ies the way in which these changes of dynamics arise with
respect to these bifurcation parameters.

The Hopf bifurcation is one of the most important and
known bifurcations in this theory. It is characterized by
changes of dynamics between stationary states (stable fixed
points) with fixed values for the system variables, and oscil-
latory dynamics (limit cycles) where these variables evolve
periodically in time. The system dynamics are controlled by
a bifurcation parameter which is in general an important and
characteristic parameter of the system.

This bifurcation emerges in many mathematical models
that try to describe different real systems. For example, the
Hodgkin-Huxley [4] and the FitzHugh-Nagumo [5] models
for the neural membrane potential. Non-linear chemical os-
cillators like the Belousov-Zhabotinsky reaction [6] with the
Oreganator [7] model as a possible mechanism of operation,
and the Brusselator [8]. Some special cases of the predator-
prey model [9] for population dynamics. The Lorentz attrac-
tor [10] as a paradigmatic example of deterministic chaos.

And finally, we mention the repressilator [11] as an example
of a genetic network.

We can figure out from the previous paragraph that the
Hopf bifurcation plays an important role in the characteriza-
tion of many systems. However, most of the systems that
the previous models tried to characterize are quite difficult
to implement in a laboratory for undergraduate students. We
propose in this work to design a very simple electronic cir-
cuit that is able to behave as having a Hopf bifurcation. We
do not only observe typical oscillations, but we can also con-
trol the bifurcation parameter (resistor) in order to observe all
the regimens of this bifurcation.

The proposed circuit is based on the genetic repressila-
tor [11]. It is an artificial genetic regulatory network that
consists of three genes that repress each other in a loop struc-
ture. It is a paradigmatic example of thesynthetic biology
field [12]. Although very sophisticated electronic devices
have been proposed for genetic systems [13], the main prin-
ciple of operation of the repressilator can be mimicked with a
simpleRC circuit. In effect, some of these circuits have been
implemented in order to study synchronization properties on
networks of artificial like-genes [14].

This manuscript is organized as follows in the next sec-
tion, we introduce the electronic circuit and the mathematical
model to describe it. We also develop a linear stability analy-
sis and we find the eigenvalues of the stability matrix. In the
third section, we present the analytical, numerical and the ex-
perimental results. Finally, we discuss this work and present
the conclusion in the last section.
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FIGURE 1. (a) Schematic representation of a repressilator-like sys-
tem. (b) Electronic circuit of a node. The node is characterized by
the output signalVC and it is controlled by the input signalVin.

2. Model

The genetic repressilator consists of three genes that repress
each other in a loop-like structure as it is shown in Fig. 1(a).
The flat arrows are the biological representation of a repres-
sive directed interaction from a node to the other. We can give
an insight of the operation of this system for certain param-
eter values as follows. Each node or gene is characterized to
behave as a bistable unit with high and low levels of expres-
sion. Thus, when a node has a high expression it strongly
represses the node that it points to. The effect in the second
node is to reduce its expression and take the lower level. And
so it results in a reduction of the repression of the third node
that takes a high state. It is clear that this chain of effects
cannot be stabilized since the system presents a kind offrus-
tration and oscillatory dynamics emerge.

2.1. Circuit design

As a first task, we designed an electronic node that is able to
present dynamics with two levels of expression. A node in
this circuit can be seen in Fig. 1(b). This is a simpleRC
circuit where the path of charge and discharge of the capaci-
tor can vary depending on the transistor state which operates
basically as a switch. The expression level of this device is
given byVC , and the input signal is given byVin.

In the first case, whenVin = 0, the transistor is in the
cut-off regionand does not allow current to flow between its
collector and emitter, and the circuit is described as

dVC

dt
=

V − VC

(R1 + R2)C
. (1)

Here, the capacitor will get a chargeVC = V with a time
constatτ1 = (R1 + R2)C.

In the second case, whenVin/R3 À h, the transistor is
in thesaturation regionand it conducts current between the
collector and the emitter, and the system is described by

dVC

dt
= − VC

R2C
. (2)

In this case the capacitor discharges to zero with a time con-
stantτ2 = R2C. The parameterh indicates the minimum
value of current needed in order to activate the transistor.

We note that when currentVin/R3 in the base of the tran-
sistor is not enough to reach the saturation region the circuit
behaves as a combination of the two previous cases. We can
model this general situation like

dVC

dt
=

1(
R1u(Vin) + R2

)
C

(
V u(Vin)− VC

)
. (3)

In this equation the step-like function is

u(x) =
1
2

[
tanh

(
β

(
h− x

R3

))
+ 1

]
. (4)

The functionu(x) is an approximated description of the be-
havior of this circuit with aNPN transistor. Parametersβ
andh depend on the internal properties of the transistor and
the other elements of the circuit.β is the current gain of the
transistor defined as:

β = Ib/Ic (5)

whereIb is the base current andIc is the collector current.
h is a hybrid parameter of the transistor in common emitter
configuration. It depends on the quiescent point of the tran-
sistor, i.e., the external components in the circuit. As a result
of this design, the voltageVC can vary betweenV and zero
depending onVin. In particular,Vin plays the role of a re-
pressive signal sinceVC behaves vice verse toVin.

In the next step, we connect three of these nodes in a
loop in order to construct a negative feedback closed-loop
network. The output voltageVi of a node (previousVC) is
used as input (Vin) of the next node. The dynamics for such
a system is as follows

dVi

dt
= Fij(Vi, Vj)

=
1(

R1u(Vj) + R2

)
C

(
V u(Vj)− Vi

)
. (6)

Here, only the elementsF12(V1, V2), F23(V2, V3) and
F31(V3, V1) are different from zero.

The model we obtain in (6) is a non-linear system of cou-
pled first order differential equations. The non-linearity is the
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result of functionu(V ) with its sigmoid shape (tanh()). Ad-
ditionally, as a result of this particular function, we cannot
find a closed-form expression for the solution to this system.
Note that this kind of expressions are common for model-
ing circuits with transistors. For example, the work cited in
Ref. [14] also employs a similar description for its device.

2.2. Stability analysis

We start this analysis of the mathematical model by search-
ing the fixed points of the system (6), and later, we develop
the linear stability analysis on this point.

2.2.1. Fixed point

The fixed point of the system (6) is the point in the space of
voltages{Vi} (i = 1, 2, 3) where the condition(dVi/dt) = 0
is satisfied. In order to find this point we argue in the follow-
ing way. The three coupled equations are identical among
them with a strong symmetry with respect to the voltages
(circular reference). As a result, they must fulfill the same
condition simultaneously. That is:

u(Vp) =
Vp

V
. (7)

Here,Vp is the voltage that the capacitors must have in order
to settle the system on the the fixed point. Although we can-
not find a close-form expression forVp we can observe that it
corresponds to the intersection of a straight (y = Vp/V ) and
a negative hyperbolic tangent (y = − tanh(Vp)). Thus, it is
simple to see that there is only one possible intersection of
these two curves. As a result the system has always only one
fixed point. We call this point~P = (Vp, Vp, Vp).

Since we cannot find explicitly the value ofVp because
the characteristics of the functionu(x), we propose to get
this value numerically by reducing the quantity

ε(Vp) =

∣∣∣∣∣u(Vp)− Vp

V

∣∣∣∣∣. (8)

This miminization is performed by variyingVp between zero
andV each small intervals∆Vp and computing the quantity
ε(Vp). A small value of∆Vp ensures a good approximation
for the position of the fixed point.

2.2.2. Linear stability analysis

We evaluate the Jacobian matrix of the system (6) on the fixed
point ~P . The elements of this matrix are

A =
∂Fij

dVi

∣∣∣∣∣
~P

= − 1(
R1u(Vj) + R2

)
C

∣∣∣∣∣
~P

(9)

and

B =
∂Fij

dVj

∣∣∣∣∣
~P

=
u′(Vj)

C

[
V

(R2 + R1u(Vj))
(10)

− ViR1 + V R2(
R1u(Vj) + R2

)2

]∣∣∣∣∣
~P

,

with

u′(x) = −1
2

β

R3
sech2

(
β

(
h− x

R3

))
. (11)

The Jacobian matrix has the shape

J =




A 0 B
B A 0
0 B A


 . (12)

This matrix has the following eigenvalues

λ1 = A + B, (13)

λ2 = A− 1
2
B +

√
3

2
Bi,

λ3 = A− 1
2
B −

√
3

2
Bi.

In order to know the kind of dynamics as a function ofR3,
we need to find the sign of the real parts of these eigenvalues.
In particular, we need to know if Re(λ2,3) = 0 for a critical
valueRc for the bifurcation parameterR3. Unfortunately, we
could not find an analytical formula for this dependence and
we need to evaluate these expressions numerically.

3. Results

In this section, we present several results of this device and
its mathematical model. We show numerical simulations and
experimental work.

3.1. Experimental study

We constructed the experimental device whose design is
shown in Fig. 1(b). The values of the electronic elements

FIGURE 2. Experimental setup implemented on an experimetal
breadboard.
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FIGURE 3. Oscilloscope measurements of voltagesVi as a function
of time after the transients for two nodes. In each figure the control
parameter has different values: (a)R3 = 1 kΩ, (b) R3 = 47 kΩ,
(c) R3 = 100 kΩ and (d)R3 = 110 kΩ.

are: R1 = 1 KΩ, R2 = 1 KΩ, C = 220 nF, V = 5.45 V.
The transistor is typeNPN model 2sc2235. The experi-
mental setup is shown in Fig. 2. We note that in the ex-
perimental device there are variations on the values of the
electronic components between nodes because of the manu-
facturing dispersion. As a result, the analytical derivations
we have performed before are qualitatively correct if these
variations are relatively small.

We measure the voltagesVi in the capacitors using an os-
cilloscope as a function of different values ofR3. The initial
condition of the device is discharged with the power supply
off. After turning on the voltage sourceV = 5.45 V and after
a transient, the output voltagesVi oscillate or reach constant
values in time. Figure 3 presents four measurements for dif-
ferent values ofR3 where oscillations are established. We
find that the frequencies are higher for smaller values ofR3

TABLE I. Frequencies as a function ofR3 for the experiemntal de-
vice.

R3 [KΩ] Frequency [KHz]

1 1.88

2.2 1.38

5 1.14

10 1.11

20 1.08

47 1.07

100 0.872

and that oscillations cannot be found after a critical value
Rc = 110 KΩ for R3 (Fig. 3(d)). Table I summarizes the set
of measurements for this device. We observe in Fig. 3(a) that
the voltages of the capacitors possess an exponential charge
and discharge that can be easily seen. In effect, with a fre-
quency of 1.88 KHz the periodT = 5.32× 10−4 s is around
the addition of the two characteristic times of this system:
τ1 = R2C = 2.2 × 10−4 s andτ2 = (R1 + R2)C =
4.4 × 10−4 s. On the other hand, when the system is close
to the bifurcation point (Fig. 3(c) withR3 = 100 KΩ) the
signals are almost sinusoidal as we expected from the theory
of Hopf bifurcations.

Finally, we measure the three output voltages when oscil-
lations are absent forR3 À Rc (R3 = 200 KΩ). We find that
the voltages are:V1 = 2.5 V, V2 = 2.93 V andV3 = 2.96 V.
Note that the three voltages are different, and this differs from
the theoretical analysis from which we expected the same val-
ues. These variations in the fixed point position are in part
due to the dispersion of values of the electronic components.

3.2. Numerical analysis

In this subsection we present numerical studies in order to
compute the voltage values on the fixed point and the eigen-
values of the stability matrix. We also share some examples
of the possible dynamics that this model can show. In order
to have compatible results in our simulations with the exper-
iment, we choseβ andh values that make fit both behaviors
in the region where the Hopf bifurcation takes place. As a
result we takeβ = 8.5× 104 andh = 1.8× 10−5.

Figure 4(a) presents the position of the fixed pointVp as
a function of the bifurcation parameterR3. The solid curve
is calculated numerically by reducing the quantityε(Vp) Eq.
(8). We also include the experimental values obtained for
R3 = 200 KΩ (blue dots). We observe that these points are
similar qualitatively to the proposed model.

Figure 4(b) and (c) present the real and imaginary parts
of the three eigenvalues of the Jacobian matrix as a function
of R3. We find thatλ1 is real and always negative indicating
that the fixed point is stable in its direction. The eigenvalues
λ2 andλ3 are complex conjugates. TheirRe(λ2,3) is positive
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FIGURE 4. Fixed point and eigenvalues. (a) Value ofVp as a func-
tion of the bifurcation parameterR3 and experimental values (blue
dots) for R3 = 200 KΩ. Real parts of the eigenvalues (b) and
imaginary parts of the eigenvalues (c).

for values smaller than a critical valueRc = 112 KΩ and
negative for larger ones. This indicates that the fixed point
is unstable forR3 < Rc and stable forR3 > Rc. In
R3 = Rc we have the Hopf bifurcation point. In this point
|Im(λ2,3(Rc))| = 5582, thus, the frequency of the oscilla-
tions close to the onset of the bifurcation is888 Hz. Note that
with our election ofβ andh we can fit the main properties of
the Hopf bifurcations with our model.

We present some characteristic trajectories in Fig. 5.
They are performed by integrating the system (6) with a
Runge-Kutta algorithm of second order and a time step∆t =
1 × 10−5 s. In Fig. 5(a) we show an evolution far from the
onset of the bifurcation (R3 = 1 KΩ). We observe that the
voltages show that the capacitors charge and discharge almost
completely, generating signals with big amplitudes. The fre-
quency of this signals is 317 Hz. Note that these results are
quite different from our experiment where the device has a
frequency of 1.88 K Hz and smaller amplitude in the signals.
These differences arise because our model does not represent
well the transistor in the linear region of operation. The tran-
sition between cut off and saturation region is determined by
the resistorR1. In this circuit the transistor enters to the ac-
tive region before the capacitor completely discharges.

Figure 5(b) presents the voltages as a function of time
close to the bifurcation point withR3 = 100 KΩ. We ob-
serve that the signals have a sinusoidal shape and relatively
small amplitude. These two characteristics are typical of the

FIGURE 5. Voltages{Vi} as a function of time after a tran-
sient for three characteristic values of the bifurcation parameter:
R3 = 1 KΩ (a),R3 = 100 KΩ (b) andR3 = 200 KΩ (c).

Hopf bifurcation. The frequency of these signals is approxi-
mately 910 Hz, which are in the order of the expected value.
In Fig. 5(c) we show the evolution forR3 = 200 KΩ where
the fixed point is stable. We observe that all the signals decay
with oscillations to a constant value.

FIGURE 6. Trajectories from Fig. 5 in the voltage space{Vi}.
The three trajectories start from the black dot. TrajectoryA (blue)
corresponds toR3 = 1 KΩ (Fig. 5(a)), trajectoryB (red) corre-
sponds toR3 = 100 KΩ (Fig. 5(b)) and trajectoryC corresponds
to R3 = 200 KΩ (Fig. 5(c)).
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Finally, in Fig. 6 we present the three previous trajec-
tories in the space of voltages{Vi}. All the trajectories
start from the same point and they evolve in quite different
ways. WhenR3 = 200 KΩ the trajectory is a spiral going to
the fixed point (black curve). Close to the bifurcation point
(R3 = 100 KΩ) the trajectory evolves to a limit cycle (red
curve) with an almost circle shape on a plane. In the last
case, withR3 = 1 KΩ, the limit cycle has a shape far from a
circle and it is no longer contained in a plane (blue curve).

4. Discussion and conclusions

In this work we have presented a simple and low-cost de-
vice with a rich behavior that can be modeled by a dynami-
cal system with a Hopf bifurcation. This circuit does not re-
quire a deep understanding of electronic and can be handled
by undergraduate students that have taken the basic physics
courses. Notably this circuit can be seen as a physical imple-
mentation of the negative feedback three-node motif that is
intensively study in biology [15] and conceptually similar to
the genetic repressilator.

The performed analyses allow to understand different as-
pects of the proposed model. In effect, with the linear sta-
bility study we can find the critical value ofR3 and estimate
the frequency of the system close to the bifurcation point in
an almost analytical way. From this analysis we also observe
that the resistorR3 plays the main role as bifurcation parame-

ter. This is because it enters as argument of the functionu(V )
that is the kernel of the non-linearity of this system and it is
the responsible to switch between the two possible states of a
node. On the other hand, resistorsR1 andR2 have the role of
controlling the characteristic times for charge and discharge
of the capacitors and they are not a source of non-linearity for
the system.

Numerical integration of the model allows us to find the
trajectories of the system in the space of voltages. We can use
this information to compute the main characteristic of the sig-
nal like frequency and its shape for the whole set of possible
values of the system parameters. Note that these values can-
not be analytically determined since the system (6) does not
allow a close-form expression for its solutions.

In conclusion, this system allows us to study important
concepts of dynamical systems such as stability analysis and
bifurcation theory. It allows also to perform analytical and
numerical studies of the proposed model. Finally, we can
construct a device where the theoretical results can be con-
trasted with the measurements.
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