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This is a pedagogical paper, where bispinors solutions to the four-dimensional massless Dirac equation are considered in relativistic quantum
mechanics and in quantum computation, taking advantage of the common mathematical description of four-dimensional spaces. First,
Weyl and massless Majorana bispinors are shown to be unitary equivalent, closing a gap in the literature regarding their equivalence. A
discrepancy in the number of linearly independent solutions reported in the literature is also addressed. Then, it is shown that Weyl bispinors
are algebraically equivalent to two-qubit direct product states, and that the massless Majorana bispinors are algebraically equivalent to
maximally entangled sates (Bell states), with the transformations relating the two bispinors types acting as entangling gates in quantum
computation. Different types of entangling gates are presented, highlighting a set that fulfills the required properties for Majorana zero mode
operators in topological quantum computation. Based on this set, a general topological quantum computation model with four Majorana
operators is presented, which exhibits all the required technical and physical properties to obtain entanglement of two logical qubits from
topological operations.
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1. Introduction

A Majorana fermion is a spin 1/2 particle that is its own an-
tiparticle. They were first proposed in 1937 by E. Majorana
[1] in the context of particle physics. As an elementary par-
ticle, the only fundamental candidate for a Majorana fermion
is the massive neutrino. It could also be a Dirac particle,
although the Majorana alternative is theoretically preferred
[2,3]. The experimental verification of the Majorana nature
of the neutrino, through the observation of neutrinoless dou-
ble beta decay processes, is still an open question.

Majorana fermions arise also in condensed matter sys-
tems [4-7]. Here they are not elementary particles, but rather
localized zero-energy bound states (Bogoliubov quasiparti-
cles) of electrons and holes, better known as Majorana zero
modesi, (MZMs). In this case the Majorana condition is
satisfied through the use of Hermitian operators to describe
MZMs. The composite objects consisting of Majorana bound
states coupled to topological defects, such as vortices, obey
non-Abelian statistics and are known as Ising anyons, [9,10]
which constitute a particular type of non-Abelian anyons.
Examples of 2-d systems admitting Ising anyons are the
ν = 5/2 fractional quantum Hall state, [9,11]p + ip super-
conductors, [12,13] and the surface of topological insulators,
[14] among others.

The interest in Ising anyons, from the perspective of
quantum computation, is because they provide a means for
fault-tolerant quantum computation [7,15-17]. In a system
with localized anyons quantum information can be stored
non-locally in pairs, or in generaln-tuplets, withn even, of
anyons. Computations are performed by adiabatically braid-
ing the anyons worldlines. These braiding operations consti-
tute the logical quantum gates acting on the states and, up to a

phase, depend only on the topology of the trajectories, in turn
classified by the braid group. A topological quantum compu-
tation (TQC) model is specified [10] by providing the Hilbert
space, the initial state, the braid operators and the measurable
observables.

It has been shown that the operators representing the
MZMs can be given in terms of Dirac gamma matrices
[11,18,19] and, in particular, in Refs. [18] and [19] it is
shown that the Clifford algebra of the Majorana operators, for
a 2-d system with four vortices, can be realized by elements
of the 4-d spacetime Clifford algebra. This result suggests
that a common mathematical description can be given for the
four-component spinors (bispinors) and the relevant particle
states in TQC, namely Weylii and massless Majorana states.

In this paper, we study massless Majorana bispinors, that
is solutions to the 4-d massless Dirac equation satisfying
the Majorana condition, in two different settings: relativistic
quantum mechanics (RQM) and quantum computation (QC).
In the first instance, besides showing explicit general solu-
tions to the equation, which are difficult to find in the liter-
ature, if at all, we complete the known equivalence between
massless Majorana and Weyl free field operators by showing
that it also holds forc-number bispinors.

We also address an inconsistency in the number of lin-
early independent solutions to the massless Dirac equation
reported in the literature where, up to differences in normal-
ization and sign factors, it is stated that positive and nega-
tive energy solutions are proportional in momentum space
[21-24]. This statement is made in terms of four-component
Dirac spinors, and it then follows that only two linearly inde-
pendent bispinor solutions exist in the massless case. Taking
the limit m → 0 in massive solutions, as is done in Refs.
[25-27], also leads to an incomplete set of solutions. How-
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ever, from a pure mathematical viewpoint, the massless Dirac
equation in momentum space is an algebraic equation, whose
solutions are the eigenvectors of a4× 4 Hermitian matrix, so
that four independent solutions must exist. Indeed, this result
is also found in the literature for the special case of momen-
tum along the direction of̂z [28,29].

In the QC context, we establish an algebraic equivalence
between Weyl bispinors and bipartite qubit states. We show
that the unitary transformations relating the Weyl and Ma-
jorana bispinors in RQM play the role of entangling two-
qubit gates in QC, and that maximally entangled states (Bell
states) are algebraically equivalent to massless Majorana
bispinorsiii. Different types of entangling gates are dis-
cussed, providing a list not meant to be exhaustive. A set
of the entangling gates fulfills the requirements for MZMs
operators, and we use it to construct a TQC toy model with
four MZMs from the bottom up, showing how to obtain oper-
ators and states, as well as entanglement of two logical qubits
from braiding.

The organization is as follows: In Sec. 2 we obtain
bispinor solutions to the massless Dirac equation and show
that they are unitarily equivalent. The completeness of the
solutions is also discussed. In Sec. 3 we establish the alge-
braic equivalence between massless bispinors and two-qubit
states and discuss the entangling gates. In Sec. 4 we pro-
vide a TQC toy model based on a set of the entangling gates.
Finally, concluding remarks are given.

2. Masslessc-number bispinors

2.1. Weyl

Let us begin by considering four-component Weyl bispinors
with four-momentumpµ = (± |p| ,p), respectively for
positive- and negative-energyp0 = ±E = ± |p|, which are
solutions to the massless Dirac equation

iγµ∂µΨ = 0. (1)

The gamma matricesγµ =
(
γ0,γ

)
obey the Clifford algebra

relation
γµγν + γνγµ = 2gµν , (2)

with gµν the metric tensor with signature diag(1,−1,−1,−1),
and the Weyl representation

γ0 =
(

0 1
1 0

)
, γ =

(
0 σ

−σ 0

)
, (3)

with σ =
(
σ1, σ2, σ3

)
the standard Pauli matrices will be

used throughout. Using the plane waves

Ψ = u(p) exp {i (±Et− x · p)} , (4)

and the matrices

γ5 ≡ iγ0γ1γ2γ3 =
( −1 0

0 1

)
,

Σ ≡ γ5γ0γ =
(

σ 0
0 σ

)
, (5)

TABLE I. Eigenvalues of the canonical frame Weyl bispinors.

u(1) (pz) u(2) (pz) u(3) (pz) u(4) (pz)

Energy + + - -

Helicity 1 -1 -1 1

Chirality 1 -1 1 -1

Eq. (1) is rewritten as

Σ · p̂u(p) = ±γ5 u(p), (6)

with p̂ = p/ |p|. Thus, the bispinorsu(p) are eigenvectors
of both helicityΣ · p̂ and chiralityγ5 operators, and Eq. (6)
expresses the known result that chirality equals the helicity
for massless, positive-energy bispinors, while it is opposite
for negative-energy ones. Taking the direction ofp along ẑ
(from now on called the canonical frame) in Eq. (6) one ob-
tains the four independent solutionsiv, with their eigenvalues
given in Table I.

u(1) (pz) =




0
0
1
0


 , u(2) (pz) =




0
1
0
0


 ,

u(3) (pz) =




0
0
0
1


 , u(4) (pz) =




1
0
0
0


 .

(7)

To obtain solutions for general three-momentum we use
spherical polar coordinates

p̂ = (sin θ cosϕ, sin θ sin ϕ, cos θ) , (8)

and the transformation

Λ (θ, ϕ) = exp
{
−θ

2
(
γ1 cosϕ + γ2 sin ϕ

)
γ3

}
, (9)

which is actually a rotation since it is unitary and of unit de-
terminant. Applying Eq. (9) to the bispinors in Eq. (7) we
have

Λ (θ, ϕ) u(i) (pz) = u(i)(p), i = 1, . . . , 4, (10)

with the general momentum bispinors, in two-block notation,
given by

u(1)(p) =
(

0
χ+ (p)

)
, u(2)(p) =

(
χ− (p)

0

)
,

u(3)(p) =
(

0
χ− (p)

)
, u(4)(p) =

(
χ+ (p)

0

)
,

(11)
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whereχ± (p) are the two-component helicity eigenspinors

χ+ (p) =
(

cos
(

θ
2

)
eiϕ sin

(
θ
2

)
)

,

χ− (p) =
(−e−iϕ sin

(
θ
2

)
cos

(
θ
2

)
)

,

(12)

satisfying the equation

σ · p̂χ±(p) = ±χ±(p). (13)

The bispinors in Eq. (11) are orthonormal

u†(i)(p)u(j)(p) = δij , (14)

with a normalization that is adequate for massless spinors,
as the Dirac adjointu ≡ u†γ0 is not needed in this case.
Another useful, Lorentz invariant normalization is to re-scale
them to

√
2E. These bispinors are also solutions to Eq. (6),

which in Hamiltonian form reads

α · p̂u(s)(p) = + u(s)(p),

α · p̂u(s+2)(p) =− u(s+2)(p),
s = 1, 2 (15)

making explicit thatu(1)(p) andu(2)(p) are positive-energy
bispinors, whileu(3)(p) and u(4)(p) are negative-energy
ones. The helicity and chirality eigenvalues are the same as
in Eq. (7). Energy projection operators are obtained from the
spin sums

Λ+ ≡
∑

s=1,2

u(s)(p)u†(s)(p) =
1
2

(1+ α · p̂) ,

Λ− ≡
∑

s=1,2

u(s+2)(p)u†(s+2)(p) =
1
2

(1−α · p̂) . (16)

They satisfy the required properties for projection opera-
tors

Λ2
± = Λ±,

Λ+Λ− = Λ−Λ+ = 0,

Λ+ + Λ− = 1,

(17)

and from the second and third properties it is readily seen
that the bispinors in Eq. (11) constitute a complete and or-
thogonal set of solutions to the massless Dirac equation. The
energy projection operators in Eq. (16) can be found in the
literature [32-37], although without reference to the bispinors
and the spin sums.

2.2. Majorana

Using the canonical frame bispinors in Eq. (7) we define the
following Majorana bispinors

u
(1)
M (pz) =

1√
2

(
u(2) (pz) + iγ2u∗(2) (pz)

)
,

u
(2)
M (pz) =

1√
2

(
u(1) (pz)− iγ2u∗(1) (pz)

)
,

u
(3)
M (pz) =

1√
2

(
u(3) (pz)− iγ2u∗(3) (pz)

)
,

u
(4)
M (pz) =

1√
2

(
u(4) (pz) + iγ2u∗(4) (pz)

)
,

(18)

where the asterisk denotes complex conjugation, even though
it is superfluous in this case because theu(i) (pz) are real.
The bispinors in Eq. (18) are eigenstates of the standard
charge conjugation operator [38,39]

C ≡ CK ≡ iγ2K, (19)

whereC = iγ2 is the charge conjugation matrix, andK
stands for the operation of complex conjugation to the right.
We then have

Cu(1,4)
M (pz) = + u

(1,4)
M (pz) ,

Cu(2,3)
M (pz) =− u

(2,3)
M (pz) ,

(20)

and it is in this sense that they fulfill the Majorana condition.
These Majorana bispinors are also solutions to Eq. (15), im-
plying a unitary transformation must exist relating them to
the Weyl bispinors in Eq. (7). Among several possibilities, to
be discussed in the next section, we choose

R3 = exp
(π

4
γ0γ1γ3

)
, (21)

as the transformation matrix, which besides being unitary is
also of unit determinant, therefore a rotation. Thus, we have
the following equivalence between the bispinors in Eqs. (7)
and (18)

R3u
(1) (pz) = −u

(1)
M (pz) ,

R3u
(2) (pz) = +u

(2)
M (pz) , (22)

R3u
(3) (pz) = +u

(4)
M (pz) ,

R3u
(4) (pz) = −u

(3)
M (pz) .

It is now straightforward to generalize this result to arbi-
trary momentum bispinors. Using the ones in Eq. (11) we
obtain the generalization of Eq. (18)
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u
(1)
M (p) =

1√
2

(
u(2) (p) + iγ2u(2)∗ (p)

)
,

u
(2)
M (p) =

1√
2

(
u(1) (p)− iγ2u(1)∗ (p)

)
,

u
(3)
M (p) =

1√
2

(
u(3) (p)− iγ2u(3)∗ (p)

)
,

u
(4)
M (p) =

1√
2

(
u(4) (p) + iγ2u(4)∗ (p)

)
.

(23)

These Majorana bispinors are obtained from the canonical
frame ones in Eq. (18) by the same rotation in Eq. (9)

Λ (θ, ϕ)u
(i)
M (pz) = u

(i)
M (p), i = 1, . . . , 4. (24)

Then defining the rotation

Ω(θ, ϕ) ≡ Λ (θ, ϕ)R3Λ† (θ, ϕ) , (25)

Eqs. (10) and (22) yield

Ω(θ, ϕ) u(1) (p) = −u
(1)
M (p) ,

Ω(θ, ϕ) u(2) (p) = +u
(2)
M (p) , (26)

Ω(θ, ϕ) u(3) (p) = +u
(4)
M (p) ,

Ω(θ, ϕ) u(4) (p) = −u
(3)
M (p) .

Observing thatΩ(θ, ϕ) andα · p̂ commute, it is readily veri-
fied that the bispinors in Eq. (23) are solutions to the massless
Dirac equation

α · p̂u
(s)
M (p) = + u

(s)
M (p),

α · p̂u
(s+2)
M (p) =− u

(s+2)
M (p).

s = 1, 2, (27)

They also satisfy the Majorana condition

Cu(1,4)
M (p) = + u

(1,4)
M (p) ,

Cu(2,3)
M (p) =− u

(2,3)
M (p) .

(28)

Accordingly, Eq. (26) establishes an equivalence between
Weyl and massless Majorana bispinors. This relation is the
c-number analogue of the known equivalence between Weyl
and massless Majoranafield operators, related by a Pauli-
Gursey transformation [40-42]. In this sense this result com-
pletes the equivalence between massless Majorana and Weyl
fermions, which is now seen to hold for both quantum fields
andc-number spinors.

2.3. Completeness and degrees of freedom

There is a subtle but important matter regarding the negative-
energy Weyl bispinorsu(3,4)(p) in Eq. (11). If one substi-
tutes the complete wavefunctionsΨ(3,4)(x) = u(3,4)(p)eip.x

in Eq. (1) it is found thatα · p̂u(3,4)(p) = u(3,4)(p), in con-
tradiction with Eq. (15). Let us contrast this situation with

the standard massive case [38,43] where, following the Feyn-
man - Stuckelberg prescription for antiparticles, the negative-
energy bispinors are redefined asv

(1,2)
m (p) ≡ u

(4,3)
m (−p) (the

subscriptm is just to make explicit that these are massive
bispinors). The momentum flip is necessary so that solutions
with four-momentum(−E,−p) are interpreted (E is al-
ways positive) as antiparticle solutions with four-momentum
(E,p), and the coordinate dependence is obtained from the
positive-energy onee−ip.x by making the replacementsE →
−E andp → −p. Also, the spinors indexes are relabeled to
implement hole theory in the rest frame.

In the massless case there is no rest frame, but one can
use the canonical frame instead, with helicity replacing spin
in hole theory. Hence, the absence of a negative-energy solu-
tion with positive (negative) helicity, and therefore negative
(positive) chirality, is to be interpreted as the presence of a
positive energy solution with negative (positive) helicity, and
the same chirality. The momentum flip is still necessary for
the antiparticle interpretation, and in fact it is already implied
for the plane waveeip.x, with p0 = E ≡ |p|, but combined
with a simple relabeling of the spinor indexes, as in the mas-
sive case, is not enough to satisfy helicity invariance. Hence,
both spin and momentum of the negative-energy solutions
must be reversed. However these operations just produce the
same bispinors up to a phase. To see it, it suffices to consider
the spinors in Eq. (12). The momentum flip is accomplished
through the substitution(θ, ϕ) → (π − θ, φ + π), leading to

χ±(−p) = ∓e±iϕχ∓(p), (29)

while the spin flip is done via [39]

−iσ2χ
∗
±(p) = ±χ∓(p). (30)

Thus, Eqs. (29) and (30) produce

−iσ2χ
∗
±(−p) = e∓iϕχ±(p). (31)

As for the coordinate dependence, and starting from
exp {−i (−Et− p · x)}, the operations of complex conju-
gating and flipping the momentum result in the positive-
energy casee−ip.x.

In the literature, the above discrepancy is expressed in
terms of incompatible statements about the completeness of
solutions to the massless Dirac equation. On one hand, in
Refs. [21-27] it is concluded, following different approaches,
that there are only two independent solutions to the equation,
with the negative-energy bispinors being proportional to the
positive-energy ones. On the other hand, the massless Dirac
equation in momentum space is a4 × 4 Hermitian matrix,
so there must be four independent solutions, as already given
in Eqs. (7) and (11), and expressed in the completeness re-
lations in Eq. (16). The resolution of this problem lies in
the degrees of freedom: A Majorana bispinor, either mass-
less or massive, possesses two degrees of freedom because
of the Majorana condition, and these are half the degrees of
freedom of a Dirac bispinor. In view of the results of the last
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subsection, this is also true for the Weyl bispinors. Thus, even
if formally four independent solutions exist for the massless
Dirac equation (a complete set in the mathematical sense),
only two make sense physically.

At the level of c-number wave functions one could, in
principle, either give up the Feynman - Stuckelberg interpre-
tation for negative-energy states and keep the complete set of
solutions, or maintain the conceptually useful antiparticle in-
terpretation and disregard mathematical completeness, since
ultimately it is the quantized theory (second quantization) the
one that is expected to be free of ambiguities. Indeed, in a
classic paper [44] Weinberg has shown that, under the general
assumption of Lorentz invariance of theS matrix, massless
fermionic field operators must be given by

ψ−(x) =
∫

d3p

(2π)3
√

2E

(
a− (p) e−ip·x + b†+ (p) eip·x

)

×
√

2Eχ− (p) , (32)

ψ+(x) =
∫

d3p

(2π)3
√

2E

(
a+ (p) e−ip·x + b†− (p) eip·x

)

×
√

2Eχ+ (p) , (33)

where the subscripts± respectively represent positive and
negative helicity, and the spinorsχ± (p) are given in Eq.
(12). These massless fields can be readily expressed in
terms of bispinors by making the substitutionsχ± (p) →
u(1,2)(p), with the latter given in Eq. (11). There is no use
for the complete set of massless bispinors in the field operator
expansion.

3. Majorana condition and maximal entangle-
ment

3.1. Massless bispinors as bipartite qubits

In quantum computation the quantum analogue of a classi-
cal bit, a qubit, is given by a complex linear combination of
the basis states of a two-level quantum system, known as the
computational basis. Denoting the basis states by|0〉 and|1〉,
for spin-1/2 systems they can be chosen as the eigenstates of
σ3

|0〉 =
(

1
0

)
, |1〉 =

(
0
1

)
. (34)

In this basis, the helicity spinors in Eq. (12) are given by the
general pure-state qubits

|χ+〉 = cos
(

θ

2

)
|0〉+ eiϕ sin

(
θ

2

)
|1〉 ,

|χ−〉 =− e−iϕ sin
(

θ

2

)
|0〉+ cos

(
θ

2

)
|1〉 ,

(35)

which are antipodal in the unit Bloch sphere representation,
[45,46] with the three-momentum in Eq. (8) taken as the
Bloch vector (Fig. 1).

FIGURE 1. Unit Bloch Sphere. The computational basis is mapped
to the north and south poles of the sphere. The orthogonal pure
states|χ+〉 and |χ−〉 are antipodal and correspond to helicity
eigenspinors if the Bloch vector is taken as the three-momentum.

The computational basis for the space of two pure-state
qubits is then given by the set{|0〉 , |1〉}⊗{|0〉 , |1〉}, whence,
upon using Eq. (34) and the notation|00〉 ≡ |0〉 ⊗ |0〉 and so
on, we obtain the explicit representation

|00〉 =




1
0
0
0


 , |01〉 =




0
1
0
0


 ,

|10〉 =




0
0
1
0


 , |11〉 =




0
0
0
1


 , (36)

and we see that the elements of the basis are just the canonical
frame Weyl bispinors in Eq. (7)

|00〉 = u(4) (pz) , |01〉 = u(2) (pz) ,

|10〉 = u(1) (pz) , |11〉 = u(3) (pz) .
(37)

Another basis for this space is provided by the Bell states,
which are maximally entangled states

∣∣Φ+
〉

=
1√
2

(|00〉+ |11〉) ,

∣∣Φ−〉
=

1√
2

(|00〉 − |11〉) ,

∣∣Ψ+
〉

=
1√
2

(|01〉+ |10〉) ,

∣∣Ψ−〉
=

1√
2

(|01〉 − |10〉) .

(38)
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Using either of Eqs. (7) or (36), explicit representations of
the Bell states, as well as the massless Majorana bispinors in
Eq. (18), are directly obtained, and upon comparing the two
sets we arrive at the interesting result that the Bell states are
algebraically equivalent to the massless Majorana bispinors
in the canonical frame

u
(1)
M (pz) = |Ψ−〉 , u

(2)
M (pz) = |Ψ+〉 ,

u
(3)
M (pz) = − |Φ−〉 , u

(4)
M (pz) = |Φ+〉 .

(39)

This result is generalized to arbitrary momentum defining the
general-momentum Bell states

∣∣Φ+(p)
〉

=
1√
2

(
u(4)(p) + u(3)(p)

)
,

∣∣Φ−(p)
〉

=
1√
2

(
u(4)(p)− u(3)(p)

)
,

∣∣Ψ+(p)
〉

=
1√
2

(
u(2)(p) + u(1)(p)

)
,

∣∣Ψ−(p)
〉

=
1√
2

(
u(2)(p)− u(1)(p)

)
,

(40)

then, from Eqs. (11), (12), and (23) we get

u
(1)
M (p) = |Ψ−(p)〉 , u

(2)
M (p) = |Ψ+(p)〉 ,

u
(3)
M (p) = − |Φ−(p)〉 , u

(4)
M (p) = |Φ+(p)〉 .

(41)

Thus, we conclude that for massless bispinors obeying the
Dirac equation, the Majorana condition is equivalent to max-
imal entanglement.

3.2. Entangling gates

Operations on qubits are given by unitary quantum gates, and
from Eqs. (22) and (39) we see that the rotation in Eq. (21)
serves as a two-qubit gate that produces entanglement. We
now provide a list, not meant to be exhaustive, of other en-
tangling gates and their properties.

The common procedure for producing entanglement in
quantum computation is by a combination of a CNOT (con-
trolled not) gate and a Hadamard gate. The latter is a one-
qubit gate given by

H =
1√
2

(|0〉 〈0|+ |1〉 〈0|+ |0〉 〈1| − |1〉 〈1|)

=
1√
2

(
1 1
1 −1

)
,

(42)

while the former is a two-qubit gate, with the most common
realization given by

CNOT =




1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0


 . (43)

Then it is easy to see that, say, the combination
CNOT (H ⊗ 12) produces the Bell states in Eq. (38)

when acting on the computational basis in Eq. (36),e.g,
CNOT (H ⊗ 12) |00〉 = |Φ+〉. The CNOT is a universal
gate [46] in the sense that any quantum circuit can be sim-
ulated with arbitrary accuracy by a combination of a CNOT
and one-qubit gates (the latter usually taken as the Hadamard
and theπ/8 phase gates). It has also been shown, for the
two-qubit case, that the relevant property for universality is
entanglement [47], and so any quantum circuit can be simu-
lated with arbitrary accuracy by a combination of an entan-
gling two-qubit gate and suitable one-qubit gates. It is also
worth noticing that the CNOT gate is not a rotation, since it
has determinant -1, a feature that difficults actual implemen-
tations.

Another set of entangling gates, denoted byRi, i =
1, . . . , 4, consists of the rotations

R1 =exp
(π

4
γ1

)
,

R2 =exp
(
−π

4
γ1

)
,

R3 =exp
(π

4
γ0γ1γ3

)
,

R4 =exp
(
−π

4
γ0γ1γ3

)
.

(44)

They also have the interesting property of being solutions to
the algebraic Yang-Baxter equation [48].

(Ri ⊗ 12) (12 ⊗Ri) (Ri ⊗ 12) = (12 ⊗Ri)

× (Ri ⊗ 12) (12 ⊗Ri) . (45)

These matrices have been studied by Kauffmanet al [49] in
connection with knot theory and topological linking. The
gateR3 (used in Eq. (25)) was introduced by Kauffman and
Lomonaco [50], while the matricesR1 andR2 appear, re-
spectively, in Refs. 51 and 52. The action of these gates on
the computational basis is summarized in Table II.

Yet another set of entangling gates, denoted byR̂i, i =
1, . . . , 4, is given by the rotations

R̂1 =
i√
2
γ3

(
1+ γ1

)
, R̂2 =

i√
2
γ2

(
1+ γ1

)
,

R̂3 =
1√
2
γ0

(
1+ γ1

)
, R̂4 =

i√
2

(
γ0γ2γ3 + iγ5

)
. (46)

TABLE II. Action of the entangling gates in Eq. (44) on the compu-
tational basis in Eq. (36). The table is read so that the gates in the
first column act on the basis states in the top first row and produce
the given Bell state in the intersection.

|10〉 |01〉 |11〉 |00〉
R1

∣∣Ψ+
〉 ∣∣Ψ−〉 ∣∣Φ+

〉 ∣∣Φ−〉

R2 −
∣∣Ψ−〉 ∣∣Ψ+

〉 −
∣∣Φ−〉 ∣∣Φ+

〉

R3 −
∣∣Ψ−〉 ∣∣Ψ+

〉 ∣∣Φ+
〉 ∣∣Φ−〉

R4

∣∣Ψ+
〉 ∣∣Ψ−〉 −

∣∣Φ−〉 ∣∣Φ+
〉
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TABLE III. Action of the entangling gates in Eq. (46) on the com-
putational basis in Eq. (36). The table is read so that the gates in the
first column act on the basis states in the top first row and produce
the given Bell state in the intersection.

|10〉 |01〉 |11〉 |00〉
R̂1 i

∣∣Φ+
〉 −i

∣∣Φ−〉 −i
∣∣Ψ+

〉
i
∣∣Ψ−〉

R̂2 −
∣∣Ψ+

〉 ∣∣Ψ−〉 ∣∣Φ+
〉 −

∣∣Φ−〉

R̂3

∣∣Φ+
〉 −

∣∣Φ−〉 ∣∣Ψ+
〉 −

∣∣Ψ−〉

R̂4

∣∣Ψ−〉 ∣∣Ψ+
〉 ∣∣Φ−〉 ∣∣Φ+

〉

They are also Hermitian and therefore square to the iden-
tity matrix

R̂i = R̂†i , R̂2
i = 1, i = 1, . . . , 4. (47)

They do not obey Eq. (45), but instead satisfy the anti-
commutation (Clifford algebra) relations

{
R̂i, R̂

†
j

}
= 2δi,j1, (48)

which, in contrast, are not obeyed by the gates in Eq. (44).
These matrices are all orthogonal to each other, as is verified
with the inner product

Tr
(
R̂†i R̂j

)
= 0, i, j = 1, . . . , 4, i 6= j, (49)

hence, they are linearly independent. Using the 16 elements
of the 4-d gamma matrices Clifford algebra it can be verified
that no other matrix exists with these characteristics that ful-
fils Eq. (47) and also closes the algebra in Eq. (48). In this
sense the set in Eq. (46) is complete. Their action on the
computational basis is shown in Table III.

4. Quantum computational toy model with
four Majorana zero modes

The properties in Eqs. (47) and (48), obeyed by theR̂i gates,
are the same as the ones satisfied by Majorana zero mode op-
erators [5-7] in topological quantum computation. Hence, we
will regard them as such and present a general model with
four Majorana bound states that admits entanglement from
braiding. We mostly follow Ref. [10].

The setM of particle types is given by

M = {1vac, σ, ψ} , (50)

consisting of the vacuum1vac, anyonsσ, and Weyl fermions
ψ, with the standard fusion rules

g × 1vac = g, ∀ g ∈M, σ × ψ = σ,

ψ × ψ = 1vac, σ × σ = 1vac + ψ. (51)

To define braid operators we take the branch cuts of the
Majorana zero modes, described by the Majorana operators,

in the same direction, and order them in a way that exchang-
ing R̂i andR̂i+1 clockwise ensures that̂Ri crosses solely the
branch cut ofR̂i+1, with no other operator crossing any other
branch cut. Then the local (nearest-neighbor) braid operators
are given by

B12 = exp
(
−π

4
R̂1R̂2

)
, B23 = exp

(
−π

4
R̂2R̂3

)
,

B34 = exp
(
−π

4
R̂3R̂4

)
. (52)

They are unitary by construction, and satisfy the required
properties for braiding operators, [5,10,12] namely the Yang-
Baxter equations

B12B23B12 = B23B12B23,

B23B34B23 = B34B23B34,
(53)

and commutation relations

[B12, B34] =0, [B12, B23] = R̂1R̂3,

[B23, B34] =R̂2R̂4. (54)

We also have the non-local braid operators

B13 =exp
(
−π

4
R̂1R̂3

)
,

B14 =exp
(
−π

4
R̂1R̂4

)
,

B24 =exp
(
−π

4
R̂2R̂4

)
,

(55)

connected to the local ones in Eq. (52) through the operations

B13 = B23B12B
†
23,

B14 = B34B23B12B
†
23B

†
34,

B24 = B34B23B
†
34.

(56)

The relevant operator to obtain entanglement isB23 in Eq.
(52), since it cannot be written as the tensor product of two
2× 2 matrices, and therefore is an entangling gate. This also
holds for all three operators in Eq. (56).B12 andB34, on the
other hand, are separable

B12 =12 ⊗Rx (π/2) ,

B34 =Ry (π/2)⊗ 12,
(57)

whereRx (π/2) andRy (π/2) are the one-qubit gates (rota-
tion matrices)

Rx (π/2) = exp
(
i
π

4
σ1

)
,

Ry (π/2) = exp
(
i
π

4
σ2

)
.

(58)

Thus, leaving out the identity, the braid gates of the model
form the set

{Rx (π/2) , Ry (π/2) , B23} . (59)
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Acting on the Majorana operators in Eq. (46), the braid oper-
ators in Eqs. (52) and (55) yield

BpqR̂kB†
pq =





R̂k if k /∈ {p, q} ,

R̂q if k = p,

−R̂p if k = q.

(60)

We also specify the observablesFpq

Fpq = −iR̂pR̂q, p < q , (61)

which are the fermion parity operators for the pair of Majo-
ranaspq, and the total parity operatorQ (topological charge)

Q = F12F34 = −R̂1R̂2R̂3R̂4. (62)

It can be verified thatQ commutes with all braid operators
and observables, in compliance with the superselection rules
for total topological charge conservation [10].

To complete the model a computational basis needs to be
specified. We choose to fuse the anyons in the pairs 1, 2 and
3, 4, so we consider the fermionic operators

f12 =
1
2

(
R̂1 + iR̂2

)
,

f34 =
1
2

(
R̂3 + iR̂4

)
,

(63)

producing the states

|0̄0̄〉 , |1̄0̄〉 = f†12 |0̄0̄〉 ,

|0̄1̄〉 = f†34 |0̄0̄〉 , |1̄1̄〉 = f†34f
†
12 |0̄0̄〉 ,

(64)

where|0̄0̄〉 is such thatf12 |0̄0̄〉 = f34 |0̄0̄〉 = 0, and the over
bar is used to distinguish them from the canonical states in
Eq. (36). Explicitly

|0̄0̄〉 = 1
2




1
−1
−i
i


 , |1̄0̄〉 = ei π

4

2




1
1

e−i π
2

e−i π
2


 ,

|0̄1̄〉 = ei π
4

2




e−i π
2

−e−i π
2

1
−1


 , |1̄1̄〉 = 1

2




−i
−i
1
1


 .

(65)

These states are separable as is readily checked. The first
digit in the kets corresponds to the occupation number of the
fermion operatorf12, while the second digit to that of the
f34 operator. This is verified by acting on the basis with the
fermion parity operators in Eq. (61), giving

F12 |0̄0̄〉 = |0̄0̄〉 ,
F12 |1̄0̄〉 =− |1̄0̄〉 ,
F12 |0̄1̄〉 = |0̄1̄〉 ,
F12 |1̄1̄〉 =− |1̄1̄〉 ,

(66)

F34 |0̄0̄〉 = |0̄0̄〉 ,
F34 |1̄0̄〉 = |1̄0̄〉 ,
F34 |0̄1̄〉 =− |0̄1̄〉 ,
F34 |1̄1̄〉 =− |1̄1̄〉 ,

(67)

with the plus eigenvalue corresponding to the vacant slot0̄
and the minus sign to the occupied state1̄. The total parity
operator gives

Q |0̄0̄〉 = |0̄0̄〉 ,
Q |1̄1̄〉 = |1̄1̄〉 ,
Q |0̄1̄〉 =− |0̄1̄〉 ,
Q |1̄0̄〉 =− |1̄0̄〉 .

(68)

The model is now complete and the system can be initi-
ated in any pair of the basis states with the sameQ parity, due
to total parity conservation. The last two states in Eq. (68)
correspond to the fusion ruleσ × σ = ψ, while the first ones
to σ × σ = 1vac andσ × σ × σ × σ = 1vac, respectively.
Whatever the initial states are, braiding anyons two and and
three, with theB23 operator, produces the states

B23 |0̄0̄〉 =
1√
2

(|0̄0̄〉+ i |1̄1̄〉) ,

B23 |0̄1̄〉 =
1√
2

(|0̄1̄〉 − i |1̄0̄〉) ,

B23 |1̄0̄〉 =
1√
2

(−i |0̄1̄〉+ |1̄0̄〉) ,

B23 |1̄1̄〉 =
1√
2

(i |0̄0̄〉+ |1̄1̄〉) ,

(69)

which conserve total parity and are maximally entangled.
The former is directly seen from Eq. (68), while the latter
can be established by their Schmidt decomposition, e. g., for
B23 |0̄0̄〉 we haveB23 |0̄0̄〉 = 1√

2
(|0〉 ⊗ |0〉+ i |1〉 ⊗ |1〉),

with |0〉, |1〉 given in Eq. (34). Similar relations hold for the
rest of the states in Eq. (69). On the other hand, the braid
operatorsB12 andB34 produce the same state multiplied by
a phase of the typeexp (±iπ/4) when acting on the basis in
Eq. (65), as expected from their Abelian nature expressed in
the first relation of Eq. (54). The states in Eq. (69) corre-
spond to the fusion ruleσ × ψ = σ. Finally, we also verify
that these maximal entangled states satisfy the Majorana con-
dition

iγ2 (B23 |0̄0̄〉)∗ =− iB23 |0̄0̄〉 ,
iγ2 (B23 |0̄1̄〉)∗ =−B23 |0̄1̄〉 ,
iγ2 (B23 |1̄0̄〉)∗ =−B23 |1̄0̄〉 ,
iγ2 (B23 |1̄1̄〉)∗ =− iB23 |1̄1̄〉 .

(70)

Rev. Mex. Fis. E17 (2) 115–124



MASSLESS MAJORANA BISPINORS AND TWO-QUBIT ENTANGLED STATES 123

5. Concluding remarks

The methods and results presented regarding bispinor solu-
tions to the massless Dirac equation are of pedagogical value
on their own, and this value can only be enhanced by the con-
nection to QC,e.g., after discussing massless bispinors one
can readily introduce logical two-qubit states and entangling
gates, or vice-versa. Calculations in QC could also benefit

from the use of relativistic spinors and the Clifford algebra
of the Dirac gamma matrices. Particularly, the TQC model
presented, where operators and states are readily obtained de-
parting from the set of entangling gates in Eq. (46), provides
a suitable playground to test and understand how Majorana
zero modes and topological braiding work, both in the tech-
nical and physical assumptions.

i. As is nicely put in Ref. [8] an MZM is “a quasiparticle that is
its own hole.”

ii. Weyl spinors are always massless, and in the condensed mat-
ter literature massless fermions are usually referred to as Dirac
fermions, but being massless they are indeed Weyl fermions.

iii. In Ref. [30] it is already established a connection between en-
tanglement and invariance under charge conjugation for two-
qubit density matrices.

iv. This set of solutions is reported in Refs. [31], with variations
due to the gamma matrices representation employed.
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