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This is a pedagogical paper, where bispinors solutions to the four-dimensional massless Dirac equation are considered in relativistic quantun
mechanics and in quantum computation, taking advantage of the common mathematical description of four-dimensional spaces. First,
Weyl and massless Majorana bispinors are shown to be unitary equivalent, closing a gap in the literature regarding their equivalence. A
discrepancy in the number of linearly independent solutions reported in the literature is also addressed. Then, it is shown that Weyl bispinors
are algebraically equivalent to two-qubit direct product states, and that the massless Majorana bispinors are algebraically equivalent to
maximally entangled sates (Bell states), with the transformations relating the two bispinors types acting as entangling gates in quantum
computation. Different types of entangling gates are presented, highlighting a set that fulfills the required properties for Majorana zero mode
operators in topological quantum computation. Based on this set, a general topological quantum computation model with four Majorana
operators is presented, which exhibits all the required technical and physical properties to obtain entanglement of two logical qubits from
topological operations.
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1. Introduction phase, depend only on the topology of the trajectories, in turn
classified by the braid group. A topological quantum compu-
A Majorana fermion is a spin 1/2 particle that is its own an-tation (TQC) model is specified [10] by providing the Hilbert
tiparticle. They were first proposed in 1937 by E. Majoranaspace, the initial state, the braid operators and the measurable
[1] in the context of particle physics. As an elementary par-Observables.
ticle, the only fundamental candidate for a Majorana fermion It has been shown that the operators representing the
is the massive neutrino. It could also be a Dirac particleMZMs can be given in terms of Dirac gamma matrices
although the Majorana alternative is theoretically preferred11,18,19] and, in particular, in Refs. [18] and [19] it is
[2,3]. The experimental verification of the Majorana natureshown that the Clifford algebra of the Majorana operators, for
of the neutrino, through the observation of neutrinoless doua 2-d system with four vortices, can be realized by elements
ble beta decay processes, is still an open question. of the 4-d spacetime Clifford algebra. This result suggests
Majorana fermions arise also in condensed matter syshata common mathematical description can be given for the
tems [4-7]. Here they are not elementary particles, but rathefour-component spinors (bispinors) and the relevant particle
localized zero-energy bound states (Bogoliubov quasipartistates in TQC, namely We§land massless Majorana states.
cles) of electrons and holes, better known as Majorana zero In this paper, we study massless Majorana bispinors, that
mode$, (MZMs). In this case the Majorana condition is is solutions to the 4-d massless Dirac equation satisfying
satisfied through the use of Hermitian operators to describthe Majorana condition, in two different settings: relativistic
MZMs. The composite objects consisting of Majorana boundgquantum mechanics (RQM) and quantum computation (QC).
states coupled to topological defects, such as vortices, obdy the first instance, besides showing explicit general solu-
non-Abelian statistics and are known as Ising anyons, [9,10fions to the equation, which are difficult to find in the liter-
which constitute a particular type of non-Abelian anyons.ature, if at all, we complete the known equivalence between
Examples of 2-d systems admitting Ising anyons are thenassless Majorana and Weyl free field operators by showing
v = 5/2 fractional quantum Hall state, [9,14]+ ip super-  that it also holds for-number bispinors.
conductors, [12,13] and the surface of topological insulators, We also address an inconsistency in the number of lin-
[14] among others. early independent solutions to the massless Dirac equation
The interest in Ising anyons, from the perspective ofreported in the literature where, up to differences in normal-
guantum computation, is because they provide a means fazation and sign factors, it is stated that positive and nega-
fault-tolerant quantum computation [7,15-17]. In a systemtive energy solutions are proportional in momentum space
with localized anyons quantum information can be stored21-24]. This statement is made in terms of four-component
non-locally in pairs, or in general-tuplets, withn even, of  Dirac spinors, and it then follows that only two linearly inde-
anyons. Computations are performed by adiabatically braidpendent bispinor solutions exist in the massless case. Taking
ing the anyons worldlines. These braiding operations constithe limit m — 0 in massive solutions, as is done in Refs.
tute the logical quantum gates acting on the states and, up tqa5-27], also leads to an incomplete set of solutions. How-
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ever, from a pure mathematical viewpoint, the massless Dirac

equa_tion in momentum space is an algebrgip equatipn, WhosggLE 1. Eigenvalues of the canonical frame Weyl bispinors.
solutions are the eigenvectors of & 4 Hermitian matrix, so

that four independent solutions must exist. Indeed, this result uW(p)  u® () uP(p)  uw(p.)
is also found in the literature for the special case of momen- Energy + + i j
tumI altcrzng tré:e d|retct|i)n af [Zf,isl)_].h cebra - Helicity 1 1 1 1

n the QC context, we establish an algebraic equivalence Chirality 1 1 1 1

between Weyl bispinors and bipartite qubit states. We show

that the unitary transformations relating the Weyl and Ma- ) )

jorana bispinors in RQM play the role of entangling two- Ed- (1) is rewritten as

qubit gates in QC, and that maximally entangled states (Bell

states) are algebraically equivalent to massless Majorana 3 - pu(p) = +7° u(p), (6)

bispinoré’®. Different types of entangling gates are dis-

cussed, providing a list not meant to be exhaustive. A sewith p = p/|p|. Thus, the bispinors(p) are eigenvectors

of the entangling gates fulfills the requirements for MZMs of both helicity> - p and chiralityy® operators, and Eq. (6)

operators, and we use it to construct a TQC toy model witlexpresses the known result that chirality equals the helicity

four MZMs from the bottom up, showing how to obtain oper- for massless, positive-energy bispinors, while it is opposite

ators and states, as well as entanglement of two logical qubifer negative-energy ones. Taking the directionpohlongz

from braiding. (from now on called the canonical frame) in Eqg. (6) one ob-
The organization is as follows: In Sec. 2 we obtaintains the four independent solutihswith their eigenvalues

bispinor solutions to the massless Dirac equation and sho@iven in Table I.

that they are unitarily equivalent. The completeness of the

solutions is also discussed. In Sec. 3 we establish the alge- 0 0
braic equivalence between massless bispinors and two-qubit u® (p,) = 0 u® (p,) = 1
states and discuss the entangling gates. In Sec. 4 we pro- N 1 N 01"’
vide a TQC toy model based on a set of the entangling gates. 0 0
Finally, concluding remarks are given. (7)
0 1
2. Masslesg-number bispinors u® (p,) = 8 ,u@(py) = 8
2.1. Weyl 1 0
Let us begin by considering four-component Weyl bispinors  To obtain solutions for general three-momentum we use
with four-momentump” = (£|p|,p), respectively for spherical polar coordinates
positive- and negative-energy = +E = =+ |p|, which are
solutions to the massless Dirac equation P = (sin 6 cos ¢, sin fsin ¢, cos ) , (8)
iv"9,¥ = 0. Q)
. . and the transformation
The gamma matriceg* = (7°,~) obey the Clifford algebra
relation 0, 5 . 3
A APyl = 2ghY ) A(B ) =expq—5 (v cosp+°sing) 7 ¢, (9)
with g#” the metric tensor with signature digg—1, —1, —1),
and the Weyl representation which is actually a rotation since it is unitary and of unit de-
terminant. Applying Eq. (9) to the bispinors in Eq. (7) we
0 0 1 0 o
70 = ~ = (3) have
1 0 )’ —-o 0 )’
with o = (o',02,0?) the standard Pauli matrices will be AG.p)u® (p:) =uP(p), i=1....4, (10
used throughout. Using the plane waves
U = u(p)exp {i (£Et —x - p)}, (4) vv_ith the general momentum bispinors, in two-block notation,
given by
and the matrices
. -1 0 0 x- (p)
5510123:< )7 u® :< >’ u?) :< ,
v EN Yy 0 1 ®)=1{\. () (p) 0
0 (11)
5 g
T =9y = ( > ; ®) (3) ( 0 ) (4) (X+ (p))
0 U = , U = ,
(4 (p) Y_ (p) (p) 0
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wherey . (p) are the two-component helicity eigenspinors 2.2. Majorana

cos (g) Using the canonical frame bispinors in Eq. (7) we define the
X+ (pP) = <ei<f’ sin (g)) : following Majorana bispinors
, (12)
—e % sin (§) 1

o= mn®). ) () =5 (1 () + 7207 ).

L . @y L (o 2,,+(1)
satisfying the equation uy/ (p2) _\ﬁ (U (p2) — iy u™ (p ))7

(18)

&b x+(p) = X+ (P): (13) Wiy ) =5 = (9 () — i ()

(4) _ 1w 2 k(4
The bispinors in Eq. (11) are orthonormal upr (p2) 2 (“ (p2) +i7"u (pz)) ’

uT(i)(p)u(j)(p) = 6ij, (14)  where the asterisk denotes complex conjugation, even though

it is superfluous in this case because the (p.) are real.
The bispinors in Eq. (18) are eigenstates of the standard

with a normalization that is adequate for massless spinors ¥harge conjugation operator [38,39]

as the Dirac adjoini = uf4? is not needed in this case.
Another useful, Lorentz invariant normalization is to re-scale
them tov/2E. These bispinors are also solutions to Eq. (6), C=CK =iK, (19)
which in Hamiltonian form reads
whereC = i~? is the charge conjugation matrix, arid
a-pu® (p) =+ u) (p), stands for the operation of complex conjugation to the right.
s=1,2 (15)  We then have

(+2)( p),

a-putt?(p) = -+

Culy™ (p:) =+ uly (p2),
making explicit that.(!) (p) andu@)(p) are positive-energy 2.3) 2.3) (20)
bispinors, whileu®) (p) and (¥ (p) are negative-energy Cups™ (p2) = = un™ (p2)
ones. The helicity and chirality eigenvalues are the same as

in Eq. (7). Energy projection operators are obtained from th@nd itis in this sense that they fulfill the Majorana condition.
spin sums These Majorana bispinors are also solutions to Eq. (15), im-

plying a unitary transformation must exist relating them to
the Weyl bispinors in Eg. (7). Among several possibilities, to

1
A=) u(p)ul(p) = 3 (1+a-p), be discussed in the next section, we choose
s=1,2
— 01,3
A= 3" ulHD (p)ul+2) (p) = % (1—a-p). (16) R3 = exp (47 7Y ) (21)
s=1,2

)

as the transformation matrix, which besides being unitary is
also of unit determinant, therefore a rotation. Thus, we have

They satisfy the required properties for projection opera; the following equivalence between the bispinors in Egs. (7)

tors and (18)
A=A ,
- Ryu™ (p.) = —ul) (p.),
Ao = A A =0 a0 R (p2) = +uf) (p-) 22)
u Pz) = TU Pz),
Ay +A-=1 ’ M
Rsu® (p.) = +uly) (p.),
and from the second and third properties it is readily seen

prop Y Ryu™ (p.) = —ufy) (p.).

that the bispinors in Eq. (11) constitute a complete and or-
thogonal set of solutions to the massless Dirac equation. The
energy projection operators in Eq. (16) can be found in the It is now straightforward to generalize this result to arbi-
literature [32-37], although without reference to the bispinorstrary momentum bispinors. Using the ones in Eq. (11) we
and the spin sums. obtain the generalization of Eq. (18)
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the standard massive case [38,43] where, following the Feyn-
man - Stuckelberg prescription for antiparticles, the negative-
( ) energy bispinors are redefinecds? (p) = uls® (—p) (the
subscriptm is just to make explicit that these are massive
(u — iy’ (p)> , bi_spinors). The momentum flip is necessary so that solutions
with four-momentum(—E, —p) are interpreted [ is al-
ways positive) as antiparticle solutions with four-momentum
( ) (E,p), and the coordinate dependence is obtained from the
positive-energy one~*-* by making the replacemenis —
WY (p) = 1 (u(4) (p) + in2u®’ (p)> _ —E andp — —p. Also, the spinors indexes are relabeled to
implement hole theory in the rest frame.

These Majorana bispinors are obtained from the canonical N the massless case there is no rest frame, but one can
frame ones in Eq. (18) by the same rotation in Eq. (9) use the canonical frame instead, with helicity replacing spin
in hole theory. Hence, the absence of a negative-energy solu-

A0, 9)ul) (p:) =ul)(p). i=1,...,4  (24) tion with positive (negative) helicity, and therefore negative
o . (positive) chirality, is to be interpreted as the presence of a

Then defining the rotation positive energy solution with negative (positive) helicity, and
the same chirality. The momentum flip is still necessary for

®) (p) —iv*u®" (p)

&\

= T
2(0,0) = A (0, 0) BsAT(0,0), (25) the antiparticle interpretation, and in fact it is already implied
Egs. (10) and (22) yield for the plane wave'?-*, with p® = E = |p|, but combined
with a simple relabeling of the spinor indexes, as in the mas-
Q (0, 0)u® (p) = —u') (p), sive case, is not enough to satisfy helicity invariance. Hence,
) @) both spin and momentum of the negative-energy solutions
Q(0,0)u® (p) = +uy, (p), (26)  must be reversed. However these operations just produce the
Q0 3) @ same bispinors up to a phase. To see it, it suffices to consider
(0, ) ™ (p) = +uiy (P), the spinors in Eq. (12). The momentum flip is accomplished
Q0, 0)u® (p) = 7u§\?2) (p). through the substitutio(¥, ) — (r — 6, ¢ + =), leading to
Observing thaf2 (4, ) anda - p commute, it is readily veri- X+(=p) = Fe*xx(p), (29)

fied that the blspmors in Eqg. (23) are solutions to the massless
Dirac equation while the spin flip is done via [39]

(s) () —io2X i (P) = £x+(P)- (30)
a-puy, (P) =+ uy (P), R @7 + *

- puEC;_Z) (p) = — u%}+2) (p). Thus, Egs. (29) and (30) produce
They also satisfy the Majorana condition —iooxi(—p) = eTx+(p). (31)
cull? (p) =+ uY (p), As for the coordinate dependence, and starting from
@.3) 2.3) (28)  exp{—i(—Et—p-x)}, the operations of complex conju-
cu7” () = - uiy” (). i ippi i itive-
M M gating and flipping the momentum result in the positive

—ip. T,

Accordingly, Eq. (26) establishes an equivalence betweefi€rdy case
Weyl and massless Majorana bispinors. This relation is the N the Ilterature the above discrepancy is expressed in
c-number analogue of the known equivalence between We)tprm§ of incompatible statements abou_t the completeness .of
and massless Majorarfeld operators related by a Pauli- solutions to the massless Dirac equation. On one hand, in
Gursey transformation [40-42]. In this sense this result comRefS- [21-27] itis concluded, following different approaches,

pletes the equivalence between massless Majorana and wé{)ﬁt there are only two independent solutions to the equation,
fermions, which is now seen to hold for both quantum fieldsith the negative-energy bispinors being proportional to the
ande-number spinors. positive-energy ones. On the other hand, the massless Dirac

equation in momentum space istax 4 Hermitian matrix,
2.3. Completeness and degrees of freedom so there must be four independent solutions, as already given

in Egs. (7) and (11), and expressed in the completeness re-
There is a subtle but important matter regarding the negativdations in Eq. (16). The resolution of this problem lies in
energy Weyl bispinors(34) (p) in Eq. (11). If one substi- the degrees of freedom: A Majorana bispinor, either mass-
tutes the complete wavefunctiod$>* (z) = u®% (p)e’”*  less or massive, possesses two degrees of freedom because
in Eq. (1) itis found thatx - pu®*) (p) = u®*(p),incon-  of the Majorana condition, and these are half the degrees of
tradiction with Eq. (15). Let us contrast this situation with freedom of a Dirac bispinor. In view of the results of the last
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MASSLESS MAJORANA BISPINORS AND TWO-QUBIT ENTANGLED STATES 119

subsection, this is also true for the Weyl bispinors. Thus, even |0)
if formally four independent solutions exist for the massless

Dirac equation (a complete set in the mathematical sense)
only two make sense physically.

At the level of c-number wave functions one could, in
principle, either give up the Feynman - Stuckelberg interpre-
tation for negative-energy states and keep the complete set o
solutions, or maintain the conceptually useful antiparticle in-
terpretation and disregard mathematical completeness, sinc
ultimately it is the quantized theory (second quantization) the
one that is expected to be free of ambiguities. Indeed, in a d
classic paper [44] Weinberg has shown that, under the genera
assumption of Lorentz invariance of ti¥ematrix, massless
fermionic field operators must be given by

_ d3p —ip-T bT ip-x
Vv_(z) = m (a_ (p)e +0} (p)e )
x V2Ex- (p), (32
d3p —ip-x ip-x :
v = [ (s e 0l () ) )
FIGURE 1. Unit Bloch Sphere. The computational basis is mapped
X V2Ex+ (p), (33)  to the north and south poles of the sphere. The orthogonal pure

states|x+) and |x—) are antipodal and correspond to helicity
where the subscripts: respectively represent positive and eigenspinors if the Bloch vector is taken as the three-momentum.

negative helicity, and the spinorg; (p) are given in Eq. . i
(12). These massless fields can be readily expressed in The computational basis for the space of two pure-state

terms of bispinors by making the substitutions (p) —  dubitsisthengiven by the sgl0) , |1)}®{|0) , [1)}, whence,
u(12) (p), with the latter given in Eq. (11). There is no use UPON using Eq. (34) and the notatifi) = |0) © |0) and so
for the complete set of massless bispinors in the field operatdt": We obtain the explicit representation

expansion. 1 0
| N | 00)={ol. =]
3. Majorana condition and maximal entangle- 0 0
ment
3.1. Massless bispi biparti bi X X
.1. Massless bispinors as bipartite qubits
oy = (1. =g (36)

In quantum computation the quantum analogue of a classi- 0 1

cal bit, a qubit, is given by a complex linear combination of
the basis states of a two-level quantum system, known as ttnd we see that the elements of the basis are just the canonical
computational basis. Denoting the basis state®pgnd|1), ~ frame Weyl bispinors in Eq. (7)

for spin-1/2 systems they can be chosen as the eigenstates of 00) = u® (p.), |01) = u® (p,)
0.3 z) > z) (37)

1 0 10) = M (p,), [11) = u® (p,).

|0>:(0), |1>:(1)_ 34) [10) = u'V (pz), [11) = u' (p:)

Another basis for this space is provided by the Bell states,
In this basis, the helicity spinors in Eq. (12) are given by thewhich are maximally entangled states
general pure-state qubits

ins — (]00) + |11
0 |27) = f (100) +11))
|x+) =cos 3 |0) + €' sin 1),
(35) o7) = 7 (/00) —[11)),
9 9 38
IX_) = — e " sin |0) + cos 1), 1 (38)
) :7 (101) +110)),
which are antipodal in the unit Bloch sphere representation,
[45,46] with the three-momentum in Eq. (8) taken as the [0~ =—= (|o1) — [10)).
Bloch vector (Fig. 1). \f
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Using either of Egs. (7) or (36), explicit representations ofwhen acting on the computational basis in Eq. (363
the Bell states, as well as the massless Majorana bispinors fiyor (H ® 15)|00) = |®T). The CNOT is a universal
Eqg. (18), are directly obtained, and upon comparing the twaate [46] in the sense that any quantum circuit can be sim-
sets we arrive at the interesting result that the Bell states andated with arbitrary accuracy by a combination of a CNOT
algebraically equivalent to the massless Majorana bispinorand one-qubit gates (the latter usually taken as the Hadamard
in the canonical frame and ther/8 phase gates). It has also been shown, for the
1) o () Lt two-qubit case, that the relevant property for universality is
upy (p2) = 07), gy (p:) = [97), (39)  entanglement [47], and so any quantum circuit can be simu-
W (p) = =187, ol (p) = |@F). lated with arbitrary accuracy by a combination of an entan-
) . ) . . gling two-qubit gate and suitable one-qubit gates. It is also
This result is generalized to arbitrary momentum defining th‘?/vorth noticing that the CNOT gate is not a rotation, since it
general-momentum Bell states has determinant -1, a feature that difficults actual implemen-
tations.

1
+ —— (@ (3)
[27(p)) 2 (“ (p) +u (p)) ’ Another set of entangling gates, denoted By, i =
1 1,...,4, consists of the rotations
") =7 (u(“)(p) (‘”(p)) :
2 Ry — T o1
. (40) 1=exp (91,
Ut (p)) =—= (u®(p) +uM(p) ),
’ () \/i( (P) ( )) Ry =exp (—z’yl),
1 4 (44)
- = (@ (p) — @ T
[T~ (p)) 7 (u (p) —u (p)) ’ Ry — exp (1707173> ’
then, from Egs. (11), (12), and (23) we get ™ :
gs. (11), (12) (23) g Ry —exp (71,%)7173)'
1 _ 2
ui () = [¥7(p)),  uf (p) =¥ (p)), o _ ,
(41)  They also have the interesting property of being solutions to
(3) _ o (4) o @+
uy () = —1[27(p)), up/(P) =27 (P))- the algebraic Yang-Baxter equation [48].
Thus, we conclude that for massless bispinors obeying the
Dirac equation, the Majorana condition is equivalent to max- (Ri @ 12) (12 ® R;) (R; @ 1) = (12 ® R)
imal entanglement. % (R; ® 1) (12 ® R;). (45)

3.2. Entangling gates These matrices have been studied by Kauffregal [49] in

Operations on qubits are given by unitary quantum gates, angP"nection with knot theory and topological linking. The
from Egs. (22) and (39) we see that the rotation in Eq. (be;teR?’ (used in Eq. (25)) was introduced by Kauffman and

serves as a two-qubit gate that produces entanglement. V@monaco [50], while the matrice8, and iz, appear, re-
now provide a list, not meant to be exhaustive, of other enSPECtiVely, in Refs. 51 and 52. The action of these gates on
tangling gates and their properties. the computational basis is summarized in Table II.

The common procedure for producing entanglement in ~ Yet another set of entangling gates, denotediby: =

quantum computation is by a combination of a CNOT (con-1> - - -» 4, IS given by the rotations
trolled not) gate and a Hadamard gate. The latter is a one- . ;
ubit gate given b Ri=——=~3(14+7Y), Ro=—=2(1+17Y),
qubit gate given by 1=757" (L4, Re = —o0® (L)

1 )
Ao OO MO D ) s o). @9
L1
Al )

TABLE Il. Action of the entangling gates in Eq. (44) on the compu-
while the former is a two-qubit gate, with the most commontational basis in Eq. (36). The table is read so that the gates in the
realization given by first column act on the basis states in the top first row and produce
the given Bell state in the intersection.

5 00 \ ) |11) )

01 0 0 10) |01 11 |00

Cnvor =19 ¢ o 1 (43) Ry |wt) lw-) |®+) o)

0010 Re o -lu) ) ey e

Then it is easy to see that, say, the combination Rs —[v7) o) |2F) [7)
Cnor (H ® 15) produces the Bell states in Eq. (38) R, | o) |w—) —|®) |2F)
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MASSLESS MAJORANA BISPINORS AND TWO-QUBIT ENTANGLED STATES 121

in the same direction, and order them in a way that exchang-
TABLE IIl. Action of the entangling gates in Eq. (46) on the com- ing R; andR;, 1 clockwise ensures thadt; crosses solely the
putational basis in Eq. (36). The table is read so that the gates in théranch cut oﬂ%iﬂ, with no other operator crossing any other
first column act on the basis states in the top first row and producebranch cut. Then the local (nearest-neighbor) braid operators

the given Bell state in the intersection. are given by
110) j01) 11) 100) T P
R i@ty —i|eT)y  —i|wt)y  i|w) Biz =exp (_ZP”RQ) 0 Bu=oo (_ZRQRS) ’
?2 - ’\I/+> ‘\Ij_> ‘q)+> - ’(I)_> B34 =exp <7IR3R4) . (52)
Ry [@7) —[®7) ) —[v7) 4
R, |w—) o) 7)) |o+) They are unitary by construction, and satisfy the required

properties for braiding operators, [5,10,12] namely the Yang-
They are also Hermitian and therefore square to the idenBaxter equations

ity matrix

tity mat B12B23B1a = Ba3 B2 Bag,

Ri=Rl, R2=1, i=1 4 (47) — (3)
i i) i s gee ey Gl 323B34323 = 334323B34,

They do not obey Eq. (45), but instead satisfy the anti-and commutation relations
commutation (Clifford algebra) relations A
[Bi2, B34] =0, [Bi2, Bas] = RiR3,

h ATl o5 .
{R“Rj} 20551, (48) [Ba3, B3] =RaRy. (54)

which, in contrast, are not obeyed by the gates in Eq. (44). We also have the non-local braid operators
These matrices are all orthogonal to each other, as is verified

with the inner product Biz =exp (—%lezg) ,

Tr(RIR) =0, ij=1,...4, i#j,  (49) By =oxp (< Rus), (55)
hence, they are linearly independent. Using the 16 elements Boy —exp (—Eégfu)
of the 4-d gamma matrices Clifford algebra it can be verified 4 ’

that no other matrix exists with these characteristics that fulzonnected to the local ones in Eq. (52) through the operations
fils Eq. (47) and also closes the algebra in Eq. (48). In this

sense the set in Eq. (46) is complete. Their action on the B3 = B23BlgB§3,
computational basis is shown in Table III.

Bis = B3 Boy B12 Bl Bl,, (56)
4. Quantum computational toy model with Boy = B3y Ba3BY,.
four Majorana zero modes The relevant operator to obtain entanglemenBig in Eq.

. ot (52), since it cannot be written as the tensor product of two
The properties in Egs. (47) and (48), obeyed byfh@ates, 2 x 2 matrices, and therefore is an entangling gate. This also

are the same as the ones satisfied by Majorar)a zero mode 1ds for all three operators in Eq. (563;2 and B34, on the
erators [5-7] in topological quantum computation. Hence, we

will regard them as such and present a general model witﬁ)ther hand, are separable

four Majorana bound states that admits entanglement from Biy =12 ® R, (7/2),
braiding. We mostly follow Ref. [10]. (57)
The setM of particle types is given by Bsy =R, (7/2) @ 12,

whereR,, (7/2) andR, (7/2) are the one-qubit gates (rota-

M = {1vac, 0,9}, (50) tion matrices)

consisting of the vacuurh,,., anyonss, and Weyl fermions

_ |
1, with the standard fusion rules R (7/2) = exp (240 ) ’

- (58)
gXlyage=g9, YVgeEM, oxi=o, Ry(”/Q):eXP(ifoz)'
Y XY =1lya, 0X0=DLlact. (1)  Thus, leaving out the identity, the braid gates of the model
. ) form the set
To define braid operators we take the branch cuts of the
Majorana zero modes, described by the Majorana operators, {R; (7/2),Ry (7/2),Bas} . (59)
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Acting on the Majorana operators in Eq. (46), the braid oper
ators in Egs. (52) and (55) yield

BpoRiBl, = ¢ R, if k=p, (60)
~R, if k=gq
We also specify the observablés,
Fpq = —ilty Ry, p<gq, (61)

which are the fermion parity operators for the pair of Majo-

ranaspg, and the total parity operat@} (topological charge)
Q = FioF34 = —R Ry R3 Ry, (62)

It can be verified that) commutes with all braid operators

MERO
_ Fya |00) = [00),
F34]10) =110},
__ _ (67)
F3,101) = —|01),
F3q|11) = — |11),

with the plus eigenvalue corresponding to the vacant(lot
and the minus sign to the occupied stateThe total parity
operator gives

@ |00) = |00),

QI =D, (68)
Q[01) = — [01),

Q[10) = — |10) .

and observables, in compliance with the superselection rules

for total topological charge conservation [10].

The model is now complete and the system can be initi-

To complete the model a computational basis needs to bgted in any pair of the basis states with the séhparity, due
specified. We choose to fuse the anyons in the pairs 1, 2 ang total parity conservation. The last two states in Eq. (68)

3, 4, so we consider the fermionic operators
Lis -
fi2 =5 (R1 + ZRZ) )
. (63)
0 =5 | fts 1Ry ),
f Rs + iR
producing the states
100) , |10) = f{, [00)
(64)
01) = f4,100), |11) = f1, £, [00),
where|00) is such thatf;» |00) = f34 |00) = 0, and the over

bar is used to distinguish them from the canonical states in

Eqg. (36). Explicitly

1 1
__ -1 — iz 1
_ 1 _e4
o =1 = s
1 e i3
_ (65)
e ' —1
N —e i3 N —1
|01> - 24 1 ) |11> - 3 1
-1 1

These states are separable as is readily checked. The fi

correspond to the fusion rute x o = 1, while the first ones
too X 0 = 1lygca@ndo X 0 X 0 X 0 = 1y, respectively.
Whatever the initial states are, braiding anyons two and and
three, with theB,3 operator, produces the states

By [00) =% (I00) + i [11)),
B [0) == (01) — 1 10)),
1 (69)
Ba3 |10) :72 (=4 |01) +[10)),
Bas |11) :% (i [00) + 1T))

which conserve total parity and are maximally entangled.
The former is directly seen from Eq. (68), while the latter
can be established by their Schmidt decomposition, e. g., for
By3|00) we haveBs; [00) = 5 (0) ©|0) +i[1) ®[1)),

with |0), |1) given in Eq. (34). Similar relations hold for the
rest of the states in Eq. (69). On the other hand, the braid
operatorsB;» and B34 produce the same state multiplied by
a phase of the typexp (+i7/4) when acting on the basis in
Eqg. (65), as expected from their Abelian nature expressed in
the first relation of Eq. (54). The states in Eq. (69) corre-
%ond to the fusion rule x iy = o. Finally, we also verify

digit in the kets corresponds to the occupation number of the, 5t these maximal entangled states satisfy the Majorana con-

fermion operatorfi2, while the second digit to that of the
f34 operator. This is verified by acting on the basis with the
fermion parity operators in Eq. (61), giving

Fy2 [00) = [00)
Fy» |10) = — [10),
o (66)
Fi5]01) =|01),
Fo 1) = — [11),

dition
’L"}/Q (B23 |(_)(_)>)* = — ’iB23 |_(_)> s
.92 S\ K ==
i7" (B23 |01))" = — Ba3[01),
D - (70)
7y (ng |10>) = — 323 ‘1 > y
i’}/Q (ng |ii>)* = — iBQ3 |Ii> .
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5.

MASSLESS MAJORANA BISPINORS AND TWO-QUBIT ENTANGLED STATES

Concluding remarks
of

123

from the use of relativistic spinors and the Clifford algebra

the Dirac gamma matrices. Particularly, the TQC model

The methods and results presented regarding bispinor solgresented, where operators and states are readily obtained de-
tions to the massless Dirac equation are of pedagogical valygating from the set of entangling gates in Eq. (46), provides
on their own, and this value can only be enhanced by the cony gyjtable playground to test and understand how Majorana

nection to QC.e.g, after discussing massless bispinors onezero modes and topological braiding work, both in the tech-
can readily introduce logical two-qubit states and entangling,ca| and physical assumptions.

gates, or vice-versa. Calculations in QC could also benefit

.
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