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What is the most “non-point” gravitating or electrically charged object?
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In this paper we search the shape of an aspherical body and the direction in space, for which the greatest deviations from the point mass
field (the difference from the inverse-square law) take place for large distances from the field source. It turns out to be a system of two equal
point-like masses at the poles of a fixed sphere (giving the greatest positive deviations from the point mass field) and uniform distribution
of point-like masses (discrete or continuous) around the sphere equator (giving the greatest negative deviations from the point mass field).
In these cases the extremal direction of the field measurement respectively passes through point-like particles and coincides with the axis of
symmetry of a ring, which is perpendicular to its plane. Our numerical estimations show that any body can be considered with reasonable
accuracy (the relative error in the determination of the field strength is less than5%) as point-like mass if the distance to the observation
point is more than an order of magnitude larger than its characteristic sizes. The problem considered in this paper can help readers to probe
the limits of applicability of the field point source model.
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1. Introduction

According to the field theory under the point-like mass (or
point charge) we understand a body, the sizes of which are
much smaller than the distance to the point of its gravita-
tional (or electrostatic) field observation. In this case the
inverse-square law [1] will be a good approximation; that is,
the field strength is inversely proportional to the square of
the distance between the source and observation points. The
inverse-square law can be used to derive Gauss’s law, and
vice versa. We note that the field of any uniform body of
spherical shape can be considered as the field of point-like
mass placed at its center at any distance to the observation
point. In the general case of an aspherical body, the object
field will depend on its shape, sizes, the choice of the obser-
vation point, the direction in space, and we should do some
integration or use Gauss’s law [2] to get the spatial distribu-
tion of the field. For example, the very interesting problem of
the determination of the optimal shape of an object for gen-
erating maximum gravity field at a given point in space is
considered in Ref. [3].

In this paper we find the shape of an aspherical body and
the direction in space, for which the greatest deviations from
the point mass field (the difference from the inverse-square
law) take place for large distances from the field source.
There are two motivations for this work. First, there are many
objects in the Universe, whose shape is very different from
spherical (e.g., galaxies, interstellar dust, and clouds). In the
second one, this consideration can help readers to probe the
limits of the applicability of the field point source model.

Let us consider a homogeneous body of fixed massm (or
the total chargeq 6= 0; q can be both positive and negative in
the electrostatic case) that is within a ball of fixed radiusR.
It is convenient to make further analysis using the concept of
multipole decomposition of field potential.

2. A multipole expansion

In the case of continuous mass distribution a multipole ex-
pansion for the gravitational (or electrostatic) potential can
be represented in such a form (see Eq. (41.9) in Ref. [4]):

V (r) = −G
m

r

(
1− ~p · ~r

mr2
− Q

2mr2
+ ...

)
, (1)

wherer is the distance from reference point (the center of a
ball) to the point of observationP ;

~p =
∫∫∫

V

~r′ dm (2)

is the dipole moment of system;

Q =
∫∫∫

V

r′2(3 cos2 θ − 1)dm. (3)

Herer′ is the distance from the reference point to the point,
where a mass elementdm is placed;θ is the angle between
vectors~r and~r′ (Fig. 1).

The series (1) converges quickly if the distance to the ob-
servation point is much larger than radiusR. Three first terms
in Eq. (1) are known as a monopole, dipole and quadrupole
terms. The monopole term via relation~g = −∇V (here~g
is the field strength) gives us the inverse-square law. If we
choose the reference point to be the center of mass of the sys-
tem, then the dipole moment (2) (and respectively the sec-
ond term in Eq. (1)) will be vanished (we can always cancel
this term for the system withq 6= 0 as well; the case of an
electrically neutral system should be excluded from our con-
sideration, since it is not even qualitatively described by the
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FIGURE 1. Geometry of the problem.

model of field point source (the monopole term vanishes))
and we should extremize only specific quadrupole term
Q/m.

Since a body density is constant and~p = 0, our object
should have the center of symmetry atO. Below we limit
ourselves to the case of an axisymmetric (aroundOz′ axis)
body. Thus, our figure has axial and central symmetry (the
point group symmetry isD∞h).

3. The McCullagh’s formula

We can rewrite Eq. (3) in the following form:

Q=
∫∫∫

V

r′2(3 cos2 θ−1)dm=
∫∫∫

V

r′2(2−3 sin2 θ)dm

= (Ix′x′ + Iy′y′ + Iz′z′ − 3I), (4)

where
Ix′x′ =

∫∫∫

V

(y′2 + z′2)dm,

Iy′y′ =
∫∫∫

V

(x′2 + z′2)dm,

Iz′z′ =
∫∫∫

V

(x′2 + y′2)dm

are the components of the inertia tensor of the body relative
to Ox′, Oy′ andOz′ axes respectively;

I =
∫∫∫

V

r′2 sin2 θdm

is the inertia moment relative to the axis that coincides with~r-
direction (we assume that in general caseOz′-axis does not

coincide with~r-direction; in this case distanced = r′ sin θ
equals to perpendicular dropped fromdm to this direction).
Using Eq. (4) and putting~p = 0 we can rewrite Eq. (1) in the
following form:

V (r) ≈ −G
m

r
− G

2r3
(Ix′x′ + Iy′y′ + Iz′z′ − 3I). (5)

Eq. (5) is known as McCullagh’s formula [5].
Now we require that the greatest deviations from the point

mass potential are towardsz′-direction (I = Iz′z′ ). In view
of axial symmetryIy′y′ = Ix′x′ . ThenQ = 2(Ix′x′ − Iz′z′).
In order to maximizeQ one needs to minimizeIz′z′ and si-
multaneously maximizeIx′x′ . The former is achieved by dis-
tributing the mass as close to the symmetry axis as possible,
while the latter is attained by putting the mass a far away
from the equatorial plane as possible. This directly leads
to two equal point-like massesm/2 at the poles of a fixed
sphere (extremely prolate body;Q/m = 2R2). Likewise,
using a similar argument, one obtains the equatorial (placed
in x′y′-plane) filamentary ring as the shape that minimizes
Q (extremely oblate body;Q/m = −R2). In these cases
the extremal direction of the field measurement respectively
passes through point-like particles and coincides with the axis
of symmetry of a ring, which is perpendicular to its plane (see
Fig. 2).

Let us find specific quadrupole termQ/m for the discrete
system ofN equal point-like massesm/N located atN ver-
tices of a regular polygon inscribed in the circle of radiusR,
whenI = Iz′z′ andOz′-axis is perpendicular to the plane
of the system and passes through the center of mass of this

FIGURE 2. The system with: (a) the biggest positive quadrupole
momentQ; (b) the biggest negative quadrupole momentQ. The
extremal direction of the field measurement coincides withOz′-
axis.
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system. We have:Iz′z′ = NmR2/N = mR2. Applying
the perpendicular axis theorem [6], we get:Ix′x′ = Iy′y′ =
Iz′z′/2. Then using Eq. (12) we derive:Q/m = −R2.
Therefore, this system gives the greatest negative deviations
from the point mass field inz′-direction alike an infinitely
thin ring placed inx′y′-plane.

Above we have considered the case, whereOz′-axis co-
incides with~r-direction (I = Iz′z′). If it is not so, then [4]

Q =
Q0(3 cos2 Θ− 1)

2
, (6)

whereΘ is the angle between rotationOz′-axis of body and
~r-direction; Q0 is the value ofQ at Θ = 0. Interestingly
this quantity varies fromQ0 at Θ = 0 to 0 at Θ = Θcr

(cosΘcr = 1/
√

3); then it changes the sign reaching the
value of−Q0/2 atΘ = π/2.

4. Approximate versus exact solutions

In this section we compare the numerically spatial distribu-
tion of the field for two found above asymptotic cases using
the exact and the approximate expressions. As an example of

FIGURE 3. Dependence of relative errorδg = |g − gapprox|/g of
the dimensionless distanceρ = r/R from the center of mass along
z′-direction for: (a) a system of two equal point-like masses; (b) an
infinitely thin ring. (1) the quadrupole approximation (both terms
in Eqs. (8), (10) are taken into account); (2) the point-like mass
approximation (only the first term in Eqs. (8), (10) is taken into
account).

the system giving the greatest positive deviations from the
point mass field, we may mention the model of a binary star
system with equal masses. Using the field superposition prin-
ciple and the expression for the point mass field, we can get
the exact formula for the field strength inz′-direction for the
system of two equal point-like masses in such a form:

g(ρ) =
g0

2

[
1

(ρ− 1)2
+

1
(ρ + 1)2

]
, (7)

whereg0 = Gm/R2, ρ = r/R is the dimensionless distance
from the reference point to the point of observation. An ap-
proximate expression for the field strength can be found using
Eq. (5), equalityQ/m = 2R2 and relation~g = −∇V :

gapprox(ρ) ≈ g0

(
1
ρ2

+
3
ρ4

)
. (8)

The examples of ring-like gravitational objects are given in
Ref. [7]. An exact expression for the field strength of an in-
finitely thin ring is obtained in Ref. [8]. In our notations it
has the following form:

g(ρ) = g0
ρ

(ρ2 + 1)3/2
. (9)

The corresponding approximate formula that takes into ac-
count quadrupole termQ = −mR2 is as follows:

gapprox(ρ) ≈ g0

(
1
ρ2
− 3

2ρ4

)
. (10)

In Fig. 3 we plot the dependencies of relative error
δg = |g − gapprox|/g of ρ for both asymptotic cases.

It is seen that the quadrupole approximation is quite cor-
rect forρ > 3, whereas the point mass model gives reason-
able results forρ > 10 (the relative error in the determination
of the field strength is less than5%). Therefore, we conclude
that any body can be considered with reasonable accuracy
as point-like mass if the distance to the observation point is
more than an order of magnitude larger than its characteristic
sizes.

5. Conclusions

In this paper we search the shape of an aspherical body and
the direction in space, for which the greatest deviations from
the point mass field (the difference from the inverse-square
law) take place for large distances from the field source. Us-
ing the McCullagh’s formula we find that these are a sys-
tem of two equal point-like masses at the poles of a fixed
sphere (giving the greatest positive deviations from the point-
like mass field) and uniform distribution of point-like masses
(discrete or continuous) around the sphere equator (giving the
greatest negative deviations from the point mass field). In
these cases the extremal direction of the field measurement
respectively passes through point-like particles and coincides
with the axis of symmetry of a ring, which is perpendicular
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to its plane. Thus, the objects found differ from the sphere
not only in form but also in topology and have infinitely large
density. Our findings relate to the gravitational field or the
electric field of positively charged systems. If these objects
are negatively charged, then such deviations should change
the sign. Using numerical estimations, we also conclude that

any body can be considered with reasonable accuracy (the
relative error in the determination of the field strength is less
than 5 %) as point-like mass if the distance to the observa-
tion point is more than an order of magnitude larger than its
characteristic sizes.
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