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In this work, we develop an algorithm based on Python 3 to compute the theoretical prediction of the electron and electron anti-neutrino
scattering cross-section using two different numerical methods:i) Riemann sums andii) Monte Carlo integration. We compare the precision
among these two methods and the theoretical result. Besides, the theoretical prediction is compared with the result obtained with MadGraph
5, which is commonly used to provide theoretical predictions for the LHC. With this project, we would like to encourage students to use
programming languages as a tool for the study of new physics.
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1. Introduction

When we immerse ourselves in physics, quickly, we real-
ize that the fundamental tool to explain the laws of nature is
mathematics. Besides, when we try to do extensive calcula-
tions, manual computation becomes an exhaustive work, and
the probability to make mistakes grows very fast. Therefore,
to pursuit such computations, it is important to make use of
proper software. Technological advances allow us to perform
many calculations with the help of automated software but,
in general, they do not provide us with the full information
step by step.

In theoretical physics, we often find ourselves with la-
borious computations, for example, the calculation of scat-
tering cross-sections among particles within the framework
of Quantum Field Theories. In this document, we present a
method to perform the calculation of the differential scatter-
ing cross-section between an electron and its corresponding
electron anti-neutrino through a numerical algorithm imple-
mented in Python 3 [1]. This article is organized as follows:
a general review of the weak interactions, the Fermi Theory,
and the analytical computation ofe−ν̄e → e−ν̄e is presented
in Sec. 2; in Sec. 3, the results of the implementation of the
process in Python 3 and MadGraph 5 [2] are shown. And fi-
nally, in Sec. 4 we present our perspectives and conclusions.

2. Weak interactions

In this section, we explain the main properties of leptons and
we introduce the Fermi theory, which was the first model that
attempted to describe weak interactions. Furthermore, we
present the mathematical framework that is used to compute
the total scattering cross section in thee− + ν̄e → e− + ν̄e

process.

2.1. Lepton family

Leptons are fundamental particles that interact through weak
and electromagnetic forces. They are fundamental particles
that can be considered as point-like objects. As they pos-
sess spin1/2, due to the Pauli exclusion principle, they must
obey the Dirac equation. This differential equation will be
presented in a forthcoming section, but it is important to men-
tion that it describes the kinematical behavior of leptons and
quarks.

Leptons are grouped into three families, each one con-
taining a particle with electric charge−1 (e−, µ− andτ−),
and its corresponding neutrino without an electric charge,
(νe, νµ, andντ ). Furthermore, both particles have an an-
tiparticle. Table I shows the masses of the six known leptons.
In this work, we consider only the first family, (e− and ν̄e),
but it can be extended to other families.

These elementary particles are produced and measured
in different kinds of processes. For instance, neutrino and
electron anti-neutrino are produced in beta decays of radioac-
tive elements. They are also created largely from solar fusion
processes. It is worth mentioning that the theoretical descrip-
tion of neutrino masses is under investigation. The Standard
Model (SM) of particles is written in such a way that neutri-
nos are massless particles; however, this conception

TABLE I. Leptons and its properties [3].

Particle Antiparticle Mass (GeV)

e− e+ 0.511×10−3

νe ν̄e < 15× 10−6

µ− µ+ 105.7

νµ ν̄µ < 0.19

τ− τ+ 1777

ντ ν̄τ < 18
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is not consistent with experimental observations. Thus, the
community is searching for SM extensions such that neu-
trinos possess a mass different from zero and its possible
implications on future measurements. Nowadays, the mea-
surement of neutrino masses, in particular for electron anti-
neutrino, is a major challenge from the experimental and the-
oretical points of view. On the other hand, regarding the sta-
bility of leptons, the electron is a stable particle; however,
muon and tau leptons decay into other leptons as,

µ− → e− + ν̄e + νµ, (1)

τ− → µ− + ν̄µ + ντ . (2)

These decay processes are allowed by the weak interaction,
the same interaction responsible for the beta decay.

2.2. Beta decay

Nowadays, we know that among all known atomic nuclei,
less than 12 % are stable. Particles that constitute unsta-
ble atomic nuclei decay by emitting alpha or beta particles.
An alpha particle is a helium nucleus with total spin equal to
zero and, a beta particle can be an electron (β−) or a positron
(β+), depending on the type of beta decay. There are three
kinds of beta decay processes:

n → p + e− + ν̄e, β− decay, (3)

p → n + e+ + νe, β+ decay, (4)

p + e− → n + νe, e−capture. (5)

Theβ− decay occurs whenever the mass of the original
neutral atom is greater than the mass of the final atom. The
β+ decay can be presented when the atomic mass of the orig-
inal atom is at least two electron masses greater than the mass
of the final atom. Finally, electron capture happens when the
original atomic mass is greater than the final atomic mass.

A phenomenological description of the beta decay must
take into account that electrons and neutrinos do not exist
in the nucleus before its disintegrationi. It means that elec-
tromagnetic and strong interactions remain invariant (sym-
metric) under parity transformation; however, the beta decay
breaks the invariance under parity. In this kind of process,
neutrinos always have their spin pointing in the opposite di-
rection to its velocity, and, anti-neutrinos have their spin par-
allel to its velocity [4]. All these facts were modeled by
Fermi, without knowing the existence of the weak force, in
the so-called Fermi’s interaction or Fermi theory of beta de-
cay.

2.3. The Fermi theory of beta decay

In 1934, Fermi postulated that the beta decay process must be
described by a Hamiltonian in which the particles are inter-
acting among them, through the so-called Fermi four-fermion
interactions. These interactions contain the four free particle

wave functions involved in beta decay (neutron, proton, elec-
tron, and neutrino),

HF = H0
n + H0

p + H0
e + H0

ν + Hint , (6)

whereHF is called Fermi’s Hamiltonian,H0
n, H0

p , H0
e , and

H0
ν are the free hamiltonians for neutron, proton, electron,

and antineutrino; andHint is the interaction hamiltonian that
can be written as,

Hint =
∑

i

Ci

∫
d3x(ūpÔiun)(ūeÔiuν) , (7)

whereun and uν are the neutron and neutrino wave func-
tions. The bars on the proton and electron wave functions are
defined as̄up = u†pγ

0 andūe = u†eγ
0, theÔi are operators

which characterize the beta decay and are weighted by the
constantsCi. In practice, we can neglect neutrino masses,
and the electron mass is also small if we compare it with the
dispersed kinetic energy in the beta decay. This implies that
the theory must be relativistic and therefore, the wave func-
tions must be solutions of the free particle Dirac equation [5],

(
ıγµ ∂

∂xµ
−mk

)
uk(x) =0 , (8)

whereγµ are the Dirac matrices, andk = {p, n, e, ν}. These
matrices are defined as,

γi = γ0αi, i = 1, 2, 3 , (9)

where,

γ0 =
(

12×2 02×2

02×2 −12×2

)
, αi =

(
0 σi

σi 0

)
. (10)

andσi are the so-called Pauli matrices.
The interaction term in Eq. (6) is modeled by a current-

current point-like interaction, which is well known from elec-
trodynamics. To consider the most general interaction term,
the current is written as̄upÔiun. In Table II, we enlist the dif-
ferent operatorŝOi and their properties under Lorentz trans-
formations of the current̄ΨÔiΨ. In any case, the operator
Ôi must be a 4×4 spin matrix. Also, the differential opera-
tors can be reduced to constant 4×4 matrices, since we are
dealing with plane wave functions. Explicitly, Eq. (8) al-
lows us to express the differential operatorsıγµ∂uk(x)/∂xµ

asmkuk(x) [6].

TABLE II. Elemental fermion transition operators.

Ôi Transformation Number of

property matrices

1 Scalar 1

γµ Vector 4

σµν = ı
2
[γµ, γν ] Tensor 6

γµγ5 Axial vector 4

γ5 = ıγ0γ1γ2γ3 Pseudoscalar 1

= −ıγ0γ1γ2γ3
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Parity violation in beta decay suggests that the allowed
interactions in Eq. (6) can only be,

Hint =
GF√

2

∫
d3x ūp(x)γα(CV + CAγ5)un(x)

× ūe(x)γα (1− γ5)uνe
(x) , (11)

whereūe(x)γα (1− γ5)uνe
(x) is the leptonic contribution,

with CA/CV = −1.255 ± 0.006 [7], andCA andCV are
the axial and vector contribution of the nuclear coupling, re-
spectively.GF is called the Fermi constant. It is important
to notice that Lorentz invariance of the total Hamiltonian re-
quires both, vector and axial operators. See Table II. Finally,
for the study performed in this work, we emphasize that the
vector nuclear coupling constant is often related to the Fermi
constant of beta nuclear decay (Gβ = GF CV ) [8]. The ex-
perimental determination of the Fermi constant started with
the measurements of the muon decay [9]. After the introduc-
tion of the Higgs mechanism in the SM, it is found that [10]:

GF√
2

=
g2

8M2
W

, (12)

whereg is the coupling constant of the weak interaction, and
MW = 80.387±0.016 GeV is the mass ofW -boson [11,12].
The current measurement of the Fermi constant in the elec-
troweak model isGF = 1.1663787(6)× 10−5GeV−2 [13].

2.4. e− + ν̄e → e− + ν̄e scattering in the Fermi theory

In this work, we are interested in the processe− + ν̄e →
e−+ ν̄e in the framework of the Fermi Theory. As it has been
argued in the previous sections, this process can be studied by
a contact four fermion interaction given byHF . The Feyn-
man diagram associated with this process is shown in Fig. 1.

To describe thee− + ν̄e → e− + ν̄e scattering process, it
is important to know the wave functions of all particles. The
wave functions for the electron and the electron anti-neutrino
are described by the solutions of the Dirac Eq. (8). The in-
coming and outgoing wave functions are given in terms of
Dirac spinors as,

FIGURE 1. Feynman diagram fore−ν̄e → e−ν̄e scattering within
the Fermi theory.

|ΨIn〉 =

{
ue(x) =

(
2p0V

)− 1
2 ue (p, s) e−ipµxµ

uν̄e
(x) =

(
2k0V

)− 1
2 vν̄e

(k, t) eikµxµ
(13)

and

|ΨOut〉=
{

ue(x′)=
(
2p′0V

)− 1
2 ue (p′, s′) e−ip′µxµ

uν̄e(x
′)=

(
2k′0V

)− 1
2 vν̄e (k′, t′) eik′µxµ (14)

wherep, k are the momenta of the incominge− andν̄e, and
p′ and k′ are the momenta of the outgoinge− and ν̄e, re-
spectively. In the same spirit,s and t represent the spin of
the incominge− and ν̄e ands′ and t′ represent the spin of
the outgoinge− andν̄e and finally,V is the volume factor of
the phase-space integration domain. Taking into account the
Feynman rules [18] of the diagram in Fig . 1, we compute the
elementary transition matrix element by means of the Fermi
Golden Rule, which it is given by

S
(
ν̄ee

− → ν̄ee
−)

= −ı
GF√

2
(2π)4

× δ(4) (p′ + k′ − p− k)√
16V 4 k0 p0 k′0 p′0

M , (15)

where the invariant amplitudeM is,

M = ūνe (k, t) γµ (1− γ5) ue (p, s)

× ue (p′, s′) γµ (1− γ5) ūνe (k′, t′) . (16)

Then, the differential cross-section per unit of the phase-
space volume of two particles in the final state can be com-
puted as,

dσ = (J12ρ2 V T )−1|S|2 V
d3p′

(2π)3
d3k′

(2π)3
, (17)

where the density of particle two is given byρ2 = V −1 and,
with a proper normalization of the wave function, the incom-
ing current corresponding to particle one takes the form,

J12 =

√
(p1 · p2)2 −m2

1 m2
2

p0
1 p0

2 V
. (18)

Besides, the angular distribution of the cross-section in
the center of the mass system can be written as,

dσ̄

dΩ
(
ν̄ee

− → ν̄ee
−)

= V

∫
d3p′

(2π)3
V

∫
d|k′|
(2π)3

|k′|2

× 1
2

∑

s,s′,t,t′

|S|2k0p0V

(k · p)V −1(V T )
=

G2
F

2π2

1
16(k · p)

×
∫

d3p′

2p′0

∫ |k′|2d|k′|
2k′0

δ(p′ + k′ − p′ − k′)

× 1
2

∑

s,s′,t,t′
|M|2 . (19)
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The invariant amplitude squared averaged over spins can
be computed using standard Dirac algebra, and we find,

∑

s,s′,t,t′
|M|2=Tr[γα(1−γ5)( 6 p+me)γβ(1−γ5) 6 k]

× Tr[γα(1−γ5) 6 k′γβ(1−γ5)( 6 p′−me)] . (20)

In the process studied in this document, the anti-neutrino
with momentumkµ′ and spin t′ represents an “incom-
ing” particle with negative energy, while the incoming anti-
neutrino with momentumkµ and spint is an “outgoing” par-
ticle. Also, the electron with momentumpµ′ and spins′ rep-
resents an outgoing particle, and the electron labeled with
momentumpµ and spins represents an incoming particle.
Furthermore, we can write the differential cross-section dis-
tribution in terms of two kinematical variables:i) the scatter-
ing angleθ measured with respect to the center of the mass
system andii) the Mandelstam variables = (p0+k0)2. Thus,
we find that the invariant amplitude squared averaged over
spins can be written as,

∑

s,s′,t,t′
|M|2 = 256 (k · p) (p′ · k) =

256
16

(
s−m2

e

)2

×
[
1 +

m2
e

s
+

(
1−m2

e

)
cos θ

]2

. (21)

The remaining factors of the Eq. (19) take the form,

(k · p) =
1
2

(
s−m2

e

)
, (22)

and
∫

d3p′

p′0

∫ |k′|2d|k′|
k′0

δ(p′ + k′ − p′ − k′)

=
∫

d3p′

p′0

∞∫

0

dk′0 k′0 δ(p′ + k′ − p′ − k′)

=

(
s−m2

e

)

2s
. (23)

Inserting the results of Eqs. (21), (22) and (23) in
Eq. (19), we find,

dσ̄

dΩ
(
ν̄ee

− → ν̄ee
−)

=
G2

F

16π2
s

(
1− m2

e

s

)2

×
[
1 +

m2
e

s
+

(
1− m2

e

s

)
cos θ

]2

. (24)

This process and the explicit theoretical prediction is ex-
plained and developed in several textbooks [19], as well as
the rules for computing the reaction of two particles in the
initial state ton−particles in the final state within the frame-
work of quantum field theories.

FIGURE 2. The differential cross section for the processe−ν̄e →
e−ν̄e as a function of the dispersion angle in the Fermi theory.

3. Results

In this section, we present a phenomenological analysis for
the ν̄ee

− → ν̄ee
− process. To compute the total cross-

section, we solve numerically Eq. (19). To do so, we generate
20,000 random events, and we impose the constraint that the
center of mass energy is smaller than 1 TeV. The generated
events are shown as a distribution in Fig. 2. To compare with
available codes, we need to convert GeV−2 to pico barn (pb)
units; the conversion factor is 1 pb = 2.56819×10−9 GeV−2.
The distribution in Fig. 2 shows that the largest number of
events have an angular dispersion between 100 and 150 de-
grees.

To compute the total cross-section, we obtain the area
under the curve from the distribution showed in Fig. 2 by
two different methods:a) Riemann sums andb) Monte Carlo
method. Then, we compare both methods and, finally, we
contrast the theoretical calculation with the results provided
by MadGraph 5 [2], a program that simulates the collisions
at the LHC. The Riemann sums method consists of choosing
the maximum points from the distributions and sum the areas
produced by these points. In the Monte Carlo method, we
make a linear regression to build a curve that is fitted to the

FIGURE 3. Differential cross section ofe−ν̄e → e−ν̄e in the Fermi
theory estimated with Riemann sums at

√
s = 1 TeV.
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FIGURE 4. Differential cross section ofe−ν̄e → e−ν̄e in the Fermi
theory estimated with a Monte Carlo method at

√
s = 1 TeV.

maximum points. Then, we compute the area under this
curve by generating random points, and finally, we estimate
the area under the curve. Then, we use 50 points to estimate
the cross section distribution shown in Fig. 2, through Rie-
mann sums. In Fig. 3, we obtain that the total cross-section
σ(s) = 5748.573± 1613 pb by Riemann sums method.

Now, we turn into the Monte Carlo method. In this case,
we make a linear regression over the maximum points of
the dispersion shown in Fig. 2. This curve is namedenve-
lope. Once we obtain the envelope, we use the Monte Carlo
method to compute the total cross section described previ-
ously. The result obtained by the Monte Carlo method is
σ(s) = 5581.881 ± 100 pb. It is important to point out that
we have generated the same number of events for the Monte
Carlo method as for the Riemann sums.

To compare both methods, we compute Eq. (19) with
Mathematica [20], which includes the necessary libraries
to solve Eq. (19) easily. The results are shown in
Fig. 5. Therefore, the theoretical prediction obtained with
Mathematica is σ(s) = 5577.178 pb at

√
s = 1 TeV.

Up to now, the total cross-section has been estimated
from a purely theoretical point of view. To conclude our anal-
ysis, we use MadGraph 5 [2], which is a Monte Carlo event
generator that simulates events at the LHC energies; however,

FIGURE 5. Evolution of the total cross section for the process
e−ν̄e → e−ν̄e in the Fermi theory with Mathematica.

TABLE III. Total cross section fore−ν̄e → e−ν̄e estimated with
MadGraph 5 [2].

Run Collider Cross Section Events

(GeV) (pb)

run 1 500× 500 5.378± 0.005 1000

run 2 500× 500 5.365± 0.0045 1000

run 3 500× 500 5.377± 0.0048 1000

it can be also set the conditions for thee−ν̄e → e−ν̄e pro-
cess. Figure 3 shows the result for 10,000 generated events.
The simulation shows that the cross section is5.373±0.0048
pb at

√
s = 1 TeV.

4. Conclusions

In this work, we have presented the computation of the to-
tal cross section ofe−ν̄e → e−ν̄e with Python 3. We im-
plemented a code based on Python 3 to compute the to-
tal cross-section; furthermore, we use two different meth-
ods for the calculation,1) the Riemann sums and2) the
Monte Carlo method. Figure 3 and Fig. 4 indicate the areas
studied by the two methods. Computing the cross-section
with the Riemann sums method, we obtained a total cross-
section ofσ(s) = 5748.573 ± 1613 pb, while by using the
Monte Carlo method, we find that the total cross section is
σ(s) = 5581.881 ± 100 pb. To compare the two results,
we scan the total cross section from 0 to 1 TeV by using
Mathematica ; and we obtainedσ(s) = 5577.178 pb. This
implies that the method by Riemann sums gives a calculation
error of of 2.98 %, while the method Monte Carlo provides
an error of 0.08%.

Besides the numerical analysis, we compare our results
with MadGraph 5, an LHC simulator which we tuned for
computing e−ν̄e → e−ν̄e at

√
s = 1 TeV. With the

use of MadGraph 5, we find that the total cross-section is
σ(s) =5.373± 0.0048 pb. The total cross-section computed
by MadGraph is around103 times smaller than the theoreti-
cal predictions; this is because Madgraph 5 has kinematical
cuts in some variables while we are computing the full cross-
sections with no cuts. In other words, the phase-space avail-
able for the integral is dramatically reduced in MadGraph 5.
To take into account kinematical cuts, we need to perform the
same computation but in terms of pseudorapidity and trans-
verse momentum as it is for the LHC. This is a program to be
done in a future analysis in Python 3.

Finally, in this work, we showed that Python 3 is a pow-
erful tool for computing observables in High Energy Physics
Phenomenology. The algorithm implemented in this work
can help us to understand the processe−ν̄e → e−ν̄e within
the Fermi Theory. The aim of this work is also to motivate
students to use and generate new tools in other programming
languages, as Python 3, for the study of physics problems.
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The codes written in Python 3 to compute the differential
cross-section with both methods are available in: https://git
hu b.com/DavidRenteria/PhenomenologyWithPython3-elec
tronantineutrino
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