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The problem of propagation of photons and currents in a medium at finite temperature and in presence of a strong magnetic field in the
frame of quantum electrodynamics is discussed in the present paper. lIts first part is devoted to introduce the reader to the formalism of
quantum field theory at finite temperature and density. The basic Schwinger-Dyson equations are obtained, by using functional methods
and path integrals. It is discussed the meaning of the zero temperature and zero density limit. The breaking of the spatial symmetry by the
magnetic field determine the existence of a set of basic vectors and tensors which must satisfy the relativistic, gauge and CPT invariance
of quantum electrodynamics. The charge symmetric and non-symmetric cases are discussed. Also a chiral current arises, associated to
pseudo-eigenvector of the polarization operator, due to the breaking of the spatial symmetry by the external magnetic field. As a chiral effect
in photons, the Faraday effect is discussed.
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1. Introduction cussed. The chiral effects on photons and electrons, leading

respectively to Faraday and Chiral Magnetic effects are dis-
The influence of magnetic fields in relativistic quantum sys-cussed. The dispersion equations for propagation orthogonal
tems, like electron-positron plasma and quark-gluon plasmé the magnetic field as well as the basic equations for the
[1-10], is an important subject in high energy physics. guantum statistics in the non-Abelian case of the electroweak

The present paper is the first of a couple devoted to gePlasma will be discussed in the second part of the present

scribe methods for the study problems of gauge field theorie¥©"k: 10 be published in a next paper.

at finite temperature and density. It is assumed that the reader

has a minimal background in relativistic quantum theory and?  The density matrix

guantum field theory. We shall start with statistical quan-

tum electrodynamics, which in the case of zero temperatur&he role of the wave functio in quantum theory is played

T and chemical potentigl reproduce usual results of stan- in quantum statistics by the density matpixApart from the
dard quantum electrodynamics, but formulated in Euclideamntrinsic probabilistic nature of quantum theory, it is neces-
variables. Of particular interest are the phenomena which ocsary to introduce in quantum statistical physics an additional
cur in presence of strong magnetic fields. We start by estabgnorance about the quantum state of the system under study.
lishing the basic formalism of quantum field theory at finite This means another statistics, which is provided by the den-
temperature, using the Green functions method, as developaity matrix. This is usually done by conceiving an “ensem-
by E. S. Fradkin [11], and devote some space to describe tHae” or infinite replica of our system where each one of the
necessary tools, for instance the functional differentiationmembers satisfies the known macroscopic conditions of the
Grassmann variables and path integrals of interacting Bosgiven system and differs on the microscopic state compatible
and Fermi fields. We find a set of functional equations leadwith the macroscopic conditions. In non-relativistic quan-
ing to get the Schwinger-Dyson equations in quantum statum mechanics for each of the members of the ensemble we
tistical electrodynamics, whose solutions are usually amongave the set of wave functiong®, which can be expressed
the main expected results. This is followed by a presentatioin terms of a complete set of orthogonal eigenfunctions of
of the non-relativistic and relativistic problem of motion of the observables of the system, which can be chosen as the
charged fermions in a magnetic field. The expressions for thewo conserved operators: the Hamiltoniérand the number
Green functions tensor structure are written exactly, indepersf particlesN. In place of the total number of particles, in
dently of any order of approximation, based on the conditionselativistic quantum theory, as it is quantum electrodynam-
imposed by assuming relativistit;(1) gauge, and CPT in- ics (QED), it is usually taken as conserved the net electric
variances. The approximate quantities are in general scalacharge), that is, the difference between the number of par-
multiplying the tensors, obtained by perturbation theory. Theticles and antiparticles. Quantum electrodynamics satisfies
dispersion equations for photon propagation as well as theorentz invariance and the discrete CPT (Charge, Parity and
properties of currents parallel to the magnetic field are disTime) symmetries.
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Now, we consider our system as a subsystem of a largeare conserved independently. Models based on the conserva-
system, which is described by a wavefunctibhwhich can  tion of the quantityN, — N;, are out of our the scope of the
be expanded in terms of an orthonormal bgsis,(¢)} in present paper). The equilibrium of energy exchange is char-
Hilbert space. The upper indexs to be taken over the states acterized by the temperatuféand the exchange of particles

corresponding to the ensemble. Then we can write by the corresponding chemical potential
Pmn = e_B(EELN)_MNn)(Smnu (7)
U=, ®. 1)
n The grand partition function is defined by
The quantum average of an operator corresponding to a PP, s ()
physical quantity? is written as: Z = Tre PH-1N) = Z Ze Plen™=uln) = (8)
N=0 n
<p> _ <\I,e|]3|\1,e> _ Zc*ece P, ) wheres(Y is the energy of the state witN,, particles and
L e the thermodynamic potentiél = — PV is given by

where Q=—-kTlhZ, 9)

P, = /q);kn(q)pq,m(q)dq’ (3) WhereP is the pressure anil’ the volume of the system.
From Q one can know the thermodynamic properties of the

. . . system, because:
are the matrix elements d?. The quantum statistical aver-

age overr® states implies the ensemble mean value, which is dQ = —SdT — Nd, (10)
taken over? values, since to each microstate of the ensemble
corresponds &¢ state whereS is the entropy, then
(P) = (UeIP|0e) = S () Pum, (4) - <‘99>  N=-— (39) . (11)
n,m or p=const op T=const

Let us call them agc:°ct,) = pmn. The quantum statistical
average value aP may be written now as 0Q 9]

g y U= w(@ﬂ) —T(aT) o, (12)

<<P>> = Z PrmnPrm, (5)

whereU is the internal energy.

] . ) For ideal quantum gases we have:
where we calp,,,,, the density matrix. It must be a function g) Bosons

of the parameters characterizing the system under study, as it

is the energy. Thus, we can take= P [12]. If we take also Qp = kTS In (1 _ e%(%w)) . (13)
the number of particles, as the system must be in thermody-

namic equilibrium with the medium, exchanging energy and

particles with it, it must depend also from the temperafire b) Fermions
and chemical potential. In that case it is used the so-called

grand canonical ensemble, which in the non relativistic case

use mostly the Hamiltonian operatéf and the number of Qp = _kTZIH (1 + 6_6(5”_“)) : (14)
particlesN. Both quantities are simultaneously observable, p

thus the commutatdiff, N] = 0 and we can write the ex-
pression

p

From it the average number of particles is:

p = e PH=uN) (6) N = Z ny (15)
P

where3~—! = kT andk = 1.38 x 10~2J/K is the Boltz-

mann constant, and is the absolute temperature. We may where

take the set of function®,, as the common eigenfunctions 1
of H and N. In the frame of high energy physics, the den- np =
sity matrix operator is defined in terms of the Hamiltonian

H and some conserved quantity, whose operator commutes

with H, as the net electric chargg or the lepton and baryon _ 1  forfermions (17)
numbersN, ;, (assumming that baryon and lepton numbers

R for bosons (16)
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3. Quantum field theory at finite temperature  An important consequence of Eq21) is that the four ve-

. . . ) _locity of the systemy,, = p,,/M # 0 (if the total mass of
All the previous equations are valid for systems of identicalpe system is\/, its four momentum vector i, = Mu,,,).
non-interacting particles. A more powerful theory is neces4; has an important role in the temperature case, although
sary for interacting systems of fields at finite temperature angh, most cases calculations of physical interest are done in

conserved charge (or number of particles). the system at rest, where the only non zero component is
Starting from the definition Eq. (6) for the grand canoni-,,, — ; /¢ In the systent = ¢ = 1, obviouslyus = i.
cal ensemble we get the Bloch equation
op N o Our model would be useful not only to describe equilib-
Tk (H — puN)p, (18)  rium states but also certain non-equilibrium states (quantum
which has an analogy to the Schrodinger’s equation, aIIOW[(inetics) in which is possible to deal simultaneously with

. . : time and temperature. The temperature Green’s functions
ing to a parallelism to usual quantum theory, but using an

imaginary time variable:; such that-3 < a, < 3 [13-15]. play_ a c_entral role in describing systems in thermodynaml_c_al
- ! L equilibrium and can be extended to states close to equilib-
By defining the fields)(x, 0) as the Schidinger represen- . . o
. X o . rium, like the dynamics of processes of emission and absorp-
tation, we may define a new “Heisenberg representation

: . tion of electromagnetic radiation, the description of systems
/ J— _ )
%éﬁbﬁd = p(=24)1b(x,0)p(z4) leading to the equation of . particles in a medium, the lifetime of quasi-particles and

others, where can be described by functions of temperature

O (X, xa) [ — iV, 07 (%, 220)]. (19) T and chemical potential.

(9£E4
If we know, for example, the Lagrangian of a system we can As pointed out earlier, in the present paper we shall deal
build 4, N andp, and from it, to getZ, 2, and obtain the With finite temperature quantum field theory, providing mod-
thermodynamical properties of the system by usual method€ls which can be used to describe phenomena and systems in
The Eq. [(8) gives the possibility of developing a formalism @ wide range of interest, from condensed matter to astropar-
analogous to that of quantum field theory, where the imagiticle physics. We shall consider first the general case of sys-
nary time variable is now replaced by the Euclidean variabléems without external fields, and at the end study the case
x4 — ict such that) < z, < . What we do is to con- in which the system is under the influence of a strong exter-
struct a gauge theory, in Euclidean four dimensional spacd)al magnetic field. We obtain the basic equations in the free
which has physical meaning when the system as a whole is &nd interacting field cases, and the corresponding Schwinger-
rest (the four velocity space components are zero). The foUPyson equations. Later, by starting from the non-relativistic
imaginary time coordinate, is defined in the intervgD, 3]  electron dynamics in an external magnetic field, and continu-
where3 = 1/kT. This is of particular interest in both high ing with the relativistic case, we obtain the Green function for
energy physics and the physics of condensed matter. In th&n electron-positron gas placed in an external magnetic field
limit 5 — oo (or T — 0) andy — 0 one gets quantum field B. The chemical potentialg. (1,) of electrons (positrons)
theory in Euclidean variables. The analytical continuationare different from zero. The photon chemical potential satis-
x4 — ict leads to an analogy between relativistic statisticalfies the equatiop., = .. + p, = 0, in correspondence to the
physics and quantum field theory. The method of finite temfact that the number of photons is not a conserved quantity.
perature Green functions in quantum statistics arised, startinghus, we have the propery = j. = —pu,. To guarantee
from a basic work of Matsubara [16], by Abrikosov, Gorkov the stability in the charge non-symmetrical cases 0, one
and Dzhialoshinski [17] in condensed matter and by Fradmust assume that there exists an ion background which com-
kin [11], Martin and Schwinger [18] in a wider scope, among pensates the leptonic electric charge and whose effect is not
other authors. considered in every other respect. We shall find the photon
In the present paper we shall use several results due ®duation of motion, and determine the modes of propagation
Fradkin. At this point we must stress that the analogy whichof electromagnetic waves (after taking = k, andit = xy;
we shall study is valid only in a reference frame at rest, sincave are using natural units in whidh = ¢ = 1). Eventu-
in this respect, in field theory this is not important in many ally, if natural units are used aril is given in energy units,
cases, unless it is specified. This is due to the fact that in thié is equivalent to take the Boltzmann constankas 1. By
ground state the vacuum eigenvalue of the four-momenturknowing the polarization tenséf,,,, in the temperature case
vector is not important in the absence of external fields beit is possible to calculate the thermodynamical potential of
cause the photon system, in equilibrium with an electron-positron
background. This case occurs for instance in the black body
pu|0)=0. (20) problem at temperatures larger than twice the electron rest
However, in the temperature case the ground state is nanergy.
isotropic and homogeneous in time as it is in quantum vac-

uum, and on the opposite, We want at thi; point to suggest to readers (especially
those unfamiliar with quantum field theory based on func-
Pu | €ns Nn) # 0. 1) tional methods), to do a first lecture aimed to grasp the main
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new ideas and definitions given below and to go directly towhere a;; are the elements of a symmetric real matrix
the basic formulae for non-interacting and interacting sys{z;a;;z; = XT AX, AT = A). Let R be the matrix which
tems at non-zero temperatufe. Once we have the parti- diagonalizes4, thatisR” AR = D, with R = R~!. Then
tion functional Z, it is easy to obtain the thermodynamical X7 AX = Y7 DY, whereY = RX. As the Jacobian of the
potential 2. Having €2, we can obtain the thermodynamic transformatior” = RX is unity, we have

properties of the whole system. For a slight departure from

equilibrium (notice that strict thermodynamic equilibrium is G(A) = /dy dy ei(yTrZDy)
not compatible with macroscopic flow of matter or energy), L IN
so that we can study the propagation of specific particles, as — G(d))G(ds)...G(dn) 28)

electrons, positrons and photons moving in the medium at fi-
nite temperatur&’, we get its dynamics described by the an-
alytical continuatiork, = iwt, p, = ict made on the corre-
sponding Green functions. We then get quantities dependin
on time, and the Schwinger-Dyson equations allow us to fin
the poles of the Green functions of the interacting particles.
Real values for the energy lead to stable states, complex solu-

whered; are the elements of the diagonal matfix Finally
G(A) = (2m)N/2(det A)~'/2. If we define the measure as
) = d"x(2r)~N/? we can write

(det A)~Y/2 = (27)~N/2G(A)

tions to instabilities, due for instance to absorptive processes _1xTax
in the medium. = /(dx) e’ . (29)
3.1. Functional derivatives From Eq. 28) and Eq. 29) when N — oo by using
Let us consider the sum defining the functi®fy) lndet M = Tr In M Zl p (30)
nae = n = nd;,
S(p) =Y I(@), (22) i
’ it results
wherei = 1,2,3,..., N is a discrete variable. The integral
defining the functionab'(y), 1n/(dgr) - EXTAX _ _} Indet A
’ 2
s = [ dst(eo)). (23) ,
= —§/dtlnd(t). (31)

can be interpreted as the sum over the continuous variable
In Eq. 22) we define the partial derivativeS/d¢;, by
oS Yo I(pi + €dir) — >, I(wi) oI

— =1 =—. (24
8(pk el—I»I(lJ € 89{% ( )

Let us consider the expression

N
F(A,w) = / [[(dw)e3X"ax+"x (32)
Analogously we may define in EcR3) the functional deriva- =1
tive of S(¢) with regard top(y) as
) o If A1 exists, by callingX’ = X — A~ 'w, it can be
05 = lim J dollp(w) + ebw —y)] = [ dol(p(2)) shown easily that

dp(y) =0 €
_ (25) 1,TAt - ro—ix'TAX'
So(y)” F(Aw) =e2 /Hdmi e 2

3.2. Pathintegrals :eéwTAflw(det A2, (33)

The use of path integrals is very important, since it is the

method to be used in the non-Abelian gauge field theories. Let us consider the case in which the Gaussianhsis-
In the Abelian case, as it is in quantum electrodynamics, igular. Let us assume that theeigenvaluesi; vanish (from
becomes very simple. Let us start from the one dimensionaNV — n + 1 to N). Let us define the restricted Gaussian

Gaussian
— XT(y)AX (y)
G(a) = /daﬁe—%aﬂvz _ 1/21_ (26) Cres{ A) /dy1...dyN,n ‘ ’ (34)
a
For N degrees of freedom it is: in which we integrate only on the variables having non-zero
eigenvalues. However, the dependencé&ai{A) with re-
G(A) = /dxlmde e~ BTi0sT; (27)  9ard to the variableg makes this representation rather com-
plicated. It is desirable to have the integrals on the variables

Rev. Mex. Fis. B8, 020209
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x;. To solve this difficulty, we shall introduce new variables

YN—n+1,---yn and rewrite Eq..34) as

Gresl(A) Z/dyl...dyN_n+1...dyN

X S (YN—ns1)-O(yn) e X WAX@W)  (35)

and after it, we change the variables frgrto = by means of
the Jacobian of the transformation of coordinates

dyi...dyn = dx;...dxy Det @ s (36)

Ox
to obtain finally
Grest(A /de1
8y N T

—xTAX

x Det | == Il Wae . (@37

a=N-—-n+1

This is a well-defined integral, and the set of functions

yo(z) and the factors

dy N
Det | = II 6w
a=N—-n+1
in the measure restrict the integration from an

N—dimensional space to another one haviNg— n di-

mensions.Gres( A) does not depend on the specific form of
yo(a > N — n). This problem appears in the formulation
of gauge field theories by means of path integrals, which are
necessary when passing from infinite discrete to continuous
variables. The previous procedure can be applied to gauge

It implies that a Grassmann variable satisf@gs= 0. If
we choose = 1, then any functionf(©) has the general
form

(@) = a+ ge, (39)

whereqa, 5 € C are complex humbers (independent@y,
that is, the exponent of can be only0,1 as in Eq. 89).
Define the left derivative

Bf 0 B
and the right derivative
0 0

f5g = (a+00)55 =5, (41)

in general, for
f= oz—!—ﬂi@i—FC'ij@?;@j, (42)

we have

of

20, ~ Br + Crj0; — Ci1,0;, (43)

and similarly for the right derivative. Then, we obtain that

theories, where there are constraints due to the dependence Let us consider the general integral
among momenta and fields, and also due to gauge invariance.

It is necessary to fix a gauge condition through a parameter,
to avoid singularites due to the gauge invariant field tensor.

/d@zo, /d@@:l. (44)
(it acts as a derivative operator). For instance
/d@l/d®291@2 = —/d@1@1

X /d@g@g = — (45)

IN(M) = /d91~~d9N =@ MO, (46)

This can be handled according to the procedure establishggith N even andi/ antisymmetric matrix, with elements
by Faddeev and Popov, which is very simple in the case ofn We considerV = 2, then

guantum electrodynamics. The gauge fixing parameter does

not appear in the physical results. A more detailed study of
the path integral method and gauge theories can be found

in [19-21].

3.3. Grassmann variables

For commuting quantities (bosonic particles), the transition
amplitude(q” (t")|¢'(¢')) is expressed as a path integral on

I2(M) = 7/d@1d®2[@1m12®2 — @leg@l]

= 2myo = 2v Det M. (47)
But for any evenV one has
In(M) = 2N/2\/Det M. (48)

classical dynamic variables. In the case of bosonic fields, thor the limit N — oo, by using the measur&l®;) =
condition is the same; the dynamic variables are in this casgo, /1/2, we have
classical fields. For fermion fields, however, it is necessary

to introduce anticommuting classical variables. These vari-
ables are called Grassmann variables or numbers. Grasmann

numbers are defined by the anticonmutation relation

{6,,0,}=0, i j=1.N. (38)

N
VDetM = lim / [T(de:)e® @

— /DG) el ©@)M(z,y)0(y)dzdy (49)
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Let us consider now the integral The conserved Noether current density i =
(OL/0(0u¥))Y = ey, which integrating on an appro-
In(M,X) = /d@l...dGN e~ O MO+XTO, (50)  Ppriate volumel’ leads to the current

By changing the variable® = © — M~1X, it is easy to J. = e/d%ﬂ(m)yuw(x). (54)
show that v
IN(M,X) = e s X M X10(M), (51) We shall usel, for the field theory electromagnetic cur-

rent andJ,, for the external current. Also along this pa-
and by defining thes—components Grassman vectérs= per we usex as an arbitrary gauge parameter and not as
9;....0, andn = n,....n,, and a real square matrik;; ofrank  the fine structure coupling constant. In CGS units it is
n, we have a = e?/hec = 1/137. According to the system of units we
are usingf = ¢ = 1. Thuse is not the usual electron charge,
/ d@dnel=0+4um] = Det A. (52) ande? =1/137.
The electromagnetic field satisfy the gauge invariance
We shall used below the Grassmann variables in quanturfts — 4. + 9,A, as can be shown by substituting the
electrodynamics. shifted A, in the antisymmetric electromagnetic field ten-
sor F,, = 0,A, — 0,A,. We can writeF),, F,,, =
Lo . —2(8%%” — 0,0,)A,A,. If we want to integrate on the
4. Statistical Quantum Electrodynamics field A, as a Gaussian, we have a difficulty since the de-

. . . : . terminant multiplying A, A, is singular. To overcome it
Physically we are going to describe the interaction of an, o must fix a gauge, and add it to the Lagrangian. The

electron-positron gas with a photon. We may consider twq:addeev—Popov determinant Def is defined as the deriva-
cases. First, the neutral case, when there is an equal numbter

of electrons and positrons. The chemical potential is zero v © of the gauge conditions with regard to the gauge pa-

This is the case of the black body at a temperature such thg?meters, in our case only on&, Below we will take the

kT = mc? (wherem is the electron mass). It may corre- gauge as the term(0, 4,,(z)), and it implies that Def/ =

. , . (8/ON(D, A, + 92))) = ad?, and it depends only on the
spond for instance, to the astrophysical scenario, as may bce ordinates (in momentum space it is Deft(k) — —akzi).

th:mrzq??:tts)sggce;e i?,fgﬁ;ftrr%ftsgt};vnhegi?sla;%?j rE)Lértrllqbzr% consequence, it can be put out of the functional integral.
9 Y Y P hairs, Y¥rom Egs. (6-8), by using the quantum mechanical canonical

tems of fermions and bosons coexist in equilibrium for some[ : . o
) . ransformations, as the Lagrangian and the Hamiltonian are
time. The second case, when there is an excess of electron

or positrons leading to a nonzero chemical potential and therreéat.(nfd by the.equanomqi N H = L, one can show that the
. : . . partition functional can be written as
is, for instance, a positively charged background of ions com*
pensating the negative charge of the electron-positron gas.
The dynamics of such background may be ignored in sev-
eral cases, except to guarantee the electric neutrality of the [ dalpy—HuN]
system. The ions have masses of ortlét times the mass x DYDALS(Cp)ele ® 7Y SRS (55)

of the electrons and positrons which allows frequently, for hereC traints which link th ta with th
simplicity, to reduce their role to the contribution of their rest Wheretn are constraints which fink the momenta wi €
corresponding fields (we remind that here the dots mean

energy. Its full incorporation into the model, however, can bed vati ith dt d not derivati ith d
done without difficulties. erivatives with regard te, and not derivatives with regar

The problem of photons in equilibrium with the electron— to time). One can write the teri&C ), respectively, as

positron gas may have interest in astroparticle physics. “:L(pszm) andé(p,?—wm). After the path Integration over

any case, it has academic interest to construct a model for t e momenta py .'.S done,.another coqstralnt IS needed. to
interaction of the electron-positron system with electromag—'x the gauge cond|t|on,.wh|ch we shall introduce by adding
netic radiation in a medium on which can be defined a uni-t0 the effective Lagrangian density the term

form temperature and the average densities of particles. We 1 5 1, 5
5 [ 55?05 = al0,4,(0)) = 50%(0,4, ()"

7= N(ﬁ)DetM/DpADwaz/_J

start by writing quantum electrodynamics in Euclidean vari- 2

ables, where),+ are four spinor functions describing the _ N ] )
electron-positron field andi,, is the electromagnetic field NS gauge fixing allows us to write the path integral of the

four-vector. We have the corresponderite— z, (we are effective Lagrangian which depends from the electron and

taking natural unitd = ¢ = 1), ivy — u, iko — ks. Letus positron fields), 1 as well as the electromagnetic field four
start with the Lagrangian density vectorA,,, which are functions of the coordinategr,. Here

(X = x1,29,23). The termuN = (u/e)dy subtracted from
the HamiltonianH acts equivalently to a shift of the vector

_ L 1
L= =0 0udu +m)y +ievy A = 2w Fope (53) gy componentd, — A, —iu/e. This is due to the fact that

Rev. Mex. Fis. B8, 020209
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N is the net density of electric charge (the average density ofthe propagator is usually defined as the quantum average of
particles minus antiparticles). The electromagnetic field tenthe product of two time-ordered field operators, for instance,
sor F,,, does not change under that shift, due to gauge invari< T{:(z,t) ¥(z', ')} >), see the Appendix A). These prop-
ance. By introducing external field sources for the electronagators are defined also as the solutions of the Green function
positron fieldsy), 7 and the external current interacting with equations generated by the action of their inverse operators
the electromagnetic field, we get the effective QED gener- on them, and the first (the photon one) must be combined
ating functional in quantum statistical electrodynamics. Fomwith the (trivial in the present case) Faddeev-Popov deter-
us is of primary importance the function], which serves minant, as will be shown later. We have for the photon the
as a generating functional of Green functions, and leads alsoverse operator

to the partition function of the system, from which we may

«@ -1 _ 2
obtain the thermodynamic potential. We shall write Dii (@)™ =D = 8,0, (1 — &%), (59)
B (notice that this term comes from the Lagrangian E&3) (
Z@,m, Iy, o) = N(ﬁ)DetM/Dl/JDl/JDAH last term accounting for the electromagnetic field tensor mi-
) 2 nus the gauge fixing terfids,,, — (1 — a?)d,0,] A, A,).
els d“w[Leﬁ+ﬁ(w)w(x)+w(w)n(w)+J“(w)%(w)—%(%%(s@)zl, For the electron-positron field, the inverse operator is
(56) G(z)™! = 3,0 +m, (60)
where we have used the procedure of the quantum field th%\/here — 8, — pd,a) and (s, ) € [0, 4.

ory, but changing some details, for instance by making the
usual factor for the path integrd&l’ as a temperature depen-
dent constantV(5) and J,,,n, 77 playing the role of exter-
nal currents, which will be taken as zero afterwards, and the

One can write the temperature Green functions equations
corresponding to the previously defined operators describing
free particles

fourth component of the electromagnetic field in the effec- |35, — 0,0, (1 — 2)]1)3”(1; — ') = 6(zq — 7))

tive LagrangianL.sy = La,—a,—iv. (Notice thatu is used 3 ,
frequently as a vector index, and also as a chemical poten- x 6% (x =X,

tial. It is easy to dlstlngwsh,_ since in the second case it is (7,07 +m|G(z — 2') = 6(z4 — 7))
always a thermodynamic variable). We shall show that after ‘

integrating on the field variableg, 1, A,,, we can write the x 83 (x —x'). (61)

following expression L ,
gexp In the case of the system being in an external field (as

(3)Det [—a0?](Det Dﬁy)1/2DetG we shall discuss below for the_ magnetic field_ case) the un-
L, ] perturbed part of the Lagrangian may contain the external
« e Jsd TE@ W@ @ Zo(,n, o), (57)  field term as—[y, (8, +ieAS") +m]p. ThenG~! =
V(0 + ieAST) +m. The term.J, A, is then the product
and write from now onZy = Det [-a?|(Det D?,)'/2  of the external currenf,, by the radiation field4,,, and all
Det G, the free term, resulting after dividing in Eq. (57) other perturbative terms refer also to it.

Z(ﬁa 777Ju704) =N

by N(5)Zr and taking the coupling constant= 0. It con- We write below the properties on which the previous
tains the integrated terms over the field variables of the unequations for bosons are based
perturbed Lagrangian,(that is, the free fields, by ignoring the s ,
terms multiplied by the coupling constant). Obviously, the 57 (x)efﬁd Pl @)6@) — g(z)els T TIu@0@) - (G2)
exponential operator containingand the functional deriva- "

)

tive operators, shall act on the functiori@a) which contains " [ diad,(2)6() .
the terms due to the external perturbative currents 5., (x) e’ = [¢(z)]

Zo(m,m, Jy @) = x elo @0 @), (63)

e.fﬂ d*zd'a’ %JM(ZE)DSV(I*ll)JU(I/)+ﬁ($)G(I7I/)7}($/). (58) In general

Notice that due to the integration of a Gaussian boson field F<5
A, which depends linearly on the external soutgg it 0 ()
leads to a new Gaussian function dependent on/theec- « ol AT (@)
tor, and to the tensor functioh, (z — '), which is the ’
photon propagator. Also, a term containing the product ofand in particular

fermion fieldsy, 1) and linear terms depending grands; as
external sources, after integration, leads to a bilinear func- e
tion on Grassmann variables, producing the spinor matrix
G(x — z'), which is the electron-positron field propagator ~ * ¢

el £ = F(otw)

(64)

— [, d*aV(8/5J,(x))

[5 @@ @)9(@) _ =[5 d*2(V @)~ Tu@)o@)  (65)
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8 H. PEREZ ROJAS* AND J. L. ACOSTA AVALO **

Then we can write the generating functional for the bosorEquation [71) can be written as
part of the electromagnetic field Green functions

1 1
Z5(J,) = N(B)Zpe~ Jo 1oV (0/67u@) 3 zn: F(...z = ky)Resf* + 3 zk: fE(z)

—(1/2) [, Ju(z")Dpo (2" ,2") T (2" d*z’ d*x"
w e=(1/2) 5 7u(@) Dy (@' 2") Ju (") , (66) x ResF(..z;) =0, (72)
whereD,,, (2', ") is the photon propagator. Similar proper- .
ties, taking into account thatands are Grassmann variables, from which
are valid for fermions.

ZF(...z=k4):—%Zfi(2k)
n k

Let us return back to use the expression I&d),(which after x ResF (... z), (73)
taking their Fourier transform it is easy to show that physi-

cal results are independent fram Let us consider the boson wherez;, are the poles of". We shall introduce a parameter
sector in the previous expression for tig term. Notice that mass squared” added tok?, and later, will put\ = 0. In

|

4.1. Calculations of the non interactingZ term

we can write Eq. 69) we have
, A _1\ 1/2 1 1
(DetDO‘U)1 2= ( k2 4+ K2} o2 ) Tr1 - _ 2

g [{ i ] T TR a2 (QW)S%:

4

-1
= ([k2+x° . 67 -
([ + 17" ) (67) x/ddkln(k2+ki+/\2), (74)
We must deal with the quantity
-1 By differentiating with regard to\? and using the auxiliary

1 @ 2 212
5T In[DetDy, ] = TrIn ([k4 + k2] a) function - (=), we get

1

’ﬁ Z2/d3kln(k2 R 42

™

which contributes with a factor dependent @n It will be ka

canceled by the factor frota(—alJ?) whose Fourier expres- 3 / 43k ( e~ Pex 1) (75)

sionisln (k3 +k?). Thus the sum of both logarithms cancel T 2n)p®
« and gives a term gauge independent. We have finally

+

€k 1— e Pex 5

Integrating om\2, and taking\ = 0 afterwards, it results

1
il In[DetD4, (k3 + k*)a] = Tr In (69)

1
(R + 1K)’ )
d’k
where Tr of a continuous determinant means the integral InZ; = —/QWUDG — e ) + Bey /2] (76)
on the continuous variables and sum over discrete ones. In

our case of temperature field theory, where the discrete var'we replacesy. — wy. and introducing a factas—, since the

able plays an essential role, in addition to integrate over Spéﬁwerm?d naan;:aoljk otentigl — ﬁ*l? 7 get finall

tial variables, it is necessary to sum over discrete integers y P o ns.9 y

S ks =Y, (270/5). .
To obtain results corresponding to thermodynamic quan- o, 9 ~Bey

tities, it is necessary to calculate the sum oxeand the Qo =—m75 wdw[in(1 —e )+ B2, (77)

integral over the momenta or k. Let us describe the 0
method used for the sum ovgj. Let us consider the sum hich is the th d . tential of th turbed
(1/8)S".. F(...ks) and the auxiliar functions which is the thermodynamic potential of the unperturbed sys-

tem. Notice that the last term in the integrand is indepen-
dent of the temperaturel’ = 5~!. This term is divergent,

as it is the fermion sector we shall find below, in the limit
kT = 0,u = 0. These divergent terms correspond to the
guantum field theory in Euclidean variables limit. The di-
vergences must be subtracted according to some specific pre-
scriptions. We advice the interested reader to search for this
topic in the Refs. [11,22]. Usually this term, which leads to
lfF(z)f(z)dz —0. (71)  the vacuum zero point energy, is discarded, but in presence
B of external fields it becomes very important.

+if3

+ —

1) = =% (70)
having their poles in the points, = (27n/3), with n =
0,+1,+2... , and residue equal to unity. We shall chodse
so that the produd|(...z) f*(z) converge in a circumference
of infinite radius
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In the present case, as it was taken- 0, and by taking

CGS units, we have for photoag = hikc andk = w/c, then For the calculation of7(x — z’) we must take into ac-
we have count that the sum over the fourth Fourier compongnis
taken over odd integers. This is due to the property
Q) = —kT(rm2c® /dew e‘hw/kTD G(xqy =0) = —G(x4 = £0), (79)
- 0 of fermion one-particle Green functions. One can define
4 3 G(z,x') as
_ (k1) / a3da 7 78) (z,2')
e el T i)
0 rip ,  for x4 >
. . . . . G N — [ ] 80
which is the thermodynamic potential per unit volume of (z,2) = Tr 1/)( Vo (2)) (80)
black body radiation. Taking into account that the entropy p ] , for x4y <af.

density isS = —99Q /0T, and2 = — PV, the energy density Trlp

isU=T5—- PV = -3Q. The Eqg. (80) can be written by using the spectral repre-
| sentation as

1 me zpmn(O)Enm(O)e*(fm*MNm)BHEm*EerJru(Nn*Nm)](wrwi)ﬂ[(mrpn)(X*X’)]’ for a4 > 2/,

G<x3xl) = E , (81)

D DN Dy (0 (0)e~ En =N+ em —entu(No =Nl (@a—2))+il(,, =P ) =X for g4 < o

where the unity operator was inserted as the completese} ~ |1,,) (1.
For instance, if in the second equation in E&l)(we writex, — 2, = — (3, it coincides with the first one (in Eq81)) for
x4 — 2, = 0, and changing its sign. From it one can write the Fourier expansion

Gla) = 5 2 [ PG, 82
P4

whereps = (2n + 1)7/8. Now from Eq. 60), results, by taking its Fourier transform

1 —Yup;, —m
G(p) = — = , 83
(p) _Z’y#pz + m p*Z + m2 ( )

wherep}, = p, + iud,4. Then

d? ; ; .
i =m) ] ﬁ ([ne(ep) — 1] eP*=(Eommas 4 (e )emPxHEptmas) - for 24 >0
G(z) = P 84
(x) * d3p —ip-X—(ep—p)x ip-X+(ep+p)x ’ ( )
(05 —m) [ @ns, (ne(ep)e P 4 [y (ep) — 1) e ptmza) - for x4 <0
P

wheren, ,(g,) = (1 4 e T18)~1 with p the modulus of the spatial momentum veggor
From Eqg. 183), we get

1 1 *2 2
By differentiating with regard ten?, we get

T 3
322 DetG(p)] = 13 / dp 1 (86)
0

We shall use for fermions auxiliary functions of forfi () = +i3/1 + e¥%##, which have poles at points= (2n + 1)7/3,
with n = 0,41, +2..., and residue equal to unity . By integrating ovef and following a procedure similar to the photon
gas, we obtain finally

O = - /h]i’j ;alp2 In 1 + —(sp—u)ﬁ} [1 +e—(6p+u)ﬁ} _ggp). (87)

Rev. Mex. Fis. B8, 020209



10 H. PEREZ ROJAS* AND J. L. ACOSTA AVALO **

The last term in the integrand, which is temperature indespectively

pendent, accounts for the electron-positron zero point energy, 52 B
which is usually discarded. The total thermodynamic poten-  G(z,2') = JrpRy ey = (T{y(z)y(z")})
tial (in CGS units) for the non interacting photon-electron- 1(2)0n(2") lg=y=o
positron system is 2
ez ©2)
IPATRR Y — Z 1(x)on (') |5_,=o
O+ QP = -~ ”“QJC—H/2 2
o % 3m2h3c3 / o —1 mene )P dp D, (z,2') = "W
0 0 peA 0Ju ()0 (') |52=0
~(ep—p)/kT ~(eptm)/KT)| _ EP. 2
x (ln [l—f—e } [1+e ] kT). (88) Pz
6Ju(@)0J,(2) |512=0

If one introduces the variable = pc/kT, by definingn =

u/kT andm = m/kT, the electron-positron term becomes =(T{Au(2) Ay (2")}) = (Au(@))(Au(z")), (93)
proportional to(k7")*. We want to remark that the chemical Let us remind that th@{ A,, () A, (z')} means the chrono-
equilibrium between photons and electron-positrons guaranygical product of the two operators, in which earlier opera-

tee thatu, = pe + pp = 0, thus,ue = —p, = 0inequi-  5rg acts first, andA,,(z)) is the average field.
librium. If we assume the limit of very high temperatures so  cgpsider the derivativeZ/57. We have

that we can neglect fermion masses and chemical potential,

one gets 02 _ iev(&4s) 9%
g 57 e ( ) 57 (94)
QO +QF = _mRITY TR — _”2’“4714. (89)  Where we have written
45h3c3 360h3c? 24h3c3 55 s 55 s
4
Let us neglect the temperature independent term in Eq. (87), v <577577M) - Twﬂ/d xﬁ%ﬁ
and take the temperature-dependent part and sum it to Eq. &
(78). We call this sum2j®” = —P where P is the to-  Now Eq. 94) can be written as
tal pressure of the system. To get the total thermodynamic
potential at temperaturg, we must multiply by the vol- 0z _ /(14:56;(3j ()21, T Q)
ume of the systen¥. We get the total thermodynamic po- o7 T
tential as®), = VQJ = —PV. From(), we may get A
the entropyS = —(09:/0T),, the number of particles eV (L) . Liev(.)
N = —(99/0u)r. Other thermodynamic quantities can =er /d Gz — z)n(z)e” "
be easily obtained. The temperature independendent term B
acounts for the so-called zero point energy of vacuum. In X 20, s ). (95)

absence of external fields, we assume its contribution to ther-
modynamic quantities as unimportant, and its average contri- As we haveG~'G(x — 2') = §*(z — 2’), whereG—! =

bution to momentum and energy is taken as zero. 7.6}, +m, after integrating95) can be written
* 07 ie —ie =
4.2. Functional derivation of basic equations for inter- (Vu0y, + m)ﬁ =V In(x)e VI Z(7,n, ., @)
acting fields B
= W(af)Z(ﬁﬂ% J;MO‘)- (96)
We want to get also a set of equations by using functional - . .
. - L . By a similar calculation one can get, taking the Feynman
differentiation, (valid in quantum field theory) as temperature
. . . gaugex = 0,
field theory, after some simple changes, one can write
0z . _
) ‘ _|:|2 = — ZEV(...)JV 7’LEV(...)Z — J
Z(ﬁ,"?, Ju,a) _ ezeTr'yu ,fg d‘&r%%&]}fﬁ ;LV(SJM (JJ) € € (777"73 u)
X Zo(Jpu, 1, m, ). (90) = J,(z)Z. (97)

We haveZ(7,n,J,,a) as generating functional of Green Now we shall prove that

functions. Let us introduce another very useful functional, N . g o

W, Ju, @) = I Z(0,n, I, ). (91) We shall start from the spinor (we shall write spinor in-

. . . . .. dices in few cases below)
From it we can write the functional equations to one-particle

Green functiong for the fermions and for the bosons re- Ts(\, ) = e M (z)e MV, (99)
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577]5 _ o teAV —ieAV
5 = iee [V,ns(z)]e
, ) ) )
= jec' N ~ m/d4z ,ns(x
o S e a2,
. ) ) )
= jee’ N m/d‘*z — o() —
e | G B 30,

AS (6/60m(2))ns(x) = 6,56 (x — 2), the first (second) term

in brackets gives the second (first) term below. After integrat

ing over\ and taking\ = 1 afterwards, one gets
0 0

Ns(x) = ns(x) + iey e — . 103
After substituting in Eq.96) we get
1) 0z
Of +m — ie > — =n(x)Z. 104
0z ) 627z
- W = JH(I')Z — ZETr ’YHW7 (105)

which is the set of functional equations in statistical quantum

electrodynamics, let us call

1 67
Ay (x)y == , (106)
< H( )> Z(;JH(I) =0
we have from Eq.105)
e
- D<Au(x)> = _§Tr Tu
X |G(X,x4;X, 24 — €) + G(X, T4; X, x4 + e)} (207)
e—0

Now, by differentiating Eq.104) and Eq. L05) with re-
gard ton(z’) andJ, (z') respectively and taking into account
that

6J,(2) ZG(x,2") = (A, () Z2G(z,2")
5G(z,2")
. ZW’ (108)
we get

(Da(suu_au&/(1—0[2))<Au(x)>:‘]u(x)_j“(x)’ (109)

Y0 +m — ey, (A, (z)) - iev"M?(l“)
XG(SL’,l'/) _ 54($ _ ;[;/), (110)

6G(z, )

OD,x(z,2") —ieTry, =,00%(x —2'), (111)

5J,\(.’L")

11

(100)
e—ieAV (101)
N5 (Z)Yyuim e~V (102)

/ p, 0 8 5
J o Im(z) o (2) 0T, (2)

where the electromagnetic four-currenf,(z)
ieTrv,G(z,z) in Eq. (109). By integratingjs over x;,
1 =1,2,3 on avolumeV, which is taken latel/ — oo, one
gets the density of particles as

pe=e lim V’l/d3xTr*y4G(a:,x). (112)
We shall define
. 0G(z, ) 4 ,
_ e/ by 11
oy = [ @G, (13
i
. 0G(x,x
7Z€Tr %L(SJE\(.%‘/)) :/d4yHuV(I7y)Du>\(y7x/)7 (114)

B

whereX(xz,y) andIl,, (z,y) correspond to mass and polar-
ization operators respectively. To understand what the quan-
tities > > andII,, mean, let us assume an equation (it is un-
derstood formally the integration over repeated indexes)

Gy, 2")G(',2) = d(y — 2), (115)
then
§G~ Yy, 2) , _ nO0G (2 2)
@) G, 2)+G Yy, 2 )75!]”(33) =0, (116)
and
Gy, 2) _ , 0GT (w,Y) ,
@) -Gy, y) 5T, (x) G(',2),  (117)
writing
0G~(y,2') _ 0G (y, ") 6(Au(2"))
8u(x)  S(AL()  6Ju(x)
= fie/d‘lz"FV(y,z',z”)DW(z”,z), (118)

B8
where we have defined the vertex function

5G1(y, )

A/ AN
Fy(yvzvz )_ 57;€<AV(ZH)>.
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Now from Eqg. (113), Eqg. (117) and Eq. [L1§), we have

IG(y', 2)

. 2 4, 34 1 34 1 /
—ze’yi:e/dydzdz'yGy,y
M(sz]'u,(y/) 12 ( )

X

To(y,2',2")Dyu (2", 2)G(7, 2)

- [dsw 6E s, )
B
and
E(y/,zl) — 62/d4yd4z”’yMG(y’,y)
B8
x Iy (y, 2, ZH)DV#(Z”vyI)~ (120)
Similarly
. 0G(z, x)
—elr ’}/Mm = 62 /ﬁ d4z//d4zld4y-|—r ’YMG(JT, y)
x Ty(y, 2, 2")G(2' ,x) Dy (2", 2")
:/d4Z//Hlm(l‘,Z”)Dn,\(ZN,IL‘/),
and
I0,,(z,2") = 62/d4z'd4yTr'yH
X G(x,y)I‘n(y,z’,z”)G(z’,x), (121)
6G— ! (z,y)
r LA e G2 )]
A0 = A, )
6X(z,y)
= b — )iz — 2) — Y197

so that finally one can write the set of temperature dependent
Schwinger-Dyson equations as:

(.0, +m — iey, (AL ()]G, ") + /1142'2(:177 2)
B

x G(z,2') = 63 (x- X)) (x4 — ), (123)
ODa(z, ") + /d4zHM(x, 2)Dya(z, ")
B
= 5,04z — ). (124)

In a general gauge Edl124) looks

(08 -

x Dyx(z,2") = 6,00 (x=X)6 (x4 — ).

o 0
- (1— a2)>DM(x,z’) + /d4zHM(x,z)
n v

(125)

It can be shown thdil,,, is gauge invariant and satisfies
the transversality condition

kT, = Tk, = 0. (126)

We shall assume a fixed gauge, and call the photon unper-
turbed propagator a@ﬁl,(x —x’). It satisfies the equation
o 0

_ A2 0 o
(Déw 7z, 8931,(1 o ))Dw(x x')

= 3 (xX)d(zy — ).

5. Ward identities and generalization of Furry’s theorem

In the p-representation and assuming an external electromagnetic field sueh that>+# 0, the system of equations for the
Green'’s functions simplifies considerably and takes the following form [11]

G (p.p) = [ivupu — vap +ms(p — p') —ievu (Au(p — p)) + S(p. p'), (127)
Duu(kv k/) = Dgu(k)é(k - k/) - Dgn(k) Z/dSSHn/)(k, S)Dpu(57 kl)7 (128)
(A (k) = Dl (R) 1) = Di (F) o Tr Z / PpG(p + k. p), (129)
I, (k, k) = (2§j3ﬁTr Z/d351d352d33’qu(k+s,sl)FU(sl,sz,k")G(SQ,s), (130)
62
E(pap/) = W Z/d331d332d3871LG(p + S, Sl)Fu(317p/7 SQ)D;LV(S27 5)7 (131)
, 5G(p,p' 5 (p, p'
Lu(p,p' k) = (M(p(,f); =7.6(p—p — ».7) (132)
1

)7 SlieA, (b))

Rev. Mex. Fis. B8, 020209



STRONG MAGNETIC FIELDS IN GAUGE THEORIES AT FINITE TEMPERATURE | 13

From Eq. (127) and Eq. [132), expanding all quantities D,,,, (we shall introduce a gauge fixing only to solve the dis-
in a perturbation-theory series, one can prove the followingpersion equation), which Ieadsﬁgl}y - ny =0,
relation

5G-1(p.p) kT, — I%(k)T,, =0, (139)
G Hp—k,p)-G ' (p.p + k)=ky—— . (133)
" oe(Au (k) where
The Eq. @393 is equivalent to k. k.,
71;;1/ = <6;w - 22> y (140)
G 'p) -G tp—k) =ik, Lpulp,p—k, k), (134)
9G—(p) is the four-dimensional transverse tensigrT,,,, = 0. In the

T = i(;hTO Lu(p,p—90u,04), (135)  case of a photon propagating in vacuum, the four-velgtat

" * is the only one available aril,,, is the only transverse tensor
whered,, is a four-vector for which thei-component is dif- ~ which can be constructed. Notice thgf, 7, = T}, that
ferent from zero. The relation Eq/135) is called a Ward IS, itis idempotent. We have that the renormalized expression
identity. Taking into account that the chemical potengiah- ~ Of the polarization operator in vacuum contains the scalar
ters intoG~!(p) linearly combined withie A4, one can show

that the other limit fol’, whenk, < |k| — 0 coincides with o2 am 12 (1 + 2;’;2> V1 -2
8G~1 /8, that is (k) = ——k* / YPTRR , (141)
127 22(22 + k2)
9G~(p) -
T La(p, p, 0). (136) " \yhich multiplied byT},. gives the polarization tensor in Eu-

clidean variables. Notice th&t’*(k) contains the contribu-

One can also give a generalization of the well knownijon of virtual massive pairs whose masses take values from
Furry’s theorem of quantum field theory. One can write they;,2 < 2 < .

polarization operator as For the solution of Eq. 139, whose second term is
) 5 I1%(k) and it is proportional tdk*, one can writek?(1 —
e R 2 . . . .
0, (k k) = Tr /d?’m _° IT*(k)/k*) = 0, leading to the physical solution of the dis-
g 2(2m)3p (%; Hoe(A, (k) persion equation ak> = 0, that is, the light cone equation
k? = w2
¥ [G(p+ k, k) — G°(p+ k, k)] |, (137) In a medium, at finite temperature, there are two basic
vectors, the photon four momentuy and the system four-

velocity u,,. The latter gives rise to another four dimensional
whereG* is the charge-conjugate of the electron Green functransverse tensor,

tion, which can be defined &°(p, p1|A.,, 1) = G(p, p1| —

2
A,,—u). Then, kuky — kpuy kyuy . uyuyk (142)

k2 (ku)  (ku) (ku)? ’

Uy =

~ptt (138)

011,
5<A(k1)>...6<A(k2n+1>} (Ay=0 where(uk) = w,k,. Finally, the polarization operator ten-
sorll,, (see Fig.1) can be written in a medium (in a moving
which vanishes fop: = 0. Notice that ifu # 0, we have  coordinate system) as
Ay — Ay + poand formally the limit of(A,) — 0 is now

Ay) — Opap = p. kuky
b o= (3 5 4
6. Dispersion equation for photons in vacuum 2
: _ kuky — kuu  kyuy n Uy Uy k B. (143)
and in a medium k2 (ku)  (ku)  (ku)?

Let us advance the following important fact: It can be shown
that the temperature formalism we are using, when the an
lytic continuationk, = iw, 4 = it (in CGS units;z4 = ict)

In the rest system, where the four-velocity ig =
%0,0,0,us), results

is done, we get time-dependent equations for physical sys- koo ks Eik k22

tems. Similarly, for electrons and positrons, algo— ic, II;; = (5”- - ;QJ) A(K? k2) + Ty |Z<2J ?4 ’

leads to the energy of the particles. This is very important in

what follows. 1,7 =1,2,3, (144)
In quantum electrodynamics we get from the Schwinger-

Dyson equation the dispersion equation for the two transverseherell,y = I1y; = —H44(kik4/k2). The expressions for

photon modes [11,23-26] as the poles of the Green functiol andIl,, are found below [11]. According to Eg112),
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Eq. (129 and Eq. 13€), we have

62

@
></d33274G(5)F4(5,5,0)G(5)
o2
= —Wﬂ d*s Y " 1uG(
5 0 1
=e F#[Wﬂ Z/d%m,G(s)]
9pe(0)

_ .2
= (145)

H44(/€4 = 0, k— 0) = H44(0) =

—1(g
@8?mf)Gw>

wherep, is the charge density. From here we can obtain an

exact expression for the Debye radius

—62 ape(o) _ _)\—2.
o
It is interesting the limitty, < k — 0 for which in the
one-loop approximation (see below)

1144(0) = (146)

e2

—Iyy=2"2=
44 3B27

(147)

After calculating the sum ip,, we obtain

L (k)

The first term depends on the temperafli@nd chemical
potentialy (statistical part, see Ecl44)), where

=11, (k) + 115, (k). (152)

e Vi p2dp 1
H44 72/ 1 + e(EP‘H") + 1 —+ e(Epfﬂ)ﬁ
0
k* + k3 — N
O T Sk SRURLIC SO . (153)
8pk 2pkz
e? 2dp 1 1
A(k) - _ﬁ J Ep <1 + e(@:“’ﬂ)ﬂ + 1+ e(EpN)ﬁ)

<1 ]ii N k* — kj +4eki 4 4k2p? g
k2 8pk?

k4€p

+2p

2 (K +k3)In b> (154)

wheree,, = /p? +m?, p, k are the modulus of the spatial
momenta vectorp, k, and

which means that the Debye radius decrease with increasing

temperature.

If T ~ 2mc? = O(10°) K increases, it leads also to pair

creation (for instance, in neutron stars).
In the limitk, = 0,k — 0,

s _e2k2

G In(mB). (148)

It must be stressed that in QED at finite temperature the ve-

(k* — 2pk + k3)* + 4e2k3

= 155
(k2 + 2pk + k)2 + 4e2k3” (159)
and
_ (k? + k32)? — 4(pk + iepkz4)2 (156)
(k2 + k3)? — 4(pk — icpks)?

The second term in Eq.[162) is divergent, and is the

locity of electromagnetic waves is smaller than in vacuumterm obtained in QED, when the photon frequency té&m

and depends from the properties of the medium.
Let us consider Eq121) in the one loop approximation

Iy (z, @) = 62/d“yTrwG(w,y)an(y,x’), (149)

wherey, is integrated in the intervad,
into account, one gets

0., (k) = (in Z/d3pTr

Vu(=17pp) + 1) (=17,[P) + Kol +m)
([p* +k]2 +m2)(p*2 +m2) ’

2,3 andp; = p4 +iu. After taking

0]. Taking Eq. 183)

(150)

wherep;, = p;, fori =1,
the trace we have

2
va(k) = (;jTW Z/dBP

(p*2+[p" k] 4+m?)8,— (20,05 -0 K -knp),)
kPt ems)

(151)

replaces the Euclidean variabitg. After subtracting the di-
vergence, we obtain the renormalized tefi) ) = 1177},
(see Eq@.139). In a hot medium where we are close to ther-
modynamic equilibrium among photons and electrons plus
positrons, it is valid the dispersion equation for photons prop-
agating in the system in the form

k. k

DJGWZJNWWWW

(K, k) + Chyky, = 0,

I, (157)
where('is a gauge fixing parameter, and by taking its Fourier
transform, we would get a time-dependent equation. The
Eq. (157) differs from the dispersion equation in vacuum
essentially in the terril;, (k, k4). From its solution one gets
three modes of propagation, two of them having transverse
polarizations (which in absence of the medium correspond
to the two transverse modes propagating in vacuum). In the
medium their polarizations are respectively, p,, and their
wave vectors are parallel tos, itis p, - ks = p, - ks = 0.

The third mode, which is longitudinal (and does not exist in
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vacuum), has its polarizatiop, parallel to the wave vector the electron self-energy respectively. From the equations

ks. D;}) Dy = 0,5 andG~'G = 1, the Schwinger-Dyson equa-
We havelimy_.ow(k,T) ~ €T'/3. The photon in that tions are obtained.

medium is a quasi-particle, and at high temperatures it has a If their transforms to momentum space are equated to

nonzero effective mass. It is a quasi-particle mass, and carero D, ) (k,k’) = 0, andG~'(p,p’) = 0 their solution

be named plasmon mass, to which contribute both process&sads to the spectra of particles, that is, the dispersion laws

represented by Fig. 1. For the limit = 0, the transverse that relate their energy and momentum, for photons as well

modes are proportional tb ask — 0. The longitudinal  as for electrons and positrons. Taking into account the quan-

mode leads to a nonzero but purely imaginary solutiorkfor tum corrections of higher order containedlp, andX. The

interpreted as the Debye length= 3hc/a!/2kT, whereais  equations are

the fine structure constant (expressed it in CGS units, remind

that in most of all other formulae written in the present pa- DO_;U -1, =0, (161)
per, we shall use natural units= ¢ = 1 in whiche? = a). .
The Debye length accounts for the screening of longitudinal Gy +X=0. (162)

waves in a medium produced by the overlapping of fields cre-

ated by the presence of partic|es of Opposite Sign_ We remark In field theory, the first order functional differentiation of
here that the photon modes propagate at speeds smaller thii¢ effective action gives us the equations of motion for aver-
¢, which is consistent with the arising of effective massesage fields, taking into account the quantum corrections, and
For the reader interested in more details about the propag#he second differentiation, the dispersion equations of the par-
tion of the photon in an electron-positron background, weticles. These equations, or similar ones, are equally valid, in
suggest to find it in the paper [27], by one of the present authe case of multi-particle systems, at low energy, as it is con-
thors (H.P.R.) and L. Villegas Lelovsky, where the solutionsdensed matter at finite temperature (which & 0 is called

of the dispersion equation EdL57) for the photon-electron- mMany body theory).

positron system are discussed in detail.

8. Charged particle in a magnetic field in non-

7. The effective action relativistic quantum mechanics

Green functions are given by second functional differentia—W hall study th . fach q icle | |
tion of the functionalZ with regard to the sources of the e shall study the motion of a charged particle in an externa

fields. One can also use the functiondl — In Z. Start- constant magnetic field. The vector momentum must be writ-

ing from this functionall’’ it can be defined by a Legendre tenasP =p — (e/c.)A‘. whereA is the vegtor potential. For
transformation. the so-calleffective actioras a constant magnetic fieB along thexs axis, the vector po-

tential may be taken & = (— Bz, 0,0) (the expression for

- _ A is not unique, due to gauge invariance). The Hamiltonian
FWJ/J,A#) - W(J;u 77777) - /d4$(J#(£L')A#((E) iS [28] q g g )
+(x)¥(z) + d(a)n(z)), (158) ) 5 2
where the), 1, A, fields are the quantum averages of the ini- H=5. < {Z Oz + cB:EQ]
tial fields. The effective action is such that the functional dif- ) )
ferentiation(dI'/dA,(x)) = J.(z), gives Maxwell's equa- 0 0
tions in the presence of the curreht(z). Likewise, one can + _Zh% + _mang —KkB (163)

get the equations for the electron-positron field. Of special
interest are the quantities obtained by a second functional difyherem is the charged particle mass, and= guzSis the

ferentiation, particle intrinsec magnetic moment. Herg = eh/2mc is
52T the Bohr magnetonS$ the spin given in terms of the Pauli
D;l,l (x,2") matrices asS = o/2, andg the Landeg-factor. For bare

a W electrongy = 2.
=Dyl (z,2') =, (z,2'), (159) The external magnetic field,, appears only in the first

Oupv
52T term of the expression Ec163), as the termBx,. By chang-
G Mz, 2) = ————— ing the gauge, it would appear also the teBm,, sinceB is
oY (z)0rp(a’) taken parallel to ther; axis. (For instance, another gauge
= Gyl(w,2') + B(z,2"), (160) equivalent expression i4,, = B(z2, —z1,0)/2). Animpor-

tant fact is the non-conservation of linear momentum orthog-
which give the inverse Green functions, which containonal to the field. That i$H,p;] # 0 and[H, ps] # 0, but
the contributions from free Green functions or propagator§H,ps] = 0. The angular momenturh is conserved also

DO‘I}U, Gy plus the vacuum polarization tensbly,,, and  parallel toz;. This is due to the fact that the isotropy of
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space in the zero field case is broken by the external magtion. It leads to a non-degenerate ground state= 0,

netic field. Only two symmetries remain, parallelBoand o3 = —1, and all other states are two-fold degenerate. Notice
rotational around. This is seen in the wavefunction. thate,, , is also independent gf;, that is, it is also degen-
There are several physical motivations to study the nonerate with regard tasy = —cp;1/eB, which is the orbit's

relativistic problem of an electron in a magnetic field. Tocenter coordinate. The degeneracy terBy/hc leads to a
solve the Schirdinger equationdV /ot = H¥, we must use number of states per Landau energy level which grows pro-
separation of variables = ¢ (x)x(t), wherex(t) = ¢*t/".  portional toB. The wavefunctions are given by the product
Notice that ther; andxs coordinates do not appear in the of the free particle wavefunction along multiplied by the
Hamiltonian, thus, the generalized momeptaps are con-  factor¢,,(§) = Aneféz/QHn(g) where

served. This leads us to assume a wave function of form

P(X) = Aer (Preitpsza) b(2,), where A will be chosen ap- L2
pr(or)Jriate for the normali(zati)on af. After substitutingy in ¢ = (22 — 220)VeB/he, An= [\/673/\/%2 nt

Eq. (163, we get an equation which can be written as:
andH,, are Hermite polynomials. The orthonormality condi-

>y | 2m P3 tion
dl‘% + 2 <€+;1,-B—2m
_ % [eB:| (zg — x20)2> é =0, (164) / Gn(§)pm (§)dE = dmn
mc o
wherewyy = —(cp1/eB). The Eq. 164 is similar to the g gatisfied. Notice that for the particle in the ground state,
Schibdinger equation for the oscillator, it can be written as: a wavefunction is reduced to a Gaussian whose dispersion
> 2m(, 1 ) decreases d&B)~!. The larger the magnetic field intensity,
dz3 ) (5 = gmw” (22 — 220) > ¢ =0 the smaller the dispersion of the wave function, which adopt
where a peaked form.
, p3 The previous problem becomes interesting in several ap-
g =e+pn-B—- o plications, for instance, the study of the quantum Hall effect.
We may now write the energy eigenvalues as: (Hall effect is produced by an electric current propagating
9 orthogonal to a magnetic field: another current orthogonal to
P 1 1\ eBh IS : : :
Epan = o + <n +=-F ) ) (165) the magnetic field ia created. In this case, the dimensions
2m 2 2) me must be reduced to two, which are those orthogonal to the

We observe first of all, that the dynamics along the magfield B. It keeps the degeneracy tem®/hc. Usually the
netic field is similar to that of the free particle but this doesorbital effective massn* is much smaller than the electron
not mean that the magnetic field does not has influence on thmassn, and this fact makes unimportant the spin degeneracy.
motion of the particle parallel to it. Let us call it longitudinal Also, the non-relativistic case is useful for the case of small
energy, whereas orthogonal to the external field, the energgnergy of the particles involved (electrons and positrons) in
behaves like that of the linear oscillator, and depends linearlpbsence of the external field (in other words, iEis< mc?),
on the magnetic field. Its energy eigenvalues are expressedand small magnetic fields, that 13 < B., whereB, is the
through their quantization through the integers- 0,1, 2..., so-called Schwinger field intensity of ordérx 1013 Gauss.
called the Landau quantum numbers. The spin contribution i§or instance, it may become useful in the study of electrons
proportional to the eigenvalues of the Pauli matrix given  and protons coming in the Solar wind, and trapped by the
by o3 = +1 which we understand as implying spin projec- Earth magnetic field. The relativistic case involve high ener-
tions(+1/2) along, and(—1/2) opposite to the field direc- gies of the particles and fields and it is especially important
| in astroparticle physics.

9. Relativistic charged particle. Dirac equation in a magnetic field
In the relativistic case, [29] we have to solve the Dirac equation in the constant magnetic field
[iv* (0, — ted,) — m]¥ = 0. (166)

The energy eigenvalues (in CGS units) are given by

Epan = \/p302+m204+\6|th(2n+1)—|6|sgn(e)Bh003, (167)

whereps is the momentum alonB, sgn(e) = (%), with (—) for electrons and+) for positrons,mn is the electron massy
are spin eigenvalues along andn = 0, 1, ... are the Landau quantum numbers. These are two-fold spin degenerate, except
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the ground state in which = 0, and for electrons it is5 = —1 whereas for positrons; = 1. This means that in the ground
state the spin of electrons and positrons must have also opposite directions. The expressions for the spinor wavefunctions are

an—l(é-)
0
o (x) = <€P3,n + m> /2 gipawatipszs P3Pn—1(§)

2T m =+ epyn ’

(168)

i(2neB)Y/2¢, (€)
m=Eep, pn

0
$n(8)

1/2  ipszatipsx .
wi (X) _ Eps,n +m / e'P? 2P B Z(QneB)l/qun—l(g) (169)
n,p2,p3,—03 2eps.n 2T mEep,n .

_ P3 (bn (5)

m=Eep,n

Where upper index means particle and antiparticle, whereas the lower onetaneau numbery,, p3 are momentum
components and the last is spin projectieas= +1. Notice that the energy of the ground state in the nonrelativistic case is
£ps,0 = P3/2m and in the relativistic case it is,, o = \/p3c® + m2c*. The orbital and spin contributions cancel each other,
and the motion is like that of a free particle moving along a straight line paralil #dnis happens for electrons withh = —1,
since the negative charge determines the cancelation of orbital and spin terms. On the opposite, for pgsitrons

10. Electron-positron temperature-dependent Green function
The time ¢ = x4)-dependent Green function, in the Furry picture, (for instance, when strong external fields are present) in the
magnetic field case is [22, 30]:

—iy, e @G (x,x),  for ay >

A , (170)
i, ea@—T) B (x,x'),  for x4 <)

G(X7 Ty, X/a 'ril) = {

whereq denotes the set of quantum numbers fs, n) andzq indicates integration opy, p3 and sum oven = 0, 1.... The
expression for the spatial dependent electron-positron temperature Green function is:

eip2(z2—ah)+ips (w3 —a})

+ _ + == —
GF (X)) =Y eE, (0L, (K) = - M, (171)
o3
where
Cnfl,nfl(gq) 0 _anl,nfl —Ln—-1n
0 Chon(2q) Epn-1 D
M = n.n(Eq nn | 172
Dn—l,n—l En—l,na On—l,n—l(_aq) 0 ( )
*En,n—l Dn,n 0 Cn’n(—gq)

andCy, y (g4) = (4 £ M)k (§)Pnr (&), Dippr = 10305 ()Pr (&), andEy, v = Fi(2eBn)' 295 (€)1 (€), hereo,, () are
Hermite functions.

It must be understood above that, (¢) = 0. Taking the Fourier transform in time of EAL40), and making the analytical
continuationpg = —ip4 + 1, we get, for ther, Fourier transform of the electron-positron Green function, the expression
&, (x,x) N &, (x, X))
—ipstp—eq, —ipatpteg

G(—ips + p, X, X') = (173)

After multiplying by e’?+®+ and summation oves, = (2s + 1)7/f3 (s runs from—oo to +oc) we have the following
expression for temperature-dependent Green function

G( , /) Zq[ne — 1]6—1(%—#’)(%4—@1)@""(1(X7X/) _ npei(gq'i‘lt)(mzt—m:;)@—q()(,X/), for x4 > xﬁl w7
X, Tq, X', Ty) = )
Yo nee T mEmTI BT (X, X') — [n, — 1]e!Eatmmamr) @ (x,x'), for x4 < 2
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wheren.(g,) = (1 + e~ andn,(e,) = (1+ is Fry = —(1/2)eprun Fru Whereepy,,,, is the antisymmet-
eleatmB)=1 gre the mean density in momentum space ofric unit tensor in four dimensions. The tensor invariants are
electrons and positrons respectively. At zero temperatur§ = —(1/4)F,, Fu, > 0and& = —(1/4)F),Fy, = 0.
ne(eq) = 0(n — g4), and the average number of positrons From the structure ofI,, in a magnetized plasma, in the
vanishn,(e,) = 0. At high temperaturesT ~ mc? they are  case of non-vanishing temperatufeas well as chemical
significant (this happens at very hot stars in regions wher@otentialy [22, 30], we can find the polarization properties

T > 10° K). of three electromagnetic eigenmodes propagating in the sys-
Notice that the charge density of the system electron- tem [30, 31]. Under those conditions the polarization tensor
positron is may be expanded in terms of six independent transverse ten-
sors [30]
T -1 [ 3 LI
Pe = €V11_f)noov d°xTry4G(x, ) I, = ZW(Z)\PS’Z' (176)
0o n=1
e?B
e Z An / dp3(ne(eq) — 1p(eq)), (175) As is shown in [30], symmetry properties play an impor-
0 o0 tant role in quantum statistics. The theory is invariant under

the simultaneous inversion of the electromagnetic four vector
A, — —A, and the four-velocity;,, — —u,, (CPT symme-

try) and the generalized Furry’s theorem, reduce the number
of the basic tensors from an initial set®fo a final set of5.

The basic tensors written in Euclidean variables are

wherea,, = 2 — dg,.

11. Polarization operator and wave propaga-
tion
: _ U = k26, — kuky,
We can study systems close to thermodynamic equilibrium, — ** a a
by means of time-dependent Green functions if we do an ana- \pl(fy) = FukaFonk,
Iytic continuation at finite temperature. For instance, by tak-

ing x4 = it (or x4 = ict, for instance in Gaussian units),  {®) — _x2 (5 _ kukﬂ) F\Fp (5 L — kvku)
andp, — ie, ks — iw. The general tensor structure is estab- " R )T g k2 )°
lished in terms of the matrix which can be built from the char- . (uk)k (uk)k,

acteristic vectors and tensors that enter in the problem. For ‘I’fw) = <Uu kgﬂ> ( v T2 ) )

this purpose we have used the four dimensional transversal-

ity of the tensorl,,, that results from the gauge invariance. V() = (uk) (k. Fopky — ky Funky + k*Fl,),
Its property of containing the external field and the chemi- 6)

cal potential so that the sum of their powers be even follows Yiw = wuFunky =ty Fyupky + (uk) Fy, . (177)

from the charge (C) and parity (P) symmetries assumed as )
valid for the underlying interaction. The unitary condition AS @ next step, we shall introduce four mutually orthogo-

requires that the polarization operator be represented by g} Pasic vectors in the four dimensional space (we shall use
Hermitian matrix until the absorption is explicitly taken into €T+ — o after the corresponding analytic continuation
account. This determines that the coefficients, with which the@l): 1w, 80 that quantities are given in M|(r;’l)<owsk| space)
symmetric and antisymmetric matrices enter into the decom¢: = = KFo by — ku(RE2K), e = Fi by, cp” = Fuky,
position ofIl,,,, are respectively real and imaginary. Also, ci) = k, and normalize:,"** to unity andc.’ to minus
the explicit introduction of the 4-velocity vectar,, into the  unity:
density matrix allows us to conclude that the parity change
of the polarization operator under the reflectionof, in all) = (=K (kF?k) (kF*2k)) /2,
the rest frame, coincides with that under the charge conju- @) (2) (1. 2 g —1/2

: T, ; a;”) = —c,7 (kF*“k)) ,
gation. This eliminates some tensor structures leading us to i 0

the conclusion that antisymmetric structuredlip, contain a® — 0(3)(—kF2k))_1/2
. s : iz (Z ’
only two basic tensors containing odd powers of the chemical
potentialy, as well as odd powers of the external field tensor all) = (k)12 (178)

F,, (this also agrees with the generalized Furry theorem).

These antisymmetric structures are physically responsible foe want to remark that in generaF 2k = —B?(k? + k3) <

the appearance of the Faraday and Hall effects as well as 6f and denoting:? + k3 = k3, we haveB?k? > 0. We
elliptically polarized eigenmodes. We must remark here thashall also have thatF*2k can be both> 0 or < 0 [22]. Let

by taking the fieldB along thez axis, its only nonvanishing us now take the vectom‘f), wherei = 1,2, 3,4 as four po-
components off},, are Fj, = —Fy; = B. This is valid tential vectors and let us find the directions of polarization
for all reference frames moving parallelBo Its dual tensor  vectors in terms of their components parallel and orthogonal
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to B. If b, by are the spatial and time components of the vecB andk. The modeaﬁ) (to transversal propagation B) is

tOI’Sa,(f), let us use the expressions

s bW on)

- on OX ’
HO =V x b,

purely longitudinal and the mode}f) is purely transverse.
For another particular case of propagation alBnthe mode
aLl) is purely transversal while that of the second ma&é
is longitudinal.

From the expressions EdlL{7) and Eq. IL7€) it follows
that in terms of the basic vectarél’z) the polarization opera-

whereE® andH™, with i = 1,2, 3 correspond to electric  tor is a matrix with diagonal terms s and off-diagonal terms
and magnetic fields respectively. Both expressions are agr, —q. The diagonalization of this matrix gives the following

sumed as multiplied by an exponential factor of fartf« .

From equations Eq<17¢&-1180), we have [31]

g = KL, go_ (zi X k3) k2

eigenvalues

Kio = % (p+ st/ (p—s)?— 4q2) : (184)

According to Eq. [161), the dispersion equations can be

E(f) — Kk ks, E§2) — ﬁ(kg —uw?), found as the solutions of the equatio{m% = k1,2, Which
ks together tok? = k3, from Eq. (182 gives the three non-
@ Ks 3) k., ks vanishing eigenvalues as depending from the four_sca_lars
HY = (ki X ) E (/u x k) ; p.q, s, t. We stress here that these results are approximation-
° ¥ independent, valid for the polarization operator tensor, which
HY = 7'}%,{ . HY = 7%kl. (181) s gauge invariantl,,, k, = 0).
1 3

Thus, the magnetic field, breaking the symmetry of spacel1-2. The charge asymmetric case

gives rise not only to a discrete set of basic modes of prop-

; i ; (5)
agation, but also to a set of allowed polarizations of thesér o this casey # 0, the two antisymmetric tensots, and

modes. \Il,(f’u) contribute also to the polarization operator. We have
11.1. The charge symmetric case Mwal? = pall) +qaf? +raf), (185)
(2) — _q4q1 (2) (3)
In this case, the chemical potentjal= 0. This means that Wuway” = —qa,,” + sa,” +va,”,
I1,,, depends only on even if,,,, tensors. By doing the cor- 0,0 = —ra) +va® +ta®),
responding substitutions one has a . a
H,wa(f) =0,

Huua,(jl) = paf}) + qaf)7 where the scalarg, ¢, t, s were given in Eq. 183, and the

pseudoscalars v are:

r = —(uk) ldk?(kF*k)w“) + 25,/ (kzlik)”@] ,

H,u,a,(f) = —qal(}) + saf),

11, a(yg) = ta,(,3) ,

M,,a® =0, (182)
where the explicit expressions pfq, s, t in terms of the co- v = —(uF*k) (KE2E) (5) (186)
efficientsz(¥ (calculated explicitly in the one-loop approxi- (kE™*k)

mation) are [22]

12. Conclusions and applications: chiral sym-

uk)?(KF2k) (4 metry breaking and Faraday Effect

=270 4 (kF* k) — ( _
b (REK) (kEk)k?

Y

We have given an introduction to the method of quantum

field theory at finite temperature and density, pointing out and
(kF*k) 2 discussing basic concepts and tools. We used the methods

12 of functional differentiation and path integrals, with Grass-

2_(1) (ul™"k) (4) . )

s =k — A mann and boson variables, as calculation methods. These

( ) are not unique ways, and it is instructive to compare, es-

t = k270 _ (kF2k)r® + 25k 7). (183)  pecially if a wide use of Feynman diagrams is done, with
other methods. Starting from the density matrix basic equa-

It is easy to show that modeff) is such that its polar- tion and an imaginary time variable, we are able to obtain
ization vectorE® is orthogonal to the plane determined by Schwinger-Dyson equations for systems of hot and dense

(uk)(uF*k) [ (kF?k)
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system particles. Once established the used technique, we

may consider specific problems, involving several fields and 57

conserved quantities. For instance, in the present paper we Ju(A[™ +a,.) = 7, (A;™) + 5A:wt ay+ ... , (188)

have concentrated first on quantum electrodynamics where v

U(1) gauge and CPT invariances are satisfied. At the endyhere the total external electromagnetic field4ﬁ§” +a,,

we concentrated in the problem of an external magnetic fieldwith a,, a small perturbative radiation field (its electric field

The reader must understand the fact that once an specific di < B, B is generated by a four-potentiAIfL“). Its linear

rection of the (assumed constant) magnetic field is chosertgrm ina,, is [34, 35]:

spatial symmetry is broken, and linear and angular momen- .

tum are conserved only parallel to the field (rotational invari- Ji = ivay, = Yi; Ej, (189)

ance exists only around an axis parallel to the field). In thgyhereE; = i(wa; —k;ao) is the electric field, withu, = iaq

second part of the present work, to be done in next paper, Wend , = iw, alsoj, (AS!) = Nobus. The termY;; =

shall work in the wider scenario of the Standard Model. I1;; /iw is the complex conductivity tensor. The third term
In the applications of the theory established in the presenyy Eq. (189 comes from the second one by using the four-

paper, we start with an effect created by a small electric fielddimensiona| transversa"ty d_i[,uV due to gauge invariance,

parallel to a strong magnetic field in an eIectron-positronHWkU = 0[22,30,31,36]. In Eq.A89) a,, is in general a

medium. It produces a chiral magnetic effect in the currenfinear function of the eigenmodég). Below we particular-

due to the electron-positron pairs moving parallel to the €Xi2e to the case in which the eigenvector = b,(f), for which

| : her chiral effect i duced &he electric field vector is parallel B (notice that only terms
electron-positron system, another chiral effect is produce OEontaining odd number dﬂf) legs in Eq. [[88) lead to pseu-
photons propagating parallel to the external field, leading Qovector terms)

the well-known Faraday effect. Charged fermions interacting with the longitudinal mode,
. ) exchange energy by the transfer of momentuywhile the
12.1. Chiral magnetic effect Landau quantum numbers remain unchanged [34]. Then we

. . . . may consider the fermion interaction with the longitudinal
Let us remind that in a charged medium, for propagation Y g

along the fieldB, in addition to the two transverse modes (seemOOIe as a problem il + 1) dimensions, which is strictly
! . - X lid if id ly the | t Landau level (LLL). W
(11.1) and @1.2) ), there is a longitudinally polarized mode valid if we consider only the lowest Landau level (LLL). We

would like to point out that the two-dimensional Dirac matri-
alongB given by the pseudovectob? (k) = ac?, (inde- P

, ces obey the identity [37]:
pendently of the charge symmetric), Whe}f@ = Ryo(F*k),
is a normalized pseudovector, (the normalization parame- YD = —ey,,. (190)

ter is R, = 1/Bz’?, where from now on we will call L .
§ /B2 This implies that the axial, 4 and vectorj,, currents ex-

2 = k3—w?)[32,33]. This pseudovector does not violate the h thei©.3 ; ding to th |
invariance CPT of the underlying theory. In other words, theSange eif0, 3) components according fo the same rela-

electromagnetic fieldi,, is a four vector, bulB; = €;;1F} :'r?n' T.hlljs’ |ntthe(1 - 1),[0239’ we can srﬁdylthegrodpertlej ?f
is a pseudovector iBD space. The parameter(which has € axial vector current by using resufts already derived for

dimension of vector potential) is determined by the applieoIhe vector current.

perturbative electric field. Its electric polarization vector be- . Now we must observe th_at n the linear approximation of
ing in the direction alon [31] Jji,» see the Eq.[289), and taking into account the eigenvalue

equation to longitudinally polarized modg,, b.” = sb{,
Ep = E@ep = a(k? — w?)?es, (187)  One gets also:

whereeg = B/B is a unit pseudovector. The longitudi- Ji = Mivay = sb;, (191)

nal mode is not on the light cone, thatds # 0 [31]. If where we can write the scalar= cff)H (2) \which is the

. . . uvCv "y
one consider a very small electric field acting paralleBo  gjgenyalue of the photon self-energy tensor corresponding to

a current is produced along the fiedd In [33] it is shown  he |ongitudinal mode [22, 30, 36]. The remarkable fact is
that if a perturbative electric fiel& || B, is applied to an that, asb,(,Q) is a pseudovector, for propagation aloBghe

electron-positron magnetized background in thermodynamu&urrentjy is also a pseudovector, which is a necessary condi-
equilibrium, associated to a longitudinal pure electric mOdetion for the breaking of chiral symmetry

(pseudovector |_”node, for Wh'&]'. B #0), it prod.uces an ax- Itis easy to find a gauge transformation (in which it is ob-

ial current leading to the breaking of the previously existing, .o o452 — (k1/21)Es) leading tojs — s(ka/z1)Es (from

statistical chiral balance of the densities of charged particle%:,q_ ',15’])) whereE; — E®(ey - e5) . This equation is
An expansion of the electromagnetic current density (itequiv‘alent,to

depends on the two relativistic invariant§:and &, where

& = B-E # 0 only for the modebff)) in functional series of

a, gives:

II
js = 5 Bs, (192)
4
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which is deduced from relatiollz; = s(k2/z;), which is
obtained from the expression = ¢{?'11,,,c{”), and from
the two-dimensional tranversality,,, k., = 0, wherep, v =
3, 4.

We are interested only in the real partjgf and to obtain
it, we will restrict ourselves to the imaginary part of the pho-

ton self-energy tensor, after takihg = iw. From Eq. 090),

Eg. (191) and by using the two-dimensional transversality

condition ofII,,,, it is obtained:

12278

. Z1 .
Kpjua = é% #0, (193)

while k,j,, = 0, which expresses the conservation law for
the vector current. Eq103) expresses the non-conservation
of the two-dimensional axial current, whereas EiR3) puts

21

longitudinal photons can be obtained calculating the scalar
and subsequently its imaginary part (see Appendix B). Now,
as an example, we shall calculate the scalasimilar pro-
cedure can be done to determinate the scalars, r, v (the
Hall conductivity is calculated by using the scatdqr

Thex, Fourier transform of the polarization tensor in the
one loop approximation Eq149) is [22, 30, 31, 35, 36]:

62

g

X G(p4 + k4, X, X/|A€wt),

I, (ka, X, X [A") = —Tr " 4,G(pa, X, X | A )y,

Pa

(194)

whereG (p4, X, X'| A¢%t) is given by Eq. 173, which can be
written as

in evidence the role of the electric field, characterizing the

longitudinal pseudovector mode, in the breaking of the chi-

ral symmetry in both the”-symmetric and non-symmetric
cases, which produces an electric current al@g This

proves that a chiral magnetic effect is produced in the frame
of QED. Notice that the chiral conductivity associated to the

Hn—l,n—1(77:p4 + ,LL) 0
0 Hn,n(_ip4 + ,U,)
anl,nfl —Ln—-1n
—Ln-1n _Dn,n
Here
Hy, o (ipa — p) = (m +ips — p)or(Qowr ('), (197)

while Dy, i/, Ey, 1 were defined in Eql1(72).
On the other hand, from E¢185), the polarization oper-
ator can be represented by the matrix:

p

1L, —q (198)
—r

[SEVE -

r
v
t

In the case of propagation along external figldfrom
above equation, we have:

t 0 r
I, = 0 s 0|, (199)
-r 0 t
which is equivalent to:
t r O
I,=| -r t 0 (200)
0 0 s

Now, from Eq. 195, Eq. (194) and taking into account
Eq. (200), we obtain the following expression to the Fourier
transform of the scalarin the one loop approximation:

1 . _
Glonx XA = =55 5™ [ dpadpl(pa + i) + <37
Pa

x MeilP2(@2=o3)+ps(zs—w3)] (195)
where the matrixd/ (ps, p4, n, ¢, ') is:
*Dn—l,n—l *En—l,n
—Ln—-1,n Dn n
> ’ 196
anl,nfl(zpﬁl - ,U/) 0 ( )
0 Hn,n(ip4 - M)

3
L 1, €°B
s(k | A, p, B7Y) = Tag (k| A, 1, B71) = Wﬁpz“;
e dpsC
P3L 33,44
X - Y (201)
4 (p3 + 5721,p3)[(p421l + ka)? + Ei’,pg]

wherep), = ps+ip, €n py, Ens ps are given by Eq/167). The
coefficientsCs3 44 are:

C33, 44 = [Fpa (P} + ka) £ p3(ps + ks) + m?|Fyy
+ 2eBVnn'Gy (202)

where thet signs are taken for the first and second pairs of
subindices, respectively and

Fn,n’ (
Gn,n/ <

k%
2eB
k%
2eB

) T ys [ | Toe 2 (203)

) | Tn,n/Tn—l,n/—l

+Tn,n’ n—1n/—1 ‘7 (204)
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with

N
Tom(p,y) = /elpy¢n($)¢m(l'+y)dl‘ — (n')
y—ip\"T" e
X - 4
( ) ) ‘

2 2
« L= (p +y >
2

(205)

12.2. Faraday effect

Faraday effect is produced by electromagnetic waves mov-
ing parallel to a magnetic field in a charged medium, For in-
stance, it may be a medium containing electrons, positrons
and heavy ions, so that any disbalance of charge among elec-
trons and positrons be balanced by the ionic background. The
effect is a rotation of the polarization vector of the electro-
magnetic wave (photon), induced by the excess of charge of

whereL7 "™ are the generalized Laguerre polynomials. Thethe electrons or positrons. Mathematically this is determined

sum over)_
[11,22,35], where we have:

Vi dpy 1 , (2s+ )
o 3 y Py = ——F >
_/ 2m ﬂ%: ! s

s=0,£1,42, ..., (206)

and the sum is done taking into account the Eq. (73) [11].

From Eq. 201) and doing the sum over,, we obtain the
scalars in the one loop approximation [22, 30-33, 36]:

/ dps ( [2p3k3 + Jon] >
Xnn! — Drn
Eq D

n,n’:0+

oo

S =

X (ne(eq) +npleq) — 1), (207)

, is done by using the Matsubara formalism i the polarization tensor by the scalarwhich contains a

term proportional to the difference of electron minus positron
densities. As the scalar is pure imaginary, let us call it

r = il,. It can be writterk; » = ¢ &+ /I2. The associated
eigenvectors can be written as

1,3) _ =1 . (3
bft )—cg)izci), (214)

Whereéf}) = chl)/Bk:2 andcf}’?’) were given previously, in
the paragraph after Eq/177). One can write the equation
for the photons propagating alorg (k; = k2 = 0), and
polarized orthogonal to it

k2 — w? = K13 (215)

wheren, , are the mean density in momentum space of elec-

trons and positrons respectively, angd with ¢ = (n,p3),
is given by Eq. [167), with n,n’ = 0,1,2,3... . Here the

term—1 inside the square brackets accounts for the quantu

vacuum limit (x = 7' = 0), while:

6432 ’ (1)

;) = — —_ F , 2
Xnn on2s (n—=n")F,, (208)
Jnnt = 21 + 2eB(n’ —n), (209)

3B 2 2B2 2
Oppy = eb w+{2m2+63(n+n’)} Fopr
272 21
+2eBV nn’G,mr> , (210)
and
D = 4z1p5 + Apskspn + J7, — dw’el o, (211)

with &, 0 = v'm? + 8eBn. Taking into account Eq.205),
the equations Eq203) and Eq. 204) can be written:

B (@) = (L33 @) + L™ (@)

n’ -1 ' —n —x
X ((n_l))'xn e 5 (212)
[n (=1
G (@) =2 n' (n—1)! v
x L ()L (z)e ™™, (213)

wherez = zy/2eB, with 2o = k? = k% + k3.

Rev. Mex. Fis.

This equation leads to two solutions having opposite circular

rRolarizations, and different speeds, for the light propagating

parallel toB in the magnetized medium, induced by the elec-
tric charge imbalance. The effect means a chiral effect of
photons, determined by the sign of the chemical poteptial
sincel, is an odd function of:. This leads to the Faraday
effect [35] in the magnetized electron-positron plasma, due
to the fact thatu # 0. As said earlier, the total net charge
carried by electrons and positrons, is assumed as balanced
by a positive charged background of ions. The total system
is neutral, but it is not invariant under change conjugation.
By writing x; 2 = ¢ & I,,, we rewrite the photon dispersion
equation in the magnetized medium as

n=ki-w=t+1I, (216)
where,
e’B
=il,, t=-—1,
T 1 47‘(2 t
and[,., I, are the integrals
BB <
e w
IT: 2 2 / dp3f(p37k3aBaw)
Y3
X (ne(€pa ,LL) - np(€p7 /J/))a (217)
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with Notice that we are speaking in this subsection about quantum
5 21 + 2eB(n + 1/ f|eld theory definitionsj.e. x4 is to _be mterpret_ed as imag-
Fps. 21, B,T) = > F),(0) ( D( ) ; inary time, x4 = ict. But as there is a parallelism of meth-
n,n’ ods with relativistic quantum statistics, we extend the quan-
D = [2psks + 21 + 2eB(n — n)]? — 4w25§, tum fleld'langua.lge to b(_e usgd also in Fhe temperature case,
wherez, is a variable defined in the real intery@J 3], whose
and Fourier counterparts are either = (2n+1)kT for fermions
00 andk, = 2nkT for bosons, where, = 0,+1,... £ co. It

I, = / dpsg(ps, 21, B, T)(ne(p, 1) + nplep, 1)), (218) leads to the possibility of describing thermodyqamical pro-
cesses. But by means of an analytic continuation of appro-

. o priate quantities, one can deal with dynamical processes, like
with propagation of particles and/or currents, which are not equi-
Fsz/ 0) (2psks T ) (2142 B(ntn’) librium processes, but means a small departure from it (small
g= Z 1- ) enough to be able to speak of an average temperature). In
En D
n,n’ P such cases, for photoris, — iw, and for electrons and

positronsps — ic,, Wherew ande, are respectively their

wheren, ,(,) = (1 + e&T18)~1 are the Fermi-Dirac )
' energies.

distribution for electrons and positrons, is the Landau
quantum number, the energy levels are givendyy =

V/P3 + m? + 2neB and

Jnnr=21 + 2eB(n’ —n), F(Q’g)(O):(Sn}n,_l +0p_1,n-

nn’

B. Calculation of Im]s]

The denominatoD of the integrals (Eq. (207), which have

Notice that the functiorf (1) = n.(u) —n,(w) has odd parity singularities due td) given by:

with regardu. The terml,. is a scalar, thus, it is even in the
electromagnetic field,,, but it is multiplied by the tensor
v, odd in F,,. Thus, the Faraday effect is an illustrative
example of the Furry theorem.

D =dzips(ps + k3) + 21 —dw’ehy,  (B.1)

wherez; = ki — w? ande? ; = m? + 2enB, it can be
written in the form symmetric under the exchange— <,

Appendix w — —w[30]

A. About propagators o1 1

In quantum field theory is used the tepmpagatorto a func- Beqeqw \ Eq —€q —w F i€
tion giving the probability amplitude for a particle to move 1 1

from one point to other in space-time. Its Fourier transform T e twtie o de —wiie
describes its motion with some specific energy and momen- 4 a 4 a

tum. It is also understood as the inverse of the wave opera- 1
tor corresponding to some field or particle, which are called + s/+5+w+ie>’ (B.2)
(causal) Green'’s functions. In quantum electrodynamics it is I a
frequently written the propagator for free fermions@s,
which is in general a matrix in spinor space. For instance Where e¢ = /(ps +k3)? +m? +2enB and ¢, =
/P2 +m?2 + 2enB, with ¢ = (n,p3). The first pair of sin-
(i7u0p —m) Gp(z' —x) = I6* (2" — x), (A1)  gularities are related to excitation of particles to higher en-

ergies and the second two are connected to the pair creation.
We have added an infinitesimal positive imaginary patb
w, and by using the relation

wherex = (x1,x9,x3,z4(= ict)) are the space-time coor-
dinates in Euclidean variables ahds the unit four matrix in
spinor space and

1

' L[ i@ 1 .,
—r)=— R . . =P o(s — B.3
Gpla' —z) =53 [ d'pe Gr(p) (A.2) o Lo timdls —w), (B.3)

We haveG'r(p) = (7,0, +m)/(p* +m?) for the propaga-  \yherep corresponds to the principal value in the expression,

tor in momentum space. _ we get for the imaginary part d—! [30]
The free photon propagator in momentum space can be

written in Euclidean variable@,, = (k1, ko, k3, k4)), as tmD1—1_ T (8leq — &g F w]
Kk T 8wt T
oy _ O — 75"
D(k”) = T2 (A.3) +0leq —eqtw] —0leg +e4Fw]), (B.4)
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where thet signs applies respectively to = 0. We can use and the corresponding values of the energies are given by
now Eg. B.4) to obtain the imaginary part the scakafEq.

(207)) according to the relation

Oo . = M7 (B.8)
21
dps f(p3)d ; (B.5)
4 Z | 9'( L _wat |ks|A (B.9)
s 221 ’ '

wherep?*, withm = (1, 2) are the roots of(p3) = 0. It may
be easily shown that whilg; runs within(—oo < p3 < 0),
the denominator of the expression ER0T) may vanish only wherer,s = (n,w,ks). The+ signs in Eq. [B.7) corre-

for realz; [30]. Thus, the integral in Eq207) represents an sponds to the pair creatiqa,) and excitation casegs,.) re-
analytic function in the;; plane except possible singularities spectively. By substituting these expressions it is easy to ob-
located somewhere on the real axis, which corresponds wittain:

the absorption region/(n[I1s3] is responsible of absorption

process for the longitudinal mode), where A
— B.10
pél’Z) _ —k‘3221 iwA’ (B.6) ‘dpg( p3))‘ 2T ( )
Z1

are the roots of denominator in Eq207) [30] and A =
21(21 +4€2 ). Inour casgy(ps) = w + (g4 +¢,), thus In the evaluation of the integral Eq.2@7) containing
" the second delta EqB(4), the following exchange is made

(B7)  ps+ks e —ps,n < n.
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