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Strong magnetic fields in gauge theories at finite temperature I
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The problem of propagation of photons and currents in a medium at finite temperature and in presence of a strong magnetic field in the
frame of quantum electrodynamics is discussed in the present paper. Its first part is devoted to introduce the reader to the formalism of
quantum field theory at finite temperature and density. The basic Schwinger-Dyson equations are obtained, by using functional methods
and path integrals. It is discussed the meaning of the zero temperature and zero density limit. The breaking of the spatial symmetry by the
magnetic field determine the existence of a set of basic vectors and tensors which must satisfy the relativistic, gauge and CPT invariance
of quantum electrodynamics. The charge symmetric and non-symmetric cases are discussed. Also a chiral current arises, associated to a
pseudo-eigenvector of the polarization operator, due to the breaking of the spatial symmetry by the external magnetic field. As a chiral effect
in photons, the Faraday effect is discussed.
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1. Introduction

The influence of magnetic fields in relativistic quantum sys-
tems, like electron-positron plasma and quark-gluon plasma
[1–10], is an important subject in high energy physics.

The present paper is the first of a couple devoted to de-
scribe methods for the study problems of gauge field theories
at finite temperature and density. It is assumed that the reader
has a minimal background in relativistic quantum theory and
quantum field theory. We shall start with statistical quan-
tum electrodynamics, which in the case of zero temperature
T and chemical potentialµ reproduce usual results of stan-
dard quantum electrodynamics, but formulated in Euclidean
variables. Of particular interest are the phenomena which oc-
cur in presence of strong magnetic fields. We start by estab-
lishing the basic formalism of quantum field theory at finite
temperature, using the Green functions method, as developed
by E. S. Fradkin [11], and devote some space to describe the
necessary tools, for instance the functional differentiation,
Grassmann variables and path integrals of interacting Bose
and Fermi fields. We find a set of functional equations lead-
ing to get the Schwinger-Dyson equations in quantum sta-
tistical electrodynamics, whose solutions are usually among
the main expected results. This is followed by a presentation
of the non-relativistic and relativistic problem of motion of
charged fermions in a magnetic field. The expressions for the
Green functions tensor structure are written exactly, indepen-
dently of any order of approximation, based on the conditions
imposed by assuming relativistic,U(1) gauge, and CPT in-
variances. The approximate quantities are in general scalars
multiplying the tensors, obtained by perturbation theory. The
dispersion equations for photon propagation as well as the
properties of currents parallel to the magnetic field are dis-

cussed. The chiral effects on photons and electrons, leading
respectively to Faraday and Chiral Magnetic effects are dis-
cussed. The dispersion equations for propagation orthogonal
to the magnetic field as well as the basic equations for the
quantum statistics in the non-Abelian case of the electroweak
plasma will be discussed in the second part of the present
work, to be published in a next paper.

2. The density matrix

The role of the wave functionΨ in quantum theory is played
in quantum statistics by the density matrixρ. Apart from the
intrinsic probabilistic nature of quantum theory, it is neces-
sary to introduce in quantum statistical physics an additional
ignorance about the quantum state of the system under study.
This means another statistics, which is provided by the den-
sity matrix. This is usually done by conceiving an “ensem-
ble” or infinite replica of our system where each one of the
members satisfies the known macroscopic conditions of the
given system and differs on the microscopic state compatible
with the macroscopic conditions. In non-relativistic quan-
tum mechanics for each of the members of the ensemble we
have the set of wave functionsΨe, which can be expressed
in terms of a complete set of orthogonal eigenfunctions of
the observables of the system, which can be chosen as the
two conserved operators: the HamiltonianĤ and the number
of particlesN̂ . In place of the total number of particles, in
relativistic quantum theory, as it is quantum electrodynam-
ics (QED), it is usually taken as conserved the net electric
chargeQ, that is, the difference between the number of par-
ticles and antiparticles. Quantum electrodynamics satisfies
Lorentz invariance and the discrete CPT (Charge, Parity and
Time) symmetries.
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Now, we consider our system as a subsystem of a larger
system, which is described by a wavefunctionΨe which can
be expanded in terms of an orthonormal basis{Φn(q)} in
Hilbert space. The upper indexe is to be taken over the states
corresponding to the ensemble. Then we can write

Ψe =
∑

n

cnΦn. (1)

The quantum average of an operator corresponding to a
physical quantityP̂ is written as:

〈P̂ 〉 = 〈Ψe|P̂ |Ψe〉 =
∑
n,m

c∗en ce
mPnm, (2)

where

Pnm =
∫

Φ∗m(q)PΦm(q)dq, (3)

are the matrix elements of̂P . The quantum statistical aver-
age overΨe states implies the ensemble mean value, which is
taken overce

n values, since to each microstate of the ensemble
corresponds aΨe state

〈〈P̂ 〉〉 = 〈〈Ψe|P̂ |Ψe〉〉 =
∑
n,m

〈c∗en ce
m〉Pnm, (4)

Let us call them as〈c∗en ce
m〉 = ρmn. The quantum statistical

average value ofP may be written now as

〈〈P̂ 〉〉 =
∑
n,m

ρmnPnm, (5)

where we callρmn the density matrix. It must be a function
of the parameters characterizing the system under study, as it
is the energy. Thus, we can takêH = P̂ [12]. If we take also
the number of particles, as the system must be in thermody-
namic equilibrium with the medium, exchanging energy and
particles with it, it must depend also from the temperatureT
and chemical potentialµ. In that case it is used the so-called
grand canonical ensemble, which in the non relativistic case
use mostly the Hamiltonian operator̂H and the number of
particlesN̂ . Both quantities are simultaneously observable,
thus the commutator[Ĥ, N̂ ] = 0 and we can write the ex-
pression

ρ̂ = e−β(Ĥ−µN̂), (6)

whereβ−1 = kT andk = 1.38 × 10−23J/K is the Boltz-
mann constant, andT is the absolute temperature. We may
take the set of functionsΦn as the common eigenfunctions
of Ĥ andN̂ . In the frame of high energy physics, the den-
sity matrix operator is defined in terms of the Hamiltonian
Ĥ and some conserved quantity, whose operator commutes
with Ĥ, as the net electric chargêQ, or the lepton and baryon
numbersNl,b (assumming that baryon and lepton numbers

are conserved independently. Models based on the conserva-
tion of the quantityNb − Nl, are out of our the scope of the
present paper). The equilibrium of energy exchange is char-
acterized by the temperatureT and the exchange of particles
by the corresponding chemical potentialµ.

ρmn = e−β(ε(N)
n −µNn)δmn. (7)

The grand partition function is defined by

Z = Tr e−β(Ĥ−µN̂) =
∞∑

N=0

∑
n

e−β(ε(N)
n −µNn), (8)

whereε
(N)
n is the energy of the state withNn particles and

the thermodynamic potentialΩ = −PV is given by

Ω = −kT ln Z, (9)

whereP is the pressure andV the volume of the system.
FromΩ one can know the thermodynamic properties of the
system, because:

dΩ = −SdT −Ndµ, (10)

whereS is the entropy, then

S = −
(

∂Ω
∂T

)

µ=const

, N = −
(

∂Ω
∂µ

)

T=const

, (11)

U = −µ

(
∂Ω
∂µ

)
− T

(
∂Ω
∂T

)
+ Ω, (12)

whereU is the internal energy.
For ideal quantum gases we have:

a) Bosons

ΩB = kT
∑

p

ln
(
1− e−β(εp−µ)

)
. (13)

b) Fermions

ΩF = −kT
∑

p

ln
(
1 + e−β(εp−µ)

)
. (14)

From it the average number of particles is:

N =
∑

p

np (15)

where

np =
1

eβ(εp−µ) − 1
, for bosons, (16)

np =
1

eβ(εp−µ) + 1
, for fermions. (17)
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3. Quantum field theory at finite temperature

All the previous equations are valid for systems of identical
non-interacting particles. A more powerful theory is neces-
sary for interacting systems of fields at finite temperature and
conserved charge (or number of particles).

Starting from the definition Eq. (6) for the grand canoni-
cal ensemble we get the Bloch equation

− ∂ρ̂

∂β
= (Ĥ − µN̂)ρ̂, (18)

which has an analogy to the Schrodinger’s equation, allow-
ing to a parallelism to usual quantum theory, but using an
imaginary time variablex4 such that−β ≤ x4 ≤ β [13–15].
By defining the fieldsψ(x, 0) as the Schr̈odinger represen-
tation, we may define a new “Heisenberg representation”,
ψ′(x, x4) = ρ(−x4)ψ(x, 0)ρ(x4) leading to the equation of
motion

∂ψ′(x, x4)
∂x4

= [Ĥ − µN̂, ψ′(x, x4)]. (19)

If we know, for example, the Lagrangian of a system we can
build Ĥ, N̂ and ρ̂, and from it, to getZ, Ω, and obtain the
thermodynamical properties of the system by usual methods.
The Eq. (18) gives the possibility of developing a formalism
analogous to that of quantum field theory, where the imagi-
nary time variable is now replaced by the Euclidean variable
x4 → ict such that0 ≤ x4 ≤ β. What we do is to con-
struct a gauge theory, in Euclidean four dimensional space,
which has physical meaning when the system as a whole is at
rest (the four velocity space components are zero). The four
imaginary time coordinatex4 is defined in the interval[0, β]
whereβ = 1/kT . This is of particular interest in both high
energy physics and the physics of condensed matter. In the
limit β → ∞ (or T → 0) andµ → 0 one gets quantum field
theory in Euclidean variables. The analytical continuation
x4 → ict leads to an analogy between relativistic statistical
physics and quantum field theory. The method of finite tem-
perature Green functions in quantum statistics arised, starting
from a basic work of Matsubara [16], by Abrikosov, Gorkov
and Dzhialoshinski [17] in condensed matter and by Frad-
kin [11], Martin and Schwinger [18] in a wider scope, among
other authors.

In the present paper we shall use several results due to
Fradkin. At this point we must stress that the analogy which
we shall study is valid only in a reference frame at rest, since
in this respect, in field theory this is not important in many
cases, unless it is specified. This is due to the fact that in the
ground state the vacuum eigenvalue of the four-momentum
vector is not important in the absence of external fields be-
cause

pµ | 0〉 = 0. (20)

However, in the temperature case the ground state is not
isotropic and homogeneous in time as it is in quantum vac-
uum, and on the opposite,

pµ | εn, Nn〉 6= 0. (21)

An important consequence of Eq.(21) is that the four ve-
locity of the systemuµ = pµ/M 6= 0 (if the total mass of
the system isM , its four momentum vector ispµ = Muµ,).
It has an important role in the temperature case, although
in most cases calculations of physical interest are done in
the system at rest, where the only non zero component is
u4 = i/c. In the system~ = c = 1, obviouslyu4 = i.

Our model would be useful not only to describe equilib-
rium states but also certain non-equilibrium states (quantum
kinetics) in which is possible to deal simultaneously with
time and temperature. The temperature Green’s functions
play a central role in describing systems in thermodynamical
equilibrium and can be extended to states close to equilib-
rium, like the dynamics of processes of emission and absorp-
tion of electromagnetic radiation, the description of systems
of particles in a medium, the lifetime of quasi-particles and
others, where can be described by functions of temperature
T and chemical potentialµ.

As pointed out earlier, in the present paper we shall deal
with finite temperature quantum field theory, providing mod-
els which can be used to describe phenomena and systems in
a wide range of interest, from condensed matter to astropar-
ticle physics. We shall consider first the general case of sys-
tems without external fields, and at the end study the case
in which the system is under the influence of a strong exter-
nal magnetic field. We obtain the basic equations in the free
and interacting field cases, and the corresponding Schwinger-
Dyson equations. Later, by starting from the non-relativistic
electron dynamics in an external magnetic field, and continu-
ing with the relativistic case, we obtain the Green function for
an electron-positron gas placed in an external magnetic field
B. The chemical potentialsµe (µp) of electrons (positrons)
are different from zero. The photon chemical potential satis-
fies the equationµγ = µe +µp = 0, in correspondence to the
fact that the number of photons is not a conserved quantity.
Thus, we have the propertyµ = µe = −µp. To guarantee
the stability in the charge non-symmetrical caseµ 6= 0, one
must assume that there exists an ion background which com-
pensates the leptonic electric charge and whose effect is not
considered in every other respect. We shall find the photon
equation of motion, and determine the modes of propagation
of electromagnetic waves (after takingiω = k4 andit = x4;
we are using natural units in which~ = c = 1). Eventu-
ally, if natural units are used andT is given in energy units,
it is equivalent to take the Boltzmann constant ask = 1. By
knowing the polarization tensorΠµν in the temperature case
it is possible to calculate the thermodynamical potential of
the photon system, in equilibrium with an electron-positron
background. This case occurs for instance in the black body
problem at temperatures larger than twice the electron rest
energy.

We want at this point to suggest to readers (especially
those unfamiliar with quantum field theory based on func-
tional methods), to do a first lecture aimed to grasp the main
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new ideas and definitions given below and to go directly to
the basic formulae for non-interacting and interacting sys-
tems at non-zero temperatureT . Once we have the parti-
tion functionalZ, it is easy to obtain the thermodynamical
potentialΩ. Having Ω, we can obtain the thermodynamic
properties of the whole system. For a slight departure from
equilibrium (notice that strict thermodynamic equilibrium is
not compatible with macroscopic flow of matter or energy),
so that we can study the propagation of specific particles, as
electrons, positrons and photons moving in the medium at fi-
nite temperatureT , we get its dynamics described by the an-
alytical continuationk4 = iωt, p4 = iεt made on the corre-
sponding Green functions. We then get quantities depending
on time, and the Schwinger-Dyson equations allow us to find
the poles of the Green functions of the interacting particles.
Real values for the energy lead to stable states, complex solu-
tions to instabilities, due for instance to absorptive processes
in the medium.

3.1. Functional derivatives

Let us consider the sum defining the functionS(ϕ)

S(ϕ) =
∑

i

I(ϕi), (22)

wherei = 1, 2, 3, ..., N is a discrete variable. The integral
defining the functionalS(ϕ),

S =
∫

dxI(ϕ(x)), (23)

can be interpreted as the sum over the continuous variablex.
In Eq. (22) we define the partial derivative∂S/∂ϕk by

∂S

∂ϕk
= lim

ε→0

∑
i I(ϕi + εδik)−∑

i I(ϕi)
ε

=
∂I

∂ϕk
. (24)

Analogously we may define in Eq. (23) the functional deriva-
tive of S(ϕ) with regard toϕ(y) as

δS

δϕ(y)
= lim

ε→0

∫
dxI[ϕ(x) + εδ(x− y)]− ∫

dxI(ϕ(x))
ε

=
δI

δϕ(y)
. (25)

3.2. Path integrals

The use of path integrals is very important, since it is the
method to be used in the non-Abelian gauge field theories.
In the Abelian case, as it is in quantum electrodynamics, it
becomes very simple. Let us start from the one dimensional
Gaussian

G(a) =
∫

dxe−
1
2 ax2

=

√
2π

a
. (26)

ForN degrees of freedom it is:

G(A) =
∫

dx1...dxN e−
1
2 xiaijxj , (27)

where aij are the elements of a symmetric real matrix
(xiaijxj = XT AX, AT = A). Let R be the matrix which
diagonalizesA, that isRT AR = D, with RT = R−1. Then
XT AX = Y T DY , whereY = RX. As the Jacobian of the
transformationY = RX is unity, we have

G(A) =
∫

dy1...dyN e−
(Y T DY )

2

= G(d1)G(d2)...G(dN ), (28)

wheredi are the elements of the diagonal matrixD. Finally
G(A) = (2π)N/2(det A)−1/2. If we define the measure as
(dx) = dnx(2π)−N/2 we can write

(det A)−1/2 = (2π)−N/2G(A)

=
∫

(dx) e−
1
2 XT AX . (29)

From Eq. (28) and Eq. (29) whenN →∞ by using

ln det M = Tr ln M =
∑

i

ln di, (30)

it results

ln
∫

(dx) e−
1
2 XT AX = −1

2
ln det A

= −1
2

∫
dt ln d(t). (31)

Let us consider the expression

F (A, ω) =
∫ N∏

i=1

(dxi)e−
1
2 XT AX+ωT X . (32)

If A−1 exists, by callingX ′ = X − A−1ω, it can be
shown easily that

F (A,ω) = e
1
2 ωT A−1ω

∫ N∏

i=1

dx′i e−
1
2 X′T AX′

= e
1
2 ωT A−1ω(det A)−1/2. (33)

Let us consider the case in which the Gaussian hasA sin-
gular. Let us assume that then eigenvaluesdi vanish (from
N − n + 1 to N ). Let us define the restricted Gaussian

Grest(A) =
∫

dy1...dyN−n eXT (y)AX(y), (34)

in which we integrate only on the variables having non-zero
eigenvalues. However, the dependence ofGrest(A) with re-
gard to the variablesy makes this representation rather com-
plicated. It is desirable to have the integrals on the variables
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xi. To solve this difficulty, we shall introduce new variables
yN−n+1, ...yN and rewrite Eq. (34) as

Grest(A) =
∫

dy1...dyN−n+1...dyN

× δ(yN−n+1)...δ(yN ) e−XT (y)AX(y), (35)

and after it, we change the variables fromy to x by means of
the Jacobian of the transformation of coordinates

dy1...dyN = dx1...dxN Det

∣∣∣∣
∂y

∂x

∣∣∣∣, (36)

to obtain finally

Grest(A) =
∫ N∏

i=1

dxi

× Det

∣∣∣∣
∂y

∂x

∣∣∣∣
N∏

a=N−n+1

δ(ya)e−XT AX . (37)

This is a well-defined integral, and the set of functions
ya(x) and the factors

Det

∣∣∣∣
∂y

∂x

∣∣∣∣
N∏

a=N−n+1

δ(ya)

in the measure restrict the integration from an
N−dimensional space to another one havingN − n di-
mensions.Grest(A) does not depend on the specific form of
ya(a ≥ N − n). This problem appears in the formulation
of gauge field theories by means of path integrals, which are
necessary when passing from infinite discrete to continuous
variables. The previous procedure can be applied to gauge
theories, where there are constraints due to the dependence
among momenta and fields, and also due to gauge invariance.
It is necessary to fix a gauge condition through a parameter,
to avoid singularites due to the gauge invariant field tensor.
This can be handled according to the procedure established
by Faddeev and Popov, which is very simple in the case of
quantum electrodynamics. The gauge fixing parameter does
not appear in the physical results. A more detailed study of
the path integral method and gauge theories can be found
in [19–21].

3.3. Grassmann variables

For commuting quantities (bosonic particles), the transition
amplitude〈q′′(t′′)|q′(t′)〉 is expressed as a path integral on
classical dynamic variables. In the case of bosonic fields, the
condition is the same; the dynamic variables are in this case
classical fields. For fermion fields, however, it is necessary
to introduce anticommuting classical variables. These vari-
ables are called Grassmann variables or numbers. Grasmann
numbers are defined by the anticonmutation relation

{Θi,Θj} = 0, i, j = 1...N. (38)

It implies that a Grassmann variable satisfiesΘ2
i = 0. If

we choosei = 1, then any functionf(Θ) has the general
form

f(Θ) = α + βΘ, (39)

whereα, β ∈ C are complex numbers (independent ofΘ),
that is, the exponent ofθ can be only0, 1 as in Eq. (39).
Define the left derivative

∂f

∂Θ
=

∂

∂Θ
(α + βΘ) =

∂

∂Θ
(Θβ) = β, (40)

and the right derivative

f
∂

∂Θ
= (α + βΘ)

∂

∂Θ
= −β, (41)

in general, for

f = α + βiΘi + CijΘiΘj , (42)

we have

∂f

∂Θk
= βk + CkjΘj − CikΘi, (43)

and similarly for the right derivative. Then, we obtain that
∫

dΘ = 0,

∫
dΘ Θ = 1. (44)

(it acts as a derivative operator). For instance
∫

dΘ1

∫
dΘ2Θ1Θ2 = −

∫
dΘ1Θ1

×
∫

dΘ2Θ2 = −1. (45)

Let us consider the general integral

IN (M) =
∫

dΘ1...dΘN e−ΘT MΘ, (46)

with N even andM antisymmetric matrix, with elements
mij . We considerN = 2, then

I2(M) = −
∫

dΘ1dΘ2[Θ1m12Θ2 −Θ2m12Θ1]

= 2m12 = 2
√

Det M. (47)

But for any evenN one has

IN (M) = 2N/2
√

Det M. (48)

For the limit N → ∞, by using the measure(dΘi) =
dΘi/

√
2, we have

√
Det M = lim

N→∞

∫ N∏

i

(dΘi)eΘT MΘ

=
∫

DΘ e
∫

Θ(x)M(x,y)Θ(y)dxdy. (49)
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Let us consider now the integral

IN (M, X) =
∫

dΘ1...dΘN e−ΘT MΘ+XT Θ. (50)

By changing the variablesΘ′ = Θ − M−1X, it is easy to
show that

IN (M, X) = e−
1
2 XT M−1XIN (M), (51)

and by defining then−components Grassman vectorsθ =
θi....θn andη = ηi....ηn and a real square matrixAij of rank
n, we have

∫
dθdηe[−θiAijηj ] = Det A. (52)

We shall used below the Grassmann variables in quantum
electrodynamics.

4. Statistical Quantum Electrodynamics

Physically we are going to describe the interaction of an
electron-positron gas with a photon. We may consider two
cases. First, the neutral case, when there is an equal number
of electrons and positrons. The chemical potential is zero.
This is the case of the black body at a temperature such that
kT = mc2 (wherem is the electron mass). It may corre-
spond for instance, to the astrophysical scenario, as may be
the magnetosphere of neutron stars, when a large number of
gamma rays decay in electron-positron pairs, and both sys-
tems of fermions and bosons coexist in equilibrium for some
time. The second case, when there is an excess of electrons
or positrons leading to a nonzero chemical potential and there
is, for instance, a positively charged background of ions com-
pensating the negative charge of the electron-positron gas.
The dynamics of such background may be ignored in sev-
eral cases, except to guarantee the electric neutrality of the
system. The ions have masses of order103 times the mass
of the electrons and positrons which allows frequently, for
simplicity, to reduce their role to the contribution of their rest
energy. Its full incorporation into the model, however, can be
done without difficulties.

The problem of photons in equilibrium with the electron–
positron gas may have interest in astroparticle physics. In
any case, it has academic interest to construct a model for the
interaction of the electron-positron system with electromag-
netic radiation in a medium on which can be defined a uni-
form temperature and the average densities of particles. We
start by writing quantum electrodynamics in Euclidean vari-
ables, whereψ, ψ are four spinor functions describing the
electron-positron field andAµ is the electromagnetic field
four-vector. We have the correspondenceit → x4 (we are
taking natural units~ = c = 1), iγ0 → γ4, ik0 → k4. Let us
start with the Lagrangian density

L = −ψ(γµ∂µ + m)ψ + ieψγµAµψ − 1
4
FµνFνµ. (53)

The conserved Noether current density isjµ =
(∂L/∂(∂µψ))ψ = eψγµψ, which integrating on an appro-
priate volumeV leads to the current

Jµ = e

∫

V

d3xψ(x)γµψ(x). (54)

We shall useJµ for the field theory electromagnetic cur-
rent andJµ for the external current. Also along this pa-
per we useα as an arbitrary gauge parameter and not as
the fine structure coupling constant. In CGS units it is
α = e2/~c = 1/137. According to the system of units we
are using,~ = c = 1. Thuse is not the usual electron charge,
ande2 = 1/137.

The electromagnetic field satisfy the gauge invariance
Aµ → Aµ + ∂µλ, as can be shown by substituting the
shifted Aµ in the antisymmetric electromagnetic field ten-
sor Fµν = ∂µAν − ∂νAµ. We can writeFµνFνµ =
−2(∂2

ηδµν − ∂µ∂ν)AµAν . If we want to integrate on the
field Aµ as a Gaussian, we have a difficulty since the de-
terminant multiplyingAµAν is singular. To overcome it
we must fix a gauge, and add it to the Lagrangian. The
Faddeev-Popov determinant DetM is defined as the deriva-
tive of the gauge conditions with regard to the gauge pa-
rameters, in our case only one,λ. Below we will take the
gauge as the termα(∂µAµ(x)), and it implies that DetM =
α(∂/∂λ(∂µAµ + ∂2

µλ)) = α∂2
µ, and it depends only on the

coordinates (in momentum space it is DetM(k) = −αk2
µ).

In consequence, it can be put out of the functional integral.
From Eqs. (6-8), by using the quantum mechanical canonical
transformations, as the Lagrangian and the Hamiltonian are
related by the equationpiq̇i −H = L, one can show that the
partition functional can be written as

Z = N(β)Det M
∫

DpADpψDψ̄

×DψDAµδ(Cn)e
∫

β
d4x[pψψ̇−H+µN ], (55)

whereCn are constraints which link the momenta with the
corresponding fields (we remind that here the dots mean
derivatives with regard tox4 and not derivatives with regard
to time). One can write the termsδ(C1,2), respectively, as
δ(pA

µ −F4µ) andδ(pψ−ψγ4). After the path integration over
the momentapA pψ is done, another constraint is needed to
fix the gauge condition, which we shall introduce by adding
to the effective Lagrangian density the term

1
2

∫
dss2δ(s− α(∂µAµ(x))) =

1
2
α2(∂µAµ(x))2.

This gauge fixing allows us to write the path integral of the
effective Lagrangian which depends from the electron and
positron fieldsψ, ψ̄ as well as the electromagnetic field four
vectorAµ, which are functions of the coordinatesx, x4. Here
(x = x1, x2, x3). The termµN = (µ/e)J4 subtracted from
the HamiltonianH acts equivalently to a shift of the vector
field componentA4 → A4− iµ/e. This is due to the fact that
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N is the net density of electric charge (the average density of
particles minus antiparticles). The electromagnetic field ten-
sorFµν does not change under that shift, due to gauge invari-
ance. By introducing external field sources for the electron-
positron fields,η, η̄ and the external current interacting with
the electromagnetic fieldJµ we get the effective QED gener-
ating functional in quantum statistical electrodynamics. For
us is of primary importance the functionalZ, which serves
as a generating functional of Green functions, and leads also
to the partition function of the system, from which we may
obtain the thermodynamic potential. We shall write

Z(η, η, Jµ, α) = N(β)Det M
∫

Dψ̄DψDAµ

× e
∫

β
d4x[Leff+η̄(x)ψ(x)+ψ̄(x)η(x)+Jµ(x)Aµ(x)−α2

2 (∂µAµ(x))2],
(56)

where we have used the procedure of the quantum field the-
ory, but changing some details, for instance by making the
usual factor for the path integralN as a temperature depen-
dent constantN(β) and Jµ, η, η̄ playing the role of exter-
nal currents, which will be taken as zero afterwards, and the
fourth component of the electromagnetic field in the effec-
tive LagrangianLeff = LA4→A4−i µ

e
. (Notice thatµ is used

frequently as a vector index, and also as a chemical poten-
tial. It is easy to distinguish, since in the second case it is
always a thermodynamic variable). We shall show that after
integrating on the field variables̄ψ,ψ, Aµ, we can write the
following expression

Z(η, η,Jµ, α) = N(β)Det [−α¤2](Det Dα
µν)1/2Det G

× e
ieγµ

∫
β

d4x δ
δη̄(x)

δ
δη(x)

δ
δJµ(x) Z0(η̄, η, J, α), (57)

and write from now onZF = Det [−α¤2](Det Dα
µν)1/2

Det G, the free term, resulting after dividingZ in Eq. (57)
by N(β)ZF and taking the coupling constante = 0. It con-
tains the integrated terms over the field variables of the un-
perturbed Lagrangian,(that is, the free fields, by ignoring the
terms multiplied by the coupling constant). Obviously, the
exponential operator containinge and the functional deriva-
tive operators, shall act on the functionalZ0 which contains
the terms due to the external perturbative currents

Z0(η, η, J, α) =

e
∫

β
d4xd4x′ 1

2 Jµ(x)Dα
µν(x−x′)Jν(x′)+η(x)G(x−x′)η(x′). (58)

Notice that due to the integration of a Gaussian boson field
Aµ which depends linearly on the external sourceJµ, it
leads to a new Gaussian function dependent on theJµ vec-
tor, and to the tensor functionDα

µν(x − x′), which is the
photon propagator. Also, a term containing the product of
fermion fieldsψ, ψ̄ and linear terms depending onη andη̄ as
external sources, after integration, leads to a bilinear func-
tion on Grassmann variables, producing the spinor matrix
G(x − x′), which is the electron-positron field propagator

(the propagator is usually defined as the quantum average of
the product of two time-ordered field operators, for instance,
< T{ψ(x, t) ψ̄(x′, t′)} >), see the Appendix A). These prop-
agators are defined also as the solutions of the Green function
equations generated by the action of their inverse operators
on them, and the first (the photon one) must be combined
with the (trivial in the present case) Faddeev-Popov deter-
minant, as will be shown later. We have for the photon the
inverse operator

Dα
µν(x)−1 = ¤δµν − ∂µ∂ν(1− α2), (59)

(notice that this term comes from the Lagrangian Eq. (53)
last term accounting for the electromagnetic field tensor mi-
nus the gauge fixing term[¤δµν − (1− α2)∂µ∂ν ]AµAν).

For the electron-positron field, the inverse operator is

G(x)−1 = γµ∂∗µ + m, (60)

where(∂∗ν = ∂ν − µδν4) and (x4, x
′
4) ∈ [0, β].

One can write the temperature Green functions equations
corresponding to the previously defined operators describing
free particles

[¤δµν − ∂µ∂ν(1− α2)]Dα
µν(x− x′) = δ(x4 − x′4)

× δ3(x− x′),

[γµ∂∗µ + m]G(x− x′) = δ(x4 − x′4)

× δ3(x− x′). (61)

In the case of the system being in an external field (as
we shall discuss below for the magnetic field case) the un-
perturbed part of the Lagrangian may contain the external
field term as−ψ̄[γµ(∂µ + ieAext

µ ) + m]ψ. Then G−1 =
γµ(∂∗µ + ieAext

µ ) + m. The termJµAµ is then the product
of the external currentJµ by the radiation fieldAµ, and all
other perturbative terms refer also to it.

We write below the properties on which the previous
equations for bosons are based

δ

δJµ(x)
e
∫

β
d4xJµ(x)φ(x) = φ(x)e

∫
β

d4xJµ(x)φ(x), (62)

(
δ

δJµ(x)

)n

e
∫

β
d4xJµ(x)φ(x) = [φ(x)]n

× e
∫

β
d4xJµ(x)φ(x). (63)

In general

F

(
δ

δJµ(x)

)
e
∫

β
d4xJµ(x)φ(x) = F (φ(x))

× e
∫

β
d4xJµ(x)φ(x), (64)

and in particular

e−
∫

β
d4xV (δ/δJµ(x))

× e
∫

β
d4xJµ(x)φ(x) = e−

∫
β

d4x(V (φ(x))−Jµ(x)φ(x)). (65)
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Then we can write the generating functional for the boson
part of the electromagnetic field Green functions

ZB(Jµ) = N(β)ZF e−
∫

β
d4xV (δ/δJµ(x))

× e−(1/2)
∫

β
Jµ(x′)Dµν(x′,x′′)Jν(x′′)d4x′d4x′′ , (66)

whereDµν(x′, x′′) is the photon propagator. Similar proper-
ties, taking into account thatη andη̄ are Grassmann variables,
are valid for fermions.

4.1. Calculations of the non interactingZ term

Let us return back to use the expression Eq. (61), which after
taking their Fourier transform it is easy to show that physi-
cal results are independent fromα. Let us consider the boson
sector in the previous expression for theZF term. Notice that
we can write

(Det Dα
µν)1/2 =

([{
k2
4 + k2

}4
α2

]−1
)1/2

=
([

k2
4 + k2

]2
α
)−1

. (67)

We must deal with the quantity

1
2

Tr ln[DetDα
µν ] = Tr ln

([
k2
4 + k2

]2
α
)−1

= Tr ln
1

(k2
4 + k2)2α

, (68)

which contributes with a factor dependent onα. It will be
canceled by the factor fromln(−α¤2) whose Fourier expres-
sion isln α(k2

4 +k2). Thus the sum of both logarithms cancel
α and gives a term gauge independent. We have finally

1
2

Tr ln[DetDα
µν(k2

4 + k2)α] = Tr ln
1

(k2
4 + k2)

, (69)

where Tr of a continuous determinant means the integral
on the continuous variables and sum over discrete ones. In
our case of temperature field theory, where the discrete vari-
able plays an essential role, in addition to integrate over spa-
tial variables, it is necessary to sum over discrete integers∑

n k4 =
∑

n(2πn/β).
To obtain results corresponding to thermodynamic quan-

tities, it is necessary to calculate the sum overn and the
integral over the momentap or k. Let us describe the
method used for the sum overk4. Let us consider the sum
(1/β)

∑
n F (...k4) and the auxiliar functions

f±(z) =
±iβ

1− e∓iβz
, (70)

having their poles in the pointszn = (2πn/β), with n =
0,±1,±2... , and residue equal to unity. We shall chooseF
so that the productF (...z)f±(z) converge in a circumference
of infinite radius

1
β

∮
F (z)f(z)dz = 0. (71)

Equation (71) can be written as

1
β

∑
n

F (...z = k4)Resf± +
1
β

∑

k

f±(zk)

× ResF (...zk) = 0, (72)

from which

1
β

∑
n

F (. . . z = k4) = − 1
β

∑

k

f±(zk)

× ResF (. . . zk), (73)

wherezk are the poles ofF . We shall introduce a parameter
mass squaredλ2 added tok2, and later, will putλ = 0. In
Eq. (69) we have

Tr ln
1

(k2
4 + k2) + λ2

= − 1
(2π)3

∑

k4

2

×
∫

d3k ln(k2 + k2
4 + λ2), (74)

By differentiating with regard toλ2 and using the auxiliary
functionf+(z), we get

− 1
(2π)3

∑

k4

2
∫

d3k ln(k2 + k2
4 + λ2)

= − β

(2π)3
2
∫

d3k
εk

(
e−βεk

1− e−βεk
+

1
2

)
. (75)

Integrating onλ2, and takingλ = 0 afterwards, it results

ln Z0 = −
∫

2
d3k

(2π)3
[ln(1− e−βεk) + βεk/2]. (76)

We replaceεk = ωk and introducing a factorβ−1, since the
thermodynamical potentialΩ = β−1 ln Z, get finally

Ω0 = −π−2β−1

∞∫

0

ω2dω[ln(1− e−βεk) + βεk/2], (77)

which is the thermodynamic potential of the unperturbed sys-
tem. Notice that the last term in the integrand is indepen-
dent of the temperaturekT = β−1. This term is divergent,
as it is the fermion sector we shall find below, in the limit
kT = 0, µ = 0. These divergent terms correspond to the
quantum field theory in Euclidean variables limit. The di-
vergences must be subtracted according to some specific pre-
scriptions. We advice the interested reader to search for this
topic in the Refs. [11,22]. Usually this term, which leads to
the vacuum zero point energy, is discarded, but in presence
of external fields it becomes very important.
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In the present case, as it was takenλ = 0, and by taking
CGS units, we have for photonsεk = ~kc andk = ω/c, then
we have

Ωγ
0 = −kT (π−2c−3)

∞∫

0

ω2dω
(
ln

[
1− e−~ω/kT

])

= − (kT )4

3π2~3c3

∞∫

0

x3dx

ex − 1
, (78)

which is the thermodynamic potential per unit volume of
black body radiation. Taking into account that the entropy
density isS = −∂Ω/∂T , andΩ = −PV , the energy density
is U = TS − PV = −3Ω.

For the calculation ofG(x − x′) we must take into ac-
count that the sum over the fourth Fourier componentp4 is
taken over odd integers. This is due to the property

G(x4 = 0) = −G(x4 = ±β), (79)

of fermion one-particle Green functions. One can define
G(x, x′) as

G(x, x′) =





Tr (ρψ(x)ψ(x′))
Tr [ρ]

, for x4 > x′4

−Tr (ρψ(x)ψ(x′))
Tr [ρ]

, for x4 < x′4.

(80)

The Eq. (80) can be written by using the spectral repre-
sentation as

G(x, x′) =
1
Z





∑
m,n ψmn(0)ψnm(0)e−(εm−µNm)β+[εm−εn+µ(Nn−Nm)](x4−x′4)+i[(pm−pn)(x−x′)], for x4 > x′4

−∑
m,n ψnm(0)ψmn(0)e−(εn−µNn)β+[εm−εn+µ(Nn−Nm)](x4−x′4)+i[(pm−pn)(x−x′)], for x4 < x′4

, (81)

where the unity operator was inserted as the complete setI =
∑

n |ψn〉〈ψn|.
For instance, if in the second equation in Eq. (81) we writex4 − x′4 = −β, it coincides with the first one (in Eq. (81)) for

x4 − x′4 = 0, and changing its sign. From it one can write the Fourier expansion

G(x) =
1

β(2π)3
∑
p4

∫
d3pG(p)eipνxν , (82)

wherep4 = (2n + 1)π/β. Now from Eq. (60), results, by taking its Fourier transform

G(p) =
1

−iγµp∗µ + m
=
−iγµp∗µ −m

p∗2 + m2
, (83)

wherep∗ν = pν + iµδν4. Then

G(x) =





(γµ∂∗µ −m)
∫ d3p

(2π)3εp

(
[ne(εp)− 1] eip·x−(εp−µ)x4 + np(εp)e−ip·x+(εp+µ)x4

)
, for x4 > 0

(γµ∂∗µ −m)
∫ d3p

(2π)3εp

(
ne(εp)e−ip·x−(εp−µ)x4 + [np(εp)− 1] eip·x+(εp+µ)x4

)
, for x4 < 0

, (84)

wherene,p(εp) = (1 + e(εp∓µ)β)−1, with p the modulus of the spatial momentum vectorp.
From Eq. (83), we get

1
2

Tr ln[DetG(p)] = Tr ln
1

(p∗2 + m2)2
= −2Tr ln(p∗2 + m2). (85)

By differentiating with regard tom2, we get

∂

∂m2
Tr ln[DetG(p)] = −4

∑
p4

∞∫

0

d3p
(2π3)

1
(p∗2 + m2)

. (86)

We shall use for fermions auxiliary functions of formf±(z) = ±iβ/1 + e∓iβz, which have poles at pointsz = (2n + 1)π/β,
with n = 0,±1,±2... , and residue equal to unity . By integrating overm2 and following a procedure similar to the photon
gas, we obtain finally

Ωep
0 = −β−1

∞∫

0

p2dp

~3c3π2

(
ln

[
1 + e−(εp−µ)β

] [
1 + e−(εp+µ)β

]
− βεp

)
. (87)
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10 H. PÉREZ ROJAS∗ AND J. L. ACOSTA AVALO ∗∗

The last term in the integrand, which is temperature inde-
pendent, accounts for the electron-positron zero point energy,
which is usually discarded. The total thermodynamic poten-
tial (in CGS units) for the non interacting photon-electron-
positron system is

Ωγ
0 + Ωep

0 = − (kT )4

3π2~3c3

∞∫

0

x3dx

ex − 1
− kT

~3c3π2

∞∫

0

p2dp

×
(
ln

[
1+e−(εp−µ)/kT

] [
1+e−(εp+µ)/kT )

]
− εp

kT

)
. (88)

If one introduces the variabley = pc/kT , by definingµ̄ =
µ/kT andm̄ = m/kT , the electron-positron term becomes
proportional to(kT )4. We want to remark that the chemical
equilibrium between photons and electron-positrons guaran-
tee thatµγ = µe + µp = 0, thus,µe = −µp = 0 in equi-
librium. If we assume the limit of very high temperatures so
that we can neglect fermion masses and chemical potential,
one gets

Ωγ
0 + Ωep

0 = −π2k4T 4

45~3c3
− 7π2k4T 4

360~3c3
= −π2k4T 4

24~3c3
. (89)

Let us neglect the temperature independent term in Eq. (87),
and take the temperature-dependent part and sum it to Eq.
(78). We call this sumΩγep

0 = −P whereP is the to-
tal pressure of the system. To get the total thermodynamic
potential at temperatureT , we must multiply by the vol-
ume of the systemV . We get the total thermodynamic po-
tential asΩt = V Ωγep

0 = −PV . From Ωt we may get
the entropyS = −(∂Ωt/∂T )µ, the number of particles
N = −(∂Ωt/∂µ)T . Other thermodynamic quantities can
be easily obtained. The temperature independendent term
acounts for the so-called zero point energy of vacuum. In
absence of external fields, we assume its contribution to ther-
modynamic quantities as unimportant, and its average contri-
bution to momentum and energy is taken as zero.

4.2. Functional derivation of basic equations for inter-
acting fields

We want to get also a set of equations by using functional
differentiation, (valid in quantum field theory) as temperature
field theory, after some simple changes, one can write

Z(η, η, Jµ, α) = e
ieTr γµ

∫
β

d4x δ
δη(x)

δ
δη(x)

δ
δJµ(x)

× Z0(Jµ, η, η, α). (90)

We haveZ(η, η, Jµ, α) as generating functional of Green
functions. Let us introduce another very useful functional,

W (η, η, Jµ, α) = ln Z(η, η, Jµ, α). (91)

From it we can write the functional equations to one-particle
Green functionsG for the fermions andD for the bosons re-

spectively

G(x, x′) =
δ2W

δη(x)δη(x′)

∣∣∣∣
η=η=0

= 〈T{ψ(x)ψ(x′)}〉

=
1
Z

δ2Z

δη(x)δη(x′)

∣∣∣∣
η=η=0

, (92)

Dµν(x, x′) =
δ2W

δJµ(x)δJν(x′)

∣∣∣∣
η=η=0

=
δ2 ln Z

δJµ(x)δJν(x′)

∣∣∣∣
η=η=0

=〈T{Aµ(x)Aν(x′)}〉−〈Aµ(x)〉〈Aν(x′)〉, (93)

Let us remind that theT{Aµ(x)Aν(x′)} means the chrono-
logical product of the two operators, in which earlier opera-
tors acts first, and〈Aµ(x)〉 is the average field.

Consider the derivativeδZ/δη. We have

δZ

δη
= e

ieV
(

δ
δη

δ
δη

δ
δJµ

)
δZ0

δη
, (94)

where we have written

V

(
δ

δη

δ

δη

δ

δJµ

)
= Tr γµ

∫

β

d4x
δ

δη

δ

δη

δ

δJµ
.

Now Eq. (94) can be written as

δZ

δη
=

∫

β

d4xG(x− z)η(z)Z(η, η, Jµ, α)

= eieV (...)

∫

β

d4xG(x− z)η(z)e−ieV (...)

× Z(η, η, Jµ, α). (95)

As we haveG−1G(x− x′) = δ4(x− x′), whereG−1 =
γµδ∗µ + m, after integrating (95) can be written

(γµδ∗µ + m)
δZ

δη
= eieV (...)η(x)e−ieV (...)Z(η, η, Jµ, α)

= η̃(x)Z(η, η, Jµ, α). (96)

By a similar calculation one can get, taking the Feynman
gaugeα = 0,

−¤2
µν

δZ

δJµ
(x) = eieV (...)Jνe−ieV (...)Z(η, η, Jµ)

= J̃ν(x)Z. (97)

Now we shall prove that

η̃(x) = η(x) + ieγµ
δ

δη(x)
δ

δJµ(x)
. (98)

We shall start from the spinor (we shall write spinor in-
dices in few cases below)

η̃s(λ, x) = eieλV ηs(x)e−ieλV . (99)
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δη̃s

δλ
= ieeieλV [V, ηs(x)]e−ieλV (100)

= ieeieλV


γµlm

∫

β

d4z
δ

δηl(z)
δ

δηm(z)
δ

δJµ(z)
, ηs(x)


 e−ieλV (101)

≡ ieeieλV


γµlm

∫

β

d4z
δ

δηl(z)
δ

δηm(z)
δ

δJµ(z)
ηs(x)− ηs(x)γµlm

∫

β

d4z
δ

δηl(z)
δ

δηm(z)
δ

δJµ(z)


 e−ieλV . (102)

As (δ/δηm(z))ηs(x) = δmsδ
4(x−z), the first (second) term

in brackets gives the second (first) term below. After integrat-
ing overλ and takingλ = 1 afterwards, one gets

η̃s(x) = ηs(x) + ieγµst
δ

δηt(x)
δ

δJµ(x)
. (103)

After substituting in Eq. (96) we get
(

γµ∂∗µ + m− ieγµ
δ

δJµ(x)

)
δZ

δη(x)
= η(x)Z. (104)

−¤ δZ

δJµ(x)
= Jµ(x)Z − ieTr γµ

δ2Z

δη(x)δη(x)
, (105)

which is the set of functional equations in statistical quantum
electrodynamics, let us call

〈Aµ(x)〉 =
1
Z

δZ

δJµ(x)

∣∣∣∣
η=η=0

, (106)

we have from Eq. (105)

−¤〈Aµ(x)〉 = − ie

2
Tr γµ

×
[
G(x, x4; x, x4 − ε) + G(x, x4; x, x4 + ε)

]

ε→0

. (107)

Now, by differentiating Eq. (104) and Eq. (105) with re-
gard toη(x′) andJλ(x′) respectively and taking into account
that

δ

δJν(x)
ZG(x, x′) = 〈Aν(x)〉ZG(x, x′)

+ Z
δG(x, x′)
δJν(x)

, (108)

we get

(¤αδµν−∂µ∂ν(1−α2))〈Aµ(x)〉=Jµ(x)−jµ(x), (109)
[
γµ∂∗µ + m− ieγµ〈Aµ(x)〉 − ieγµ

δ

δJµ(x)

]

×G(x, x′) = δ4(x− x′), (110)

¤Dµλ(x, x′)− ieTr γµ
δG(x, x)
δJλ(x′)

= δµλδ4(x− x′), (111)

where the electromagnetic four-currentjµ(x) =
ieTr γµG(x, x) in Eq. (109). By integratingj4 over xi,
i = 1, 2, 3 on a volumeV , which is taken laterV →∞, one
gets the density of particles as

ρe = e lim
V→∞

V −1

∫
d3xTr γ4G(x, x). (112)

We shall define

−ieγµ
δG(x, x′)
δJµ(x)

=
∫

β

d4yΣ(x, y)G(y, x′), (113)

−ieTr γµ
δG(x, x)
δJλ(x′)

=
∫

β

d4yΠµν(x, y)Dνλ(y, x′), (114)

whereΣ(x, y) andΠµν(x, y) correspond to mass and polar-
ization operators respectively. To understand what the quan-
tities

∑
andΠµν mean, let us assume an equation (it is un-

derstood formally the integration over repeated indexes)

G−1(y, z′)G(z′, z) = δ(y − z), (115)

then

δG−1(y, z′)
δJµ(x)

G(z′, z) + G−1(y, z′)
δG(z′, z)
δJµ(x)

= 0, (116)

and

δG(y′, z)
δJµ(x)

= −G(y′, y)
δG−1(y, z′)

δJµ(x)
G(z′, z), (117)

writing

δG−1(y, z′)
δJµ(x)

=
δG−1(y, z′)
δ〈Aν(z′′)〉

δ〈Aν(z′′)〉
δJµ(x)

= −ie

∫

β

d4z′′Γν(y, z′, z′′)Dνµ(z′′, x), (118)

where we have defined the vertex function

Γν(y, z′, z′′) = − δG−1(y, z′)
δie〈Aν(z′′)〉 .
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Now from Eq. (113), Eq. (117) and Eq. (118), we have

−ieγµ
δG(y′, z)
δJµ(y′)

= e2

∫

β

d4yd4z′′d4z′γµG(y′, y)

× Γν(y, z′, z′′)Dνµ(z′′, x)G(z′, z)

=
∫

β

d4z′Σ(y′, z′)G(z′, z), (119)

and

Σ(y′, z′) = e2

∫

β

d4yd4z′′γµG(y′, y)

× Γν(y, z′, z′′)Dνµ(z′′, y′). (120)

Similarly

−ieTr γµ
δG(x, x)
δJλ(x′)

= e2

∫

β

d4z′′d4z′d4yTr γµG(x, y)

× Γη(y, z′, z′′)G(z′, x)Dηλ(z′′, x′)

=
∫

d4z′′Πµη(x, z′′)Dηλ(z′′, x′),

and

Πµη(x, z′′) = e2

∫
d4z′d4yTr γµ

×G(x, y)Γη(y, z′, z′′)G(z′, x), (121)

Γµ(x, y, z) = −δG−1(x, y)
δie〈Aµ(z)〉

= γµδ(x− y)δ(x− z)− δΣ(x, y)
δie〈Aµ(z)〉 , (122)

so that finally one can write the set of temperature dependent
Schwinger-Dyson equations as:

[γµ∂∗µ + m− ieγµ〈Aµ(x)〉]G(x, x′) +
∫

β

d4zΣ(x, z)

×G(z, x′) = δ3(x- x′)δ(x4 − x′4), (123)

¤Dµλ(x, x′) +
∫

β

d4zΠµη(x, z)Dηλ(z, x′)

= δµλδ4(x− x′). (124)

In a general gauge Eq. (124) looks

(
¤δµν − ∂

∂xµ

∂

∂xν
(1− α2)

)
Dµλ(x, x′) +

∫

β

d4zΠµη(x, z)

×Dηλ(z, x′) = δµλδ3(x–x′)δ(x4 − x′4). (125)

It can be shown thatΠµν is gauge invariant and satisfies
the transversality condition

kµΠµν = Πµνkν = 0. (126)

We shall assume a fixed gauge, and call the photon unper-
turbed propagator asD0

µν(x− x′). It satisfies the equation

(
¤δµν − ∂

∂xµ

∂

∂xν
(1− α2)

)
D0

µν(x− x′)

= δ3(x–x′)δ(x4 − x′4).

5. Ward identities and generalization of Furry’s theorem

In thep-representation and assuming an external electromagnetic field such that< Aµ >6= 0, the system of equations for the
Green’s functions simplifies considerably and takes the following form [11]

G−1(p, p′) = [iγµpµ − γ4µ + m]δ(p− p′)− ieγµ〈Aµ(p− p′)〉+ Σ(p, p′), (127)

Dµν(k, k′) = D0
µν(k)δ(k − k′)−D0

µη(k)
∑
s4

∫
d3sΠηρ(k, s)Dρν(s, k′), (128)

〈Aµ(k)〉 = D0
µν(k)Jν(k)−D0

µν(k)
ie

(2π)3β
Tr γ

∑
p4

∫
d3pG(p + k, p), (129)

Πµν(k, k′) =
e2

(2π)3β
Tr

∑ ∫
d3s1d

3s2d
3sγµG(k + s, s1)Γν(s1, s2, k

′)G(s2, s), (130)

Σ(p, p′) =
e2

(2π)3β

∑∫
d3s1d

3s2d
3sγµG(p + s, s1)Γν(s1, p

′, s2)Dµν(s2, s), (131)

Γµ(p, p′, k) = −δG−1(p, p′)
δ〈ieAµ(k)〉 = γµδ(p− p′ − k)− δΣ(p, p′)

δ〈ieAµ(k)〉 . (132)

Rev. Mex. Fis. E18, 020209



STRONG MAGNETIC FIELDS IN GAUGE THEORIES AT FINITE TEMPERATURE I 13

From Eq. (127) and Eq. (132), expanding all quantities
in a perturbation-theory series, one can prove the following
relation

G−1(p− k, p′)−G−1(p, p′ + k)=kµ
δG−1(p, p′)
δe〈Aµ(k)〉 . (133)

The Eq. (133) is equivalent to

G−1(p)−G−1(p− k) = ikµΓµ(p, p− k, k), (134)

∂G−1(p)
∂pµ

= i lim
δµ→0

Γµ(p, p− δµ, δµ), (135)

whereδµ is a four-vector for which theµ-component is dif-
ferent from zero. The relation Eq. (135) is called a Ward
identity. Taking into account that the chemical potentialµ en-
ters intoG−1(p) linearly combined withieA4, one can show
that the other limit forΓ, whenk4 < |k| → 0 coincides with
δG−1/δµ, that is

−∂G−1(p)
∂µ

= Γ4(p, p, 0). (136)

One can also give a generalization of the well known
Furry’s theorem of quantum field theory. One can write the
polarization operator as

Πµν(k, k′) =
e2

2(2π)3β
Tr

(∑
p4

∫
d3pγµ

δ

δe〈Aν(k′)〉

× [G(p + k, k)−Gc(p + k, k)]

)
, (137)

whereGc is the charge-conjugate of the electron Green func-
tion, which can be defined asGc(p, p1|Aν , µ) = G(p, p1| −
Aν ,−µ). Then,

[
δΠµν

δ〈A(k1)〉...δ〈A(k2n+1〉
]

〈A〉=0

≈ µ2n+1, (138)

which vanishes forµ = 0. Notice that ifµ 6= 0, we have
A4 → A4 + µ and formally the limit of〈Aν〉 → 0 is now
〈Aν〉 → δν4µ = µ.

6. Dispersion equation for photons in vacuum
and in a medium

Let us advance the following important fact: It can be shown
that the temperature formalism we are using, when the ana-
lytic continuationk4 = iω, x4 = it (in CGS units,x4 = ict)
is done, we get time-dependent equations for physical sys-
tems. Similarly, for electrons and positrons, alsop4 → iεp

leads to the energy of the particles. This is very important in
what follows.

In quantum electrodynamics we get from the Schwinger-
Dyson equation the dispersion equation for the two transverse
photon modes [11,23–26] as the poles of the Green function

Dµν (we shall introduce a gauge fixing only to solve the dis-
persion equation), which leads toD−1

0µν −ΠR
µν = 0,

k2Tµν −ΠR(k)Tµν = 0, (139)

where

Tµν =
(

δµν − kµkν

k2

)
, (140)

is the four-dimensional transverse tensor:kµTµν = 0. In the
case of a photon propagating in vacuum, the four-vectorkµ it
is the only one available andTµν is the only transverse tensor
which can be constructed. Notice thatTµνTνλ = Tµλ, that
is, it is idempotent. We have that the renormalized expression
of the polarization operator in vacuum contains the scalar

ΠR(k) =
e2

12π2
k4

4m2∫

∞

dz2
(
1 + 2m2

z2

) √
1− 4m2

z2

z2(z2 + k2)
, (141)

which multiplied byTµν gives the polarization tensor in Eu-
clidean variables. Notice thatΠR(k) contains the contribu-
tion of virtual massive pairs whose masses take values from
4m2 6 z2 6 ∞.

For the solution of Eq. (139), whose second term is
ΠR(k) and it is proportional tok4, one can writek2(1 −
ΠR(k)/k2) = 0, leading to the physical solution of the dis-
persion equation ask2 = 0, that is, the light cone equation
k2 = ω2.

In a medium, at finite temperature, there are two basic
vectors, the photon four momentumkµ and the system four-
velocityuµ. The latter gives rise to another four dimensional
transverse tensor,

Uµν =
kµkν

k2
− kµuν

(ku)
− kνuµ

(ku)
+

uµuνk2

(ku)2
, (142)

where(uk) = uµkµ. Finally, the polarization operator ten-
sorΠµν (see Fig.1) can be written in a medium (in a moving
coordinate system) as

Πµν =
(

δµν − kµkν

k2

)
A

+

(
kµkν

k2
− kµuν

(ku)
− kνuµ

(ku)
+

uµuνk2

(ku)2

)
B. (143)

In the rest system, where the four-velocity isuµ =
(0, 0, 0, u4), results

Πij =
(

δij − kikj

k2

)
A(k2, k2

4) + Π44
kikj

k2

k2
4

k

2

,

i, j = 1, 2, 3, (144)

whereΠi4 = Π4i = −Π44(kik4/k2). The expressions for
A andΠ44 are found below [11]. According to Eq. (112),
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Eq. (129) and Eq. (136), we have

Π44(k4 = 0, k → 0) = Π44(0) =
e2

(2π)3β
Tr

×
∫

d3s
∑

γ4G(s)Γ4(s, s, 0)G(s)

= − e2

(2π)3β
Tr

∫
d3s

∑
γ4G(s)

∂G−1(s)
∂µ

G(s)

= e2 ∂

∂µ
[

1
(2π)3β

Tr
∑∫

d3sγ4, G(s)]

= −e2 ∂ρe(0)
∂µ

. (145)

whereρe is the charge density. From here we can obtain an
exact expression for the Debye radiusλ

Π44(0) = −e2 ∂ρe(0)
∂µ

= −λ−2. (146)

It is interesting the limitk4 < k → 0 for which in the
one-loop approximation (see below)

−Π44 = λ−2 =
e2

3β2
, (147)

which means that the Debye radius decrease with increasing
temperature.

If T ∼ 2mc2 = O(109) K increases, it leads also to pair
creation (for instance, in neutron stars).

In the limit k4 = 0, k → 0,

A = −e2k2

6π2
ln(mβ). (148)

It must be stressed that in QED at finite temperature the ve-
locity of electromagnetic waves is smaller than in vacuum
and depends from the properties of the medium.

Let us consider Eq. (121) in the one loop approximation

Πµη(x, x′) = e2

∫
d4yTr γµG(x, y)γηG(y, x′), (149)

wherey4 is integrated in the interval[0, β]. Taking Eq. (83)
into account, one gets

Πµη(k) =
e2

(2π)3β

∑
p4

∫
d3pTr

× γµ(−iγρp
∗
ρ + m)γη(−iγρ[p∗ρ + kρ] + m)

([p∗ + k]2 + m2)(p∗2 + m2)
, (150)

wherep∗µ = pi, for i = 1, 2, 3 andp∗4 = p4 + iµ. After taking
the trace we have

Πµη(k) =
4e2

(2π)3β

∑
p4

∫
d3p

× (p∗2+[p∗k]+m2)δµη−(2p∗µp∗η+p∗ηkµ+kηp∗µ)
([p∗+k]2+m2)(p∗2+m2)

. (151)

After calculating the sum inp4, we obtain

Πµη(k) = Πs
µη(k) + Π0

µη(k). (152)

The first term depends on the temperatureT and chemical
potentialµ (statistical part, see Eq. (144)), where

Πs
44(k) = − e2

π2

∞∫

0

p2dp

εp

(
1

1 + e(εp+µ)β
+

1
1 + e(εp−µ)β

)

×
(

1 +
k2 + k2

4 − 4ε2
p

8pk
ln a− i

k4εp

2pk
ln b

)
, (153)

A(k) = − e2

2π2

∞∫

0

p2dp

εp

(
1

1 + e(εp+µ)β
+

1
1 + e(εp−µ)β

)

×
(

1− k2
4

k2
+

k4 − k4
4 + 4ε2

pk
2
4 + 4k2p2

8pk3
ln a

+ i
k4εp

2pk3
(k2 + k2

4) ln b

)
, (154)

whereεp =
√

p2 + m2, p, k are the modulus of the spatial
momenta vectorsp, k, and

a =
(k2 − 2pk + k2

4)
2 + 4ε2

pk
2
4

(k2 + 2pk + k2
4)2 + 4ε2

pk
2
4

, (155)

and

b =
(k2 + k2

4)
2 − 4(pk + iεpk4)2

(k2 + k2
4)2 − 4(pk − iεpk4)2

. (156)

The second term in Eq. (152) is divergent, and is the
term obtained in QED, when the photon frequency termiω
replaces the Euclidean variablek4. After subtracting the di-
vergence, we obtain the renormalized term(Π0R

µη ) = ΠRTµη

(see Eq. (139)). In a hot medium where we are close to ther-
modynamic equilibrium among photons and electrons plus
positrons, it is valid the dispersion equation for photons prop-
agating in the system in the form

D−1
µν =

(
δµν − kµkν

k2

) (
k2 −Π0R(k)

)

−Πs
µν(k, k4) + Ckµkν = 0, (157)

whereC is a gauge fixing parameter, and by taking its Fourier
transform, we would get a time-dependent equation. The
Eq. (157) differs from the dispersion equation in vacuum
essentially in the termΠs

µν(k, k4). From its solution one gets
three modes of propagation, two of them having transverse
polarizations (which in absence of the medium correspond
to the two transverse modes propagating in vacuum). In the
medium their polarizations are respectivelyp1, p2, and their
wave vectors are parallel tok3, it is p1 · k3 = p2 · k3 = 0.
The third mode, which is longitudinal (and does not exist in
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vacuum), has its polarizationp3 parallel to the wave vector
k3.

We havelimk→0 ω(k, T ) ∼ eT/3. The photon in that
medium is a quasi-particle, and at high temperatures it has a
nonzero effective mass. It is a quasi-particle mass, and can
be named plasmon mass, to which contribute both processes
represented by Fig. 1. For the limitω = 0, the transverse
modes are proportional tok as k → 0. The longitudinal
mode leads to a nonzero but purely imaginary solution fork,
interpreted as the Debye lengthλ = 3~c/α1/2kT , whereα is
the fine structure constant (expressed it in CGS units, remind
that in most of all other formulae written in the present pa-
per, we shall use natural units~ = c = 1 in which e2 = α).
The Debye length accounts for the screening of longitudinal
waves in a medium produced by the overlapping of fields cre-
ated by the presence of particles of opposite sign. We remark
here that the photon modes propagate at speeds smaller than
c, which is consistent with the arising of effective masses.
For the reader interested in more details about the propaga-
tion of the photon in an electron-positron background, we
suggest to find it in the paper [27], by one of the present au-
thors (H.P.R.) and L. Villegas Lelovsky, where the solutions
of the dispersion equation Eq. (157) for the photon-electron-
positron system are discussed in detail.

7. The effective action

Green functions are given by second functional differentia-
tion of the functionalZ with regard to the sources of the
fields. One can also use the functionalW = ln Z. Start-
ing from this functionalW it can be defined by a Legendre
transformation, the so-calledeffective actionas,

Γ(ψ̄,ψ, Aµ) = W (Jµ, η̄, η)−
∫

d4x(Jµ(x)Aµ(x)

+ η̄(x)ψ(x) + ψ̄(x)η(x)), (158)

where theψ̄, ψ, Aµ fields are the quantum averages of the ini-
tial fields. The effective action is such that the functional dif-
ferentiation(δΓ/δAµ(x)) = Jµ(x), gives Maxwell’s equa-
tions in the presence of the currentJµ(x). Likewise, one can
get the equations for the electron-positron field. Of special
interest are the quantities obtained by a second functional dif-
ferentiation,

D−1
µν (x, x′) =

δ2Γ
δAµ(x)δAν(x′)

= D−1
0µν(x, x′)−Πµν(x, x′), (159)

G−1(x, x′) =
δ2Γ

δψ(x)δψ̄(x′)

= G−1
0 (x, x′) + Σ(x, x′), (160)

which give the inverse Green functions, which contain
the contributions from free Green functions or propagators
D−1

0µν , G−1
0 plus the vacuum polarization tensorΠµν and

the electron self-energyΣ respectively. From the equations
D−1

µν Dνλ = δµλ andG−1G = 1, the Schwinger-Dyson equa-
tions are obtained.

If their transforms to momentum space are equated to
zero D−1

µν (k, k′) = 0, and G−1(p, p′) = 0 their solution
leads to the spectra of particles, that is, the dispersion laws
that relate their energy and momentum, for photons as well
as for electrons and positrons. Taking into account the quan-
tum corrections of higher order contained inΠµν andΣ. The
equations are

D−1
0µν −Πµν = 0, (161)

G−1
0 + Σ = 0. (162)

In field theory, the first order functional differentiation of
the effective action gives us the equations of motion for aver-
age fields, taking into account the quantum corrections, and
the second differentiation, the dispersion equations of the par-
ticles. These equations, or similar ones, are equally valid, in
the case of multi-particle systems, at low energy, as it is con-
densed matter at finite temperature (which aT = 0 is called
many body theory).

8. Charged particle in a magnetic field in non-
relativistic quantum mechanics

We shall study the motion of a charged particle in an external
constant magnetic field. The vector momentum must be writ-
ten asP = p − (e/c)A, whereA is the vector potential. For
a constant magnetic fieldB along thex3 axis, the vector po-
tential may be taken asA = (−Bx2, 0, 0) (the expression for
A is not unique, due to gauge invariance). The Hamiltonian
is [28]:

H =
1

2m

([
−i~

∂

∂x1
+

e

c
Bx2

]2

+
[
−i~

∂

∂x2

]2

+
[
−i~

∂

∂x3

]2
)
− µ · B, (163)

wherem is the charged particle mass, andµ = gµBS is the
particle intrinsec magnetic moment. HereµB = e~/2mc is
the Bohr magneton,S the spin given in terms of the Pauli
matrices asS = σ/2, andg the Landeg-factor. For bare
electronsg = 2.

The external magnetic fieldAµ appears only in the first
term of the expression Eq. (163), as the termBx2. By chang-
ing the gauge, it would appear also the termBx1, sinceB is
taken parallel to thex3 axis. (For instance, another gauge
equivalent expression isAµ = B(x2,−x1, 0)/2). An impor-
tant fact is the non-conservation of linear momentum orthog-
onal to the field. That is[H, p1] 6= 0 and [H, p2] 6= 0, but
[H, p3] = 0. The angular momentumL is conserved also
parallel tox3. This is due to the fact that the isotropy of
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space in the zero field case is broken by the external mag-
netic field. Only two symmetries remain, parallel toB and
rotational aroundB. This is seen in the wavefunction.

There are several physical motivations to study the non-
relativistic problem of an electron in a magnetic field. To
solve the Schr̈odinger equationi∂Ψ/∂t = HΨ, we must use
separation of variables,Ψ = ψ(x)χ(t), whereχ(t) = eiεt/~.
Notice that thex1 andx3 coordinates do not appear in the
Hamiltonian, thus, the generalized momentap1, p3 are con-
served. This leads us to assume a wave function of form
ψ(x) = Ae

i
~ (p1x1+p3x3)φ(x2), whereA will be chosen ap-

propriate for the normalization ofψ. After substitutingψ in
Eq. (163), we get an equation which can be written as:

d2ψ

dx2
2

+
2m

~2

(
ε + µ · B− p2

3

2m

− m

2

[
eB

mc

]
(x2 − x20)2

)
φ = 0, (164)

wherex20 = −(cp1/eB). The Eq. (164) is similar to the
Schr̈odinger equation for the oscillator, it can be written as:

d2ψ

dx2
2

+
2m

~2

(
ε′ − 1

2
mω2(x2 − x20)2

)
φ = 0,

where

ε′ = ε + µ · B− p2
3

2m
.

We may now write the energy eigenvalues as:

εp3,n =
p2
3

2m
+

(
n +

1
2
∓ 1

2

)
eB~
mc

. (165)

We observe first of all, that the dynamics along the mag-
netic field is similar to that of the free particle but this does
not mean that the magnetic field does not has influence on the
motion of the particle parallel to it. Let us call it longitudinal
energy, whereas orthogonal to the external field, the energy
behaves like that of the linear oscillator, and depends linearly
on the magnetic fieldB. Its energy eigenvalues are expressed
through their quantization through the integersn = 0, 1, 2...,
called the Landau quantum numbers. The spin contribution is
proportional to the eigenvalues of the Pauli matrixσ3, given
by σ3 = ±1 which we understand as implying spin projec-
tions(+1/2) along, and(−1/2) opposite to the field direc-

tion. It leads to a non-degenerate ground staten = 0,
σ3 = −1, and all other states are two-fold degenerate. Notice
thatεp3,n is also independent ofp1, that is, it is also degen-
erate with regard tox20 = −cp1/eB, which is the orbit’s
center coordinate. The degeneracy termeB/~c leads to a
number of states per Landau energy level which grows pro-
portional toB. The wavefunctions are given by the product
of the free particle wavefunction alongB multiplied by the
factorφn(ξ) = Ane−ξ2/2Hn(ξ) where

ξ = (x2 − x20)
√

eB/~c, An =
[√

eB/
√

π~c2nn!
]1/2

andHn are Hermite polynomials. The orthonormality condi-
tion

∞∫

−∞
φn(ξ)φm(ξ)dξ = δmn

is satisfied. Notice that for the particle in the ground state,
the wavefunction is reduced to a Gaussian whose dispersion
decreases as(eB)−1. The larger the magnetic field intensity,
the smaller the dispersion of the wave function, which adopt
a peaked form.

The previous problem becomes interesting in several ap-
plications, for instance, the study of the quantum Hall effect.
(Hall effect is produced by an electric current propagating
orthogonal to a magnetic field: another current orthogonal to
the magnetic field ia created. In this case, the dimensions
must be reduced to two, which are those orthogonal to the
field B. It keeps the degeneracy termeB/~c. Usually the
orbital effective massm∗ is much smaller than the electron
massm, and this fact makes unimportant the spin degeneracy.
Also, the non-relativistic case is useful for the case of small
energy of the particles involved (electrons and positrons) in
absence of the external field (in other words, it isE ¿ mc2),
and small magnetic fields, that isB ¿ Bc, whereBc is the
so-called Schwinger field intensity of order4 × 1013 Gauss.
For instance, it may become useful in the study of electrons
and protons coming in the Solar wind, and trapped by the
Earth magnetic field. The relativistic case involve high ener-
gies of the particles and fields and it is especially important
in astroparticle physics.

9. Relativistic charged particle. Dirac equation in a magnetic field

In the relativistic case, [29] we have to solve the Dirac equation in the constant magnetic field

[iγµ(∂µ − ieAµ)−m]Ψ = 0. (166)

The energy eigenvalues (in CGS units) are given by

εp3,n =
√

p2
3c

2+m2c4+|e|B~c(2n+1)−|e|sgn(e)B~cσ3, (167)

wherep3 is the momentum alongB, sgn(e) = (±), with (−) for electrons and(+) for positrons,m is the electron mass,σ3

are spin eigenvalues alongx3 andn = 0, 1, ... are the Landau quantum numbers. These are two-fold spin degenerate, except
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the ground state in whichn = 0, and for electrons it isσ3 = −1 whereas for positronsσ3 = 1. This means that in the ground
state the spin of electrons and positrons must have also opposite directions. The expressions for the spinor wavefunctions are:

ψ±n,p2,p3,σ3
(x) =

(
εp3,n ±m

2εp3,n

)1/2
eip2x2+ip3x3

2π




φn−1(ξ)

0
p3φn−1(ξ)
m± εp3,n

i(2neB)1/2φn(ξ)
m± εp3,n




, (168)

ψ±n,p2,p3,−σ3
(x) =

(
εp3,n ±m

2εp3,n

)1/2
eip2x2+ip3x3

2π




0
φn(ξ)

− i(2neB)1/2φn−1(ξ)
m± εp3,n

− p3φn(ξ)
m± εp3,n




. (169)

Where upper index means particle and antiparticle, whereas the lower ones aren Landau number,p2, p3 are momentum
components and the last is spin projectionsσ3 = ±1. Notice that the energy of the ground state in the nonrelativistic case is
εp3,0 = p2

3/2m and in the relativistic case it isεp3,0 =
√

p2
3c

2 + m2c4. The orbital and spin contributions cancel each other,
and the motion is like that of a free particle moving along a straight line parallel toB. This happens for electrons withσ3 = −1,
since the negative charge determines the cancelation of orbital and spin terms. On the opposite, for positronsσ3 = +1.

10. Electron-positron temperature-dependent Green function

The time (t = x4)-dependent Green function, in the Furry picture, (for instance, when strong external fields are present) in the
magnetic field case is [22,30]:

G(x, x4, x′, x′4) =

{ −i
∑

q e−iεq(x4−x′4)G+(x, x′), for x4 > x′4

i
∑

q eiεq(x4−x′4)G−(x, x′), for x4 < x′4
, (170)

whereq denotes the set of quantum numbers (p2, p3, n) and
∑

q indicates integration onp2, p3 and sum overn = 0, 1.... The
expression for the spatial dependent electron-positron temperature Green function is:

G±q(x, x′) =
∑
σ3

ψ±q,σ3
(x)ψ̄±q,σ3

(x′) =
eip2(x2−x′2)+ip3(x3−x′3)

8π2εq
M, (171)

where

M =




Cn−1,n−1(εq) 0 −Dn−1,n−1 −En−1,n

0 Cn,n(εq) En,n−1 Dn,n

Dn−1,n−1 En−1,n, Cn−1,n−1(−εq) 0
−En,n−1 Dn,n 0 Cn,n(−εq)


 , (172)

andCk,k′(εq) = (εq ±m)φk(ξ)φk′(ξ′), Dk,k′ = ±p3φk(ξ)φk′(ξ′), andEk,k′ = ∓i(2eBn)1/2φk(ξ)φk′(ξ′), hereφm(ξ) are
Hermite functions.

It must be understood above thatφ−1(ξ) = 0. Taking the Fourier transform in time of Eq. (170), and making the analytical
continuationp0 = −ip4 + µ, we get, for thex4 Fourier transform of the electron-positron Green function, the expression

G(−ip4 + µ, x, x′) =
G+

q(x, x′)
−ip4 + µ− εq

+
G−q(x, x′)

−ip4 + µ + εq
. (173)

After multiplying by eip4x4 and summation overp4 = (2s + 1)π/β (s runs from−∞ to +∞) we have the following
expression for temperature-dependent Green function

G(x, x4, x′, x′4) =





∑
q[ne − 1]e−i(εq−µ)(x4−x′4)G+

q(x, x′)− npe
i(εq+µ)(x4−x′4)G−q(x, x′), for x4 > x′4

∑
q nee

−i(εq−µ)(x4−x′4)G+
q(x, x′)− [np − 1]ei(εq+µ)(x4−x′4)G−q(x, x′), for x4 < x′4

, (174)
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where ne(εq) = (1 + e(εq−µ)β)−1 and np(εq) = (1 +
e(εq+µ)β)−1 are the mean density in momentum space of
electrons and positrons respectively. At zero temperature
ne(εq) = θ(µ − εq), and the average number of positrons
vanishnp(εq) = 0. At high temperatureskT ' mc2 they are
significant (this happens at very hot stars in regions where
T & 109 K).

Notice that the charge densityρe of the system electron-
positron is

ρe = e lim
V→∞

V −1

∫
d3xTr γ4G(x, x)

=
e2B

4π2

∞∑
0

αn

∞∫

∞
dp3(ne(εq)− np(εq)), (175)

whereαn = 2− δ0n.

11. Polarization operator and wave propaga-
tion

We can study systems close to thermodynamic equilibrium,
by means of time-dependent Green functions if we do an ana-
lytic continuation at finite temperature. For instance, by tak-
ing x4 = it (or x4 = ict, for instance in Gaussian units),
andp4 → iε, k4 → iω. The general tensor structure is estab-
lished in terms of the matrix which can be built from the char-
acteristic vectors and tensors that enter in the problem. For
this purpose we have used the four dimensional transversal-
ity of the tensorΠµν that results from the gauge invariance.
Its property of containing the external field and the chemi-
cal potential so that the sum of their powers be even follows
from the charge (C) and parity (P) symmetries assumed as
valid for the underlying interaction. The unitary condition
requires that the polarization operator be represented by an
Hermitian matrix until the absorption is explicitly taken into
account. This determines that the coefficients, with which the
symmetric and antisymmetric matrices enter into the decom-
position ofΠµν , are respectively real and imaginary. Also,
the explicit introduction of the 4-velocity vectoruµ, into the
density matrix allows us to conclude that the parity change
of the polarization operator under the reflection ofuµ, in
the rest frame, coincides with that under the charge conju-
gation. This eliminates some tensor structures leading us to
the conclusion that antisymmetric structures inΠµν contain
only two basic tensors containing odd powers of the chemical
potentialµ, as well as odd powers of the external field tensor
Fµν (this also agrees with the generalized Furry theorem).
These antisymmetric structures are physically responsible for
the appearance of the Faraday and Hall effects as well as of
elliptically polarized eigenmodes. We must remark here that
by taking the fieldB along thez axis, its only nonvanishing
components ofFµν areF12 = −F21 = B. This is valid
for all reference frames moving parallel toB. Its dual tensor

is F ∗ρλ = −(1/2)ερλµνFµν whereερλµν is the antisymmet-
ric unit tensor in four dimensions. The tensor invariants are
F = −(1/4)FµνFµν > 0 andG = −(1/4)FλρF

∗
λρ = 0.

From the structure ofΠµν in a magnetized plasma, in the
case of non-vanishing temperatureT as well as chemical
potentialµ [22, 30], we can find the polarization properties
of three electromagnetic eigenmodes propagating in the sys-
tem [30, 31]. Under those conditions the polarization tensor
may be expanded in terms of six independent transverse ten-
sors [30]

Πµν =
6∑

n=1

π(i)Ψ(i)
µν . (176)

As is shown in [30], symmetry properties play an impor-
tant role in quantum statistics. The theory is invariant under
the simultaneous inversion of the electromagnetic four vector
Aµ → −Aµ and the four-velocityuµ → −uµ, (CPT symme-
try) and the generalized Furry’s theorem, reduce the number
of the basic tensors from an initial set of9 to a final set of6.
The basic tensors written in Euclidean variables are

Ψ(1)
µν = k2δµν − kµkν ,

Ψ(2)
µν = FµλkλFνηkη,

Ψ(3)
µν = −k2

(
δµη − kµkη

k2

)
FηλFλρ

(
δρν − kρkν

k2

)
,

Ψ(4)
µν =

(
uµ − (uk)kµ

k2

)(
uν − (uk)kν

k2

)
,

Ψ(5)
µν = (uk)(kµFνηkη − kνFµηkη + k2Fµν),

Ψ(6)
µν = uµFνηkη − uνFµηkη + (uk)Fµν . (177)

As a next step, we shall introduce four mutually orthogo-
nal basic vectors in the four dimensional space (we shall use
herex4 → x0 after the corresponding analytic continuation
k4 = iω, so that quantities are given in Minkowski space)
c
(1)
µ = k2F 2

µνkν − kµ(kF 2k), c
(2)
µ = F ∗µνkν , c

(3)
µ = Fµνkν ,

c
(4)
µ = kµ and normalizec(1,3,4)

µ to unity andc
(2)
µ to minus

unity:

a(1)
µ = c(1)

µ (−k2(kF 2k)(kF ∗2k))−1/2,

a(2)
µ = −c(2)

µ (kF ∗2k))−1/2,

a(3)
µ = c(3)

µ (−kF 2k))−1/2,

a(4)
µ = c(4)

µ (k2)−1/2. (178)

We want to remark that in generalkF 2k = −B2(k2
1 +k2

2) ≤
0, and denotingk2

1 + k2
2 = k2

⊥, we haveB2k2
⊥ ≥ 0. We

shall also have thatkF ∗2k can be both> 0 or < 0 [22]. Let
us now take the vectorsa(i)

µ , wherei = 1, 2, 3, 4 as four po-
tential vectors and let us find the directions of polarization
vectors in terms of their components parallel and orthogonal
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to B. If b, b0 are the spatial and time components of the vec-
torsa

(i)
µ , let us use the expressions

E(i) = −∂b(i)

∂x0
− ∂b

(i)
0

∂x
, (179)

H(i) = ∇× b(i), (180)

whereE(i) andH(i), with i = 1, 2, 3 correspond to electric
and magnetic fields respectively. Both expressions are as-
sumed as multiplied by an exponential factor of formeikµxµ .
From equations Eqs. (178- 180), we have [31]

E(1) = −k⊥
k⊥

ω, H(1) =
(

k⊥
k⊥

× k3

)
k2

E
(2)
⊥ = −k⊥k3, E

(2)
3 =

k3

k3
(k2

3 − ω2),

H(2) =
(

k⊥ × k3

k3

)
ω E(3) =

(
k⊥
k⊥

× k3

k3

)
ω,

H
(3)
⊥ = −k⊥

k⊥
k3, H

(3)
3 = −k3

k3
k⊥. (181)

Thus, the magnetic field, breaking the symmetry of space,
gives rise not only to a discrete set of basic modes of prop-
agation, but also to a set of allowed polarizations of these
modes.

11.1. The charge symmetric case

In this case, the chemical potentialµ = 0. This means that
Πµν depends only on even inFµν tensors. By doing the cor-
responding substitutions one has

Πµνa(1)
ν = pa(1)

µ + qa(2)
µ ,

Πµνa(2)
ν = −qa(1)

µ + sa(2)
µ ,

Πµνa(3)
ν = ta(3)

ν ,

Πµνa(4)
ν = 0, (182)

where the explicit expressions ofp, q, s, t in terms of the co-
efficientsπ(i) (calculated explicitly in the one-loop approxi-
mation) are [22]

p = k2π(1) + (kF ∗k)π(3) − (uk)2(kF 2k)
(kF̃ ∗k)k2

π(4),

q =
(uk)(uF ∗k)

(kF ∗k)

√
− (kF 2k)

k2
π(4),

s = k2π(1) − (uF ∗k)2

(kF ∗k)
π(4),

t = k2π(1) − (kF 2k)π(2) + 2Fk2π(3). (183)

It is easy to show that modea(3)
µ is such that its polar-

ization vectorE(3) is orthogonal to the plane determined by

B andk. The modea(1)
µ (to transversal propagation toB) is

purely longitudinal and the modea(2)
µ is purely transverse.

For another particular case of propagation alongB, the mode
a
(1)
µ is purely transversal while that of the second modea

(2)
µ

is longitudinal.
From the expressions Eq. (177) and Eq. (178) it follows

that in terms of the basic vectorsa
(1,2)
µ the polarization opera-

tor is a matrix with diagonal termsp, s and off-diagonal terms
q,−q. The diagonalization of this matrix gives the following
eigenvalues

κ1,2 =
1
2

(
p + s±

√
(p− s)2 − 4q2

)
. (184)

According to Eq. (161), the dispersion equations can be
found as the solutions of the equationsk2 = κ1,2, which
together tok2 = κ3, from Eq. (182) gives the three non-
vanishing eigenvalues as depending from the four scalars
p, q, s, t. We stress here that these results are approximation-
independent, valid for the polarization operator tensor, which
is gauge invariant (Πµνkν = 0).

11.2. The charge asymmetric case

To this case,µ 6= 0, the two antisymmetric tensorsΨ(5)
µν and

Ψ(6)
µν contribute also to the polarization operator. We have

Πµνa(1)
ν = pa(1)

µ + qa(2)
µ + ra(3)

µ , (185)

Πµνa(2)
ν = −qa(1)

µ + sa(2)
µ + va(3)

µ ,

Πµνa(3)
ν = −ra(1)

µ + va(3)
µ + ta(3)

µ ,

Πµνa(4)
ν = 0,

where the scalarsp, q, t, s were given in Eq. (183), and the
pseudoscalarsr, v are:

r = −(uk)

[√
k2(kF ∗k)π(5) + 2F

√
k2

(kF ∗k)
π(6)

]
,

v = −(uF ∗k)

√
(kF 2k)
(kF ∗k)

π(5). (186)

12. Conclusions and applications: chiral sym-
metry breaking and Faraday Effect

We have given an introduction to the method of quantum
field theory at finite temperature and density, pointing out and
discussing basic concepts and tools. We used the methods
of functional differentiation and path integrals, with Grass-
mann and boson variables, as calculation methods. These
are not unique ways, and it is instructive to compare, es-
pecially if a wide use of Feynman diagrams is done, with
other methods. Starting from the density matrix basic equa-
tion and an imaginary time variable, we are able to obtain
Schwinger-Dyson equations for systems of hot and dense
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system particles. Once established the used technique, we
may consider specific problems, involving several fields and
conserved quantities. For instance, in the present paper we
have concentrated first on quantum electrodynamics where
U(1) gauge and CPT invariances are satisfied. At the end,
we concentrated in the problem of an external magnetic field.
The reader must understand the fact that once an specific di-
rection of the (assumed constant) magnetic field is chosen,
spatial symmetry is broken, and linear and angular momen-
tum are conserved only parallel to the field (rotational invari-
ance exists only around an axis parallel to the field). In the
second part of the present work, to be done in next paper, we
shall work in the wider scenario of the Standard Model.

In the applications of the theory established in the present
paper, we start with an effect created by a small electric field,
parallel to a strong magnetic field in an electron-positron
medium. It produces a chiral magnetic effect in the current
due to the electron-positron pairs moving parallel to the ex-
ternal magnetic field. If there is an imbalance of charge in the
electron-positron system, another chiral effect is produced on
photons propagating parallel to the external field, leading to
the well-known Faraday effect.

12.1. Chiral magnetic effect

Let us remind that in a chargede± medium, for propagation
along the fieldB, in addition to the two transverse modes (see
(11.1.) and (11.2.) ), there is a longitudinally polarized mode
alongB given by the pseudovector:b(2)

µ (k) = ac
(2)
µ , (inde-

pendently of the charge symmetric), wherec
(2)
µ = R2(F ∗k)µ

is a normalized pseudovector, (the normalization parame-
ter is R2 = 1/Bz

1/2
1 , where from now on we will call

z1 = k2
3−ω2) [32,33]. This pseudovector does not violate the

invariance CPT of the underlying theory. In other words, the
electromagnetic fieldAµ is a four vector, butBi = εijkFjk

is a pseudovector in3D space. The parametera (which has
dimension of vector potential) is determined by the applied
perturbative electric field. Its electric polarization vector be-
ing in the direction alongB [31]

EB = E(2)eB = a(k2
3 − ω2)

1
2 eB , (187)

whereeB = B/B is a unit pseudovector. The longitudi-
nal mode is not on the light cone, that isz1 6= 0 [31]. If
one consider a very small electric field acting parallel toB,
a current is produced along the fieldB. In [33] it is shown
that if a perturbative electric fieldE ‖ B, is applied to an
electron-positron magnetized background in thermodynamic
equilibrium, associated to a longitudinal pure electric mode
(pseudovector mode, for whichE ·B 6= 0), it produces an ax-
ial current leading to the breaking of the previously existing
statistical chiral balance of the densities of charged particles.

An expansion of the electromagnetic current density (it
depends on the two relativistic invariants:F andG, where
G = B ·E 6= 0 only for the modeb(2)

µ ) in functional series of
aν gives:

jµ(Aext
µ + aµ) = jµ(Aext

µ ) +
δjµ

δAext
ν

aν + ... , (188)

where the total external electromagnetic field isAext
µ + aµ ,

with aµ a small perturbative radiation field (its electric field
E ¿ B, B is generated by a four-potentialAext

µ ). Its linear
term inaν is [34,35]:

ji = Πiνaν = YijEj , (189)

whereEj = i(ωaj−kja0) is the electric field, witha4 = ia0

and k4 = iω, also jµ(Aext
µ ) = N0δµ4. The termYij =

Πij/iω is the complex conductivity tensor. The third term
in Eq. (189) comes from the second one by using the four-
dimensional transversality ofΠµν due to gauge invariance,
Πµνkν = 0 [22, 30, 31, 36]. In Eq. (188) aµ is in general a
linear function of the eigenmodesb(i)

µ . Below we particular-
ize to the case in which the eigenvectoraµ = b

(2)
µ , for which

the electric field vector is parallel toB (notice that only terms
containing odd number ofb(2)

µ legs in Eq. (188) lead to pseu-
dovector terms).

Charged fermions interacting with the longitudinal mode,
exchange energy by the transfer of momentumk3, while the
Landau quantum numbers remain unchanged [34]. Then we
may consider the fermion interaction with the longitudinal
mode as a problem in(1 + 1) dimensions, which is strictly
valid if we consider only the lowest Landau level (LLL). We
would like to point out that the two-dimensional Dirac matri-
ces obey the identity [37]:

γµγ5 = −εµνγν . (190)

This implies that the axialjµA and vectorjµ currents ex-
change their(0, 3) components according to the same rela-
tion. Thus, in the(1+1) case, we can study the properties of
the axial vector current by using results already derived for
the vector current.

Now we must observe that in the linear approximation of
ji, see the Eq. (189), and taking into account the eigenvalue
equation to longitudinally polarized modeΠµνb

(2)
ν = sb

(2)
µ ,

one gets also:

ji = Πiνaν = sb
(2)
i , (191)

where we can write the scalars = c
(2)
µ Πµνc

(2)
ν , which is the

eigenvalue of the photon self-energy tensor corresponding to
the longitudinal mode [22, 30, 36]. The remarkable fact is
that, asb(2)

ν is a pseudovector, for propagation alongB the
currentjν is also a pseudovector, which is a necessary condi-
tion for the breaking of chiral symmetry.

It is easy to find a gauge transformation (in which it is ob-
tainedb

(2)
3 = (k4/z1)E3) leading toj3 = s(k4/z1)E3 (from

Eq. (191)), whereE3 = E(2)(eB · e3) . This equation is
equivalent to

j3 =
Π33

k4
E3, (192)
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which is deduced from relationΠ33 = s(k2
4/z1), which is

obtained from the expressions = c
(2)
µ Πµνc

(2)
ν , and from

the two-dimensional tranversalityΠµνkν = 0, whereµ, ν =
3, 4.

We are interested only in the real part ofj3, and to obtain
it, we will restrict ourselves to the imaginary part of the pho-
ton self-energy tensor, after takingk4 = iω. From Eq. (190),
Eq. (191) and by using the two-dimensional transversality
condition ofΠµν , it is obtained:

kµjµA =
z1

k4
j3 6= 0, (193)

while kµjµ = 0, which expresses the conservation law for
the vector current. Eq. (193) expresses the non-conservation
of the two-dimensional axial current, whereas Eq. (192) puts
in evidence the role of the electric field, characterizing the
longitudinal pseudovector mode, in the breaking of the chi-
ral symmetry in both theC-symmetric and non-symmetric
cases, which produces an electric current alongB. This
proves that a chiral magnetic effect is produced in the frame
of QED. Notice that the chiral conductivity associated to the

longitudinal photons can be obtained calculating the scalars
and subsequently its imaginary part (see Appendix B). Now,
as an example, we shall calculate the scalars, similar pro-
cedure can be done to determinate the scalarsp, q, t, r, v (the
Hall conductivity is calculated by using the scalarr).

Thex4 Fourier transform of the polarization tensor in the
one loop approximation Eq. (149) is [22,30,31,35,36]:

Πνρ(k4, x, x′|Aext) =
e2

β
Tr

∑
p4

γνG(p4, x, x′|Aext)γρ

×G(p4 + k4, x, x′|Aext), (194)

whereG(p4, x, x′|Aext) is given by Eq. (173), which can be
written as

G(p4, x, x′|Aext) = − 1
2π2

∑
p4

∫
dp2dp3[(p4 + iµ)2 + ε2

q]
−1

×Mei[p2(x2−x′2)+p3(x3−x′3)], (195)

where the matrixM(p3, p4, n, ζ, ζ ′) is:




Hn−1,n−1(−ip4 + µ) 0 −Dn−1,n−1 −En−1,n

0 Hn,n(−ip4 + µ) −En−1,n Dn,n

Dn−1,n−1 −En−1,n Hn−1,n−1(ip4 − µ) 0
−En−1,n −Dn,n 0 Hn,n(ip4 − µ)


 (196)

Here

Hk,k′(ip4 − µ) = (m + ip4 − µ)φk(ζ)φk′(ζ ′), (197)

while Dk,k′ , Ek,k′ were defined in Eq. (172).
On the other hand, from Eq. (185), the polarization oper-

ator can be represented by the matrix:

Πµν ≡



p q r
−q s v
−r v t


 . (198)

In the case of propagation along external fieldB, from
above equation, we have:

Πµν ≡



t 0 r
0 s 0
−r 0 t


 , (199)

which is equivalent to:

Πµν ≡



t r 0
−r t 0
0 0 s


 . (200)

Now, from Eq. (195), Eq. (194) and taking into account
Eq. (200), we obtain the following expression to the Fourier
transform of the scalars in the one loop approximation:

s(k | A,µ, β−1) = Π33(k|A,µ, β−1) =
e3B

2π2β

∑
p4

∑

n,n′

×
+∞∫

−∞

dp3C33, 44

(p2′
4 + ε2

n,p3
)[(p2′

4 + k4)2 + ε2
n′,p3

]
, (201)

wherep′4 = p4+iµ, εn,p3 , εn′,p3 are given by Eq. (167). The
coefficientsC33, 44 are:

C33, 44 = [∓p4′(p′4 + k4)± p3(p3 + k3) + m2]Fn,n′

+ 2eB
√

nn′Gn,n′ , (202)

where the± signs are taken for the first and second pairs of
subindices, respectively and

Fn,n′

(
k2
⊥

2eB

)
=| Tn−1,n′−1 |2 + | Tn,n′ |2, (203)

Gn,n′

(
k2
⊥

2eB

)
= | Tn,n′Tn−1,n′−1

+Tn,n′Tn−1,n′−1 |, (204)
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with

Tn,m(p, y) =
∫

eipyφn(x)φm(x + y)dx =
(

m!
n!

)1/2

×
(
−y − ip√

2

)n−m

e−ipy− p2+y2

4

× Ln−m
m

(
p2 + y2

2

)
, (205)

whereLn−m
m are the generalized Laguerre polynomials. The

sum over
∑

p4
is done by using the Matsubara formalism

[11,22,35], where we have:
∞∫

−∞

dp4

2π
→ 1

β

∑
p4

, p′4 =
(2s + 1)π

β
,

s = 0,±1,±2, . . . , (206)

and the sum is done taking into account the Eq. (73) [11].
From Eq. (201) and doing the sum overp4, we obtain the
scalars in the one loop approximation [22,30–33,36]:

s =
∞∑

n,n′=0

−∞∫

+∞

dp3

εq

(
χnn′ − [2p3k3 + Jnn′ ]

D
φnn′

)

× (ne(εq) + np(εq)− 1), (207)

wherene,p are the mean density in momentum space of elec-
trons and positrons respectively, andεq, with q = (n, p3),
is given by Eq. (167), with n, n′ = 0, 1, 2, 3... . Here the
term−1 inside the square brackets accounts for the quantum
vacuum limit (µ = T = 0), while:

χnn′ = − e4B2

2π2z1
(n− n′)F (1)

nn′ , (208)

Jnn′ = z1 + 2eB(n′ − n), (209)

φnn′ =
e3B

2π2

([
2e2B2(n−n′)2

z1
+

{
2m2+eB(n+n′)

}]
Fnn′

+2eB
√

nn′Gnn′

)
, (210)

and

D = 4z1p
2
3 + 4p3k3Jnn′ + J2

nn′ − 4ω2ε2
n,0, (211)

with εn,0 =
√

m2 + 8eBn. Taking into account Eq. (205),
the equations Eq. (203) and Eq. (204) can be written:

Fnn′(x) =
(
[Ln−n′

n′−1 (x)]2 +
n

n′
[Ln−n′

n′ (x)]2
)

× (n′ − 1)!
(n− 1)!

xn−n′e−x, (212)

Gnn′(x) = 2
√

n

n′
(n′ − 1)!
(n− 1)!

xn−n′

× Ln−n′
n′−1 (x)Ln−n′

n′ (x)e−x, (213)

wherex = z2/2eB, with z2 = k2
⊥ = k2

1 + k2
2.

12.2. Faraday effect

Faraday effect is produced by electromagnetic waves mov-
ing parallel to a magnetic field in a charged medium, For in-
stance, it may be a medium containing electrons, positrons
and heavy ions, so that any disbalance of charge among elec-
trons and positrons be balanced by the ionic background. The
effect is a rotation of the polarization vector of the electro-
magnetic wave (photon), induced by the excess of charge of
the electrons or positrons. Mathematically this is determined
in the polarization tensor by the scalarr, which contains a
term proportional to the difference of electron minus positron
densities. As the scalarr is pure imaginary, let us call it
r = iIr. It can be writtenκ1,2 = t ±

√
I2
r . The associated

eigenvectors can be written as

b(1,3)
µ = c̄(1)

µ ± ic(3)
µ , (214)

wherec̄
(1)
µ = c

(1)
µ /Bk2 andc

(1,3)
µ were given previously, in

the paragraph after Eq. (177). One can write the equation
for the photons propagating alongB (k1 = k2 = 0), and
polarized orthogonal to it

k2
3 − ω2 = κ1,3. (215)

This equation leads to two solutions having opposite circular
polarizations, and different speeds, for the light propagating
parallel toB in the magnetized medium, induced by the elec-
tric charge imbalance. The effect means a chiral effect of
photons, determined by the sign of the chemical potentialµ,
sinceIr is an odd function ofµ. This leads to the Faraday
effect [35] in the magnetized electron-positron plasma, due
to the fact thatµ 6= 0. As said earlier, the total net charge
carried by electrons and positrons, is assumed as balanced
by a positive charged background of ions. The total system
is neutral, but it is not invariant under change conjugation.
By writing κ1,2 = t ± Ir, we rewrite the photon dispersion
equation in the magnetized medium as

z1 = k2
3 − ω2 = t± Ir, (216)

where,

r = iIr, t = −e3B

4π2
It,

andIr, It are the integrals

Ir =
e3Bω

2π2

∞∫

−∞
dp3f(p3, k3, B, ω)

× (ne(εp, µ)− np(εp, µ)), (217)
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with

f(p3, z1, B, T ) =
∑

n,n′
F

(3)
n n′(0)

(
z1 + 2eB(n + n′)

D

)
,

D = [2p3k3 + z1 + 2eB(n′ − n)]2 − 4ω2ε2
p,

and

It =

∞∫

−∞
dp3g(p3, z1, B, T )(ne(εp, µ) + np(εp, µ)), (218)

with

g=
∑

n,n′

F
(2)
n n′(0)
εn,p

(
1− (2p3k3+Jnn′)(z1+2eB(n+n′)

D

)
,

wherene,p(εp) = (1 + e(εp∓µ)β)−1, are the Fermi-Dirac
distribution for electrons and positrons,n is the Landau
quantum number, the energy levels are given byεp =√

p2
3 + m2 + 2neB and

Jnn′=z1 + 2eB(n′ − n), F
(2,3)
n n′ (0)=δn,n′−1 ± δn−1,n′ .

Notice that the functionf(µ) = ne(µ)−np(µ) has odd parity
with regardµ. The termIr is a scalar, thus, it is even in the
electromagnetic fieldFµν , but it is multiplied by the tensor
Ψ(5)

µν , odd inFµν . Thus, the Faraday effect is an illustrative
example of the Furry theorem.

Appendix

A. About propagators

In quantum field theory is used the termpropagatorto a func-
tion giving the probability amplitude for a particle to move
from one point to other in space-time. Its Fourier transform
describes its motion with some specific energy and momen-
tum. It is also understood as the inverse of the wave opera-
tor corresponding to some field or particle, which are called
(causal) Green’s functions. In quantum electrodynamics it is
frequently written the propagator for free fermions asGF ,
which is in general a matrix in spinor space. For instance

(iγµ∂µ −m)GF (x′ − x) = Iδ4(x′ − x), (A.1)

wherex = (x1, x2, x3, x4(= ict)) are the space-time coor-
dinates in Euclidean variables andI is the unit four matrix in
spinor space and

GF (x′ − x) =
1

2π4

∫
d4peip·(x′−x)ḠF (p). (A.2)

We haveḠF (p) = (γµ∂µ + m)/(p2 + m2) for the propaga-
tor in momentum space.

The free photon propagator in momentum space can be
written in Euclidean variables(kµ = (k1, k2, k3, k4)), as

D(k2) =
δµν − kµkν

k2

k2
. (A.3)

Notice that we are speaking in this subsection about quantum
field theory definitions,i.e. x4 is to be interpreted as imag-
inary time,x4 = ict. But as there is a parallelism of meth-
ods with relativistic quantum statistics, we extend the quan-
tum field language to be used also in the temperature case,
wherex4 is a variable defined in the real interval[0, β], whose
Fourier counterparts are eitherp4 = (2n+1)kT for fermions
andk4 = 2nkT for bosons, wheren = 0,±1, ... ± ∞. It
leads to the possibility of describing thermodynamical pro-
cesses. But by means of an analytic continuation of appro-
priate quantities, one can deal with dynamical processes, like
propagation of particles and/or currents, which are not equi-
librium processes, but means a small departure from it (small
enough to be able to speak of an average temperature). In
such cases, for photonsk4 → iω, and for electrons and
positronsp4 → iεq, whereω andεq are respectively their
energies.

B. Calculation of Im[s]

The denominatorD of the integrals (Eq. (207), which have
singularities due toD) given by:

D = 4z1p3(p3 + k3) + z2
1 − 4ω2ε2

n,0, (B.1)

wherez1 = k2
3 − ω2 and ε2

n,0 = m2 + 2enB, it can be
written in the form symmetric under the exchangeεq ↔ εq′ ,
ω ↔ −ω [30]

D−1 =
1

8εq′εqω

(
1

εq′ − εq − ω + iε

− 1
εq′ − εq + ω + iε

− 1
εq′ + εq − ω + iε

+
1

εq′ + εq + ω + iε

)
, (B.2)

where εq′ =
√

(p3 + k3)2 + m2 + 2enB and εq =√
p2
3 + m2 + 2enB, with q = (n, p3). The first pair of sin-

gularities are related to excitation of particles to higher en-
ergies and the second two are connected to the pair creation.
We have added an infinitesimal positive imaginary partiε to
ω, and by using the relation

1
s− ω − iε

= P
1

s− ω
+ iπδ(s− ω), (B.3)

whereP corresponds to the principal value in the expression,
we get for the imaginary part ofD−1 [30]

ImD−1 = ± π

8εqεq′ω

(
δ[εq′ − εq ∓ ω]

+ δ[εq′ − εq ± ω]− δ[εq′ + εq ∓ ω]
)
, (B.4)
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where the± signs applies respectively toω ≷ 0. We can use
now Eq. (B.4) to obtain the imaginary part the scalars (Eq.
(207)) according to the relation

∞∫

−∞
dp3f(p3)δ(g(p3)) =

∑
m

f(pm
3 )

| g′(pm
3 ) | , (B.5)

wherepm
3 , with m = (1, 2) are the roots ofg(p3) = 0. It may

be easily shown that whilep3 runs within(−∞ < p3 < ∞),
the denominator of the expression Eq. (207) may vanish only
for realz1 [30]. Thus, the integral in Eq. (207) represents an
analytic function in thez1 plane except possible singularities
located somewhere on the real axis, which corresponds with
the absorption region (Im[Π33] is responsible of absorption
process for the longitudinal mode), where

p
(1,2)
3 =

−k3z1 ± ωΛ
2z1

, (B.6)

are the roots of denominator in Eq. (207) [30] and Λ =√
z1(z1 + 4ε2

n,0). In our caseg(p3) = ω ± (εq′ ± εq), thus

ω = εq′ ± εq, k3 = p′3 ± p3, (B.7)

and the corresponding values of the energies are given by

εr =
−ωz1 + |k3|Λ

2z1
, (B.8)

εs =
ωz1 + |k3|Λ

2z1
, (B.9)

wherer, s = (n, ω, k3). The± signs in Eq. (B.7) corre-
sponds to the pair creation(εs) and excitation cases(εr) re-
spectively. By substituting these expressions it is easy to ob-
tain:

∣∣∣ d

dp3
(g(p3))

∣∣∣ =
Λ

2εm
q εm

q′
. (B.10)

In the evaluation of the integral Eq. (207) containing
the second delta Eq. (B.4), the following exchange is made
p3 + k3 ↔ −p3, n′ ↔ n.
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