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Schrödinger and Planck oscillators: not quite
the same physics for a modified Einstein solid
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In the statistical mechanics of quantum harmonic oscillators, the zero-point energy can either be included (Schrödinger oscillators) or omitted
(Planck oscillators). For the usual results, the type of oscillator makes no difference but, looking more closely, it turns out that including or
not this energy is not without consequences. A simple model called modified Einstein solid (MES) is introduced. In this model, the frequency
of the oscillators changes with the volume of the solid, and this change is characterized by a certain value of the Gr’́uneisen parameter. The
specific heat is the same as in the standard Einstein model, but the pressure, equation of state, and bulk modulus can be evaluated in the
MES. Using Planck oscillators, the pressure shows an anomalous behavior in terms of the volume, and the bulk modulus becomes negative
for certain temperature and volume values, which is physically incorrect. When Schrödinger oscillators are used, the bulk modulus is always
positive. Therefore, the different behavior of both types of oscillators indicates that only Schrödinger oscillators lead to correct results.
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1. Introduction

The harmonic oscillator is ubiquitous in physics: it pops up
in all the branches of the discipline, and is consequently a
recurring topic in the teaching of both classical and quantum
mechanics. It is in relation to the quantum harmonic oscilla-
tor that the concept of “zero-point energy” appears [1]. The
zero-point energy is usually overlooked and often omitted in
the calculations on the argument that it merely changes the
starting point from which energy is measured and that it has
no physical consequences. This is often the case, but occa-
sionally it can be relevant; in quantum electrodynamics, for
example, it is responsible for the Casimir effect [2]. In this
article, we will focus on statistical mechanics, and we will
show that considering or not the zero-point energy can have
consequences in some cases. After Pathria [3], we will call
Schr̈odinger oscillators those which include the zero-point
energy, and Planck oscillators those which omit it. We will
analyze an improved version of the Einstein solid, in which
considering or not the zero-point energy is clearly important.
We will show that the zero-point energy should be included
to get a well-behaved bulk modulus.

The structure of this paper is the following. In Sec. 2
some results of the usual Einstein model are remembered (af-
ter all, this is an educational journal!). In Sec. 3 a modified
Einstein solid (MES) is introduced and its properties are stud-
ied. Finally, in Sec. 4 the main results are gather together and
discussed.

2. The standard Einstein solid

Einstein introduced the simplest model for solids that in-
cluded characteristics of quantum mechanics [3-5]. It is as-

sumed thatN atoms are fixed in a crystal lattice, and each can
oscillate independently in the three spatial directions with a
characteristic frequencyω. Thus, we consider here a set of
3N oscillators that share the same frequency. To perform the
calculations we can use Schrödinger or Planck oscillators but
the results for the specific heat are the same. For further use,
we sketch the computation with both kinds of oscillators.

The energy of a Schrödinger oscillator with frequencyω
is En = (1/2)~ω+n~ω, wheren is a positive integer that in-
dicates the quantum state of the system; as usual~ = h/2π,
with h being the Planck constant. The first term is the so-
called zero-point energy which is the topic of this article. In
the case of a Planck oscillator, the zero-point energy is omit-
ted, so thatEn = n~ω. If we callkB the Boltzmann constant
as usual, the partition functions for Schödringer (subscriptS)
and Planck oscillators (subscriptP ) are:

Zs =
∞∑

n=0

e−(En/kBT ) = e−~ω/2kBT

×
∞∑

n=0

(e−~ω/kBT )n =
e−~ω/2kBT

1− e−~ω/kBT
, (1a)

Zp =
∞∑

n=0

e−En/kBT =
∞∑

n=0

(e−~ω/kBT )n

=
1

1− e−~ω/kBT
. (1b)

From these expressions, if we have a system formed by
3N oscillators, the partition function of the solid will be
ZP = (zp)3N for Planck oscillators, andZS = (zS)3N for
Schr̈odinger oscillators. The internal energyU in terms of the
partition functionZ is easily obtained [3,4]. Consequently,
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we get two different formula for the energy depending on the
kind of oscillators used:

U = kBT 2

(
∂ ln Z

∂T

)

V

, (2a)

Us = 3N~ω
(

1
e~ω/kBT − 1

+
1
2

)
, (2b)

Up = 3N~ω
(

1
e~ω/kBT − 1

)
. (2c)

Up to now, the only difference between both kinds of os-
cillators is a constant in the internal energy that is unobserv-
able. From an experimental point of view the internal energy
cannot be determined but the specific heat can be measured,
and from (2b) and (2c) we get the same expression for the
specific heatCV of the Einstein solid:

CV =
(

∂U

∂T

)

V

,

CV =
3N

kB

(
~ω
T

)2
e~ω/kBT

(
e~ω/kBT − 1

)2 . (3)

So far there is no observable difference between both
kinds of oscillators; both predict the same expression for the
specific heat that agrees reasonable well with experimental
data [5].

It should be noted that the partition function does not
depend on volume, consequently there are many thermody-
namic magnitudes of interest that are not defined. Thus,
for example, the pressure or compressibility module cannot
be calculated. In the next section we will improve Einstein
model by introducing an explicit dependence on frequency
with volume. And in this model we will see that Planck or
Schr̈odinger oscillators yield different results.

3. The modified Einstein solid (MES)

A simple way to show the effect of the zero-point energy is
to generalize the Einstein solid. For this, we will assume that
the frequency of the oscillators depends on the volume, but
first let us remember some definitions.

The Gr̈uneisen parameterγ can be defined in various
ways [5,6], but the definition that better suits our purposes
is the following:

γ = −V

ω

∂ω

∂V
. (4)

Much can be said about the Grüneisen parameter, but for
our aim it is a measure of the change in the oscillatory fre-
quencyω when the volumeV of the solid changesi. The rela-
tions of this parameter with thermodynamic and microscopic
properties of a solid have been explored elsewhere [7,8].

Here we can introduce a model, which we will call the
modified Einstein solid (MES), where the frequency is a
function of the volumeω(V ) and which is characterized by

a certain value of the parameterγ. The simplest assump-
tion is to take the Gr̈uneisen parameter as a constant. Ifγ
is constant, then Eq. (4) can be easily solved and we get
ω = CV −γ whereC is an integration constant that can be
evaluated as follow. Ifω0 is the frequency of the solid when
it is subjected to atmospheric pressurep0 and its volume is
V0, we can get an expression forC and finally obtain:

ω = ω0

(
V

V0

)−γ

. (5)

Notice that this dependence on frequency with volume
implies that the frequency decreases as the volume increases.
This is a behavior found in other well-known oscillatory sys-
tem. Remember that the frequency of a simple pendulum
goes asL−1/2 whereL is the length of cord i.e. the frequency
diminishes with an increase of the system size.

It should be remarked that Eq. (5) does not modify the
result of the specific heat. However, the pressure can now be
evaluated with the usual formula:

P = kBT

(
∂ ln Z

∂V

)

T

. (6)

At this point, it is useful to introduce dimensionless vari-
ables that will facilitate subsequent analysis. A characteristic
temperatureθ0 is defined asθ0 = ~ω0/kB and based on it a
dimensionless temperaturet can be introducedii. Likewise,
if V0 is the volume of the solid at atmospheric pressure, a di-
mensionless volumev can be defined. In mathematical terms:

θ0 =
~ω0

kB
,

T = tθ0,

V = vV0. (7)

From Eq. (6) two pressures are obtained, aPS if
Scḧodringer oscillators are used and aPP if Planck oscil-
lators are utilized. Two state equations are thus obtained for
this solid according to the type of oscillator used:

Ps =
(1 + ev−γ/t)v−1−γγ

2(ev−γ/t − 1)
3NkBθ0

V0
, (8a)

PP =
v−1−γγ

(ev−γ/t − 1)
3NkBθ0

V0
. (8b)

It is interesting to write the equation of state of this solid
in a compact form. Thus after some algebraic manipulations,
it comes out that:

Ps =
Usγ

V
, (9a)

Pp =
Upγ

V
. (9b)
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FIGURE 1. The dimensionless pressurep is shown here in terms of
dimensionless temperaturet (a) and dimensionless volumev (b).
It has been takenγ = 2 which is a typical value of the Grüneisen
parameter [9]. The solid line corresponds to the Planck oscillators
while the dashed line corresponds to the Schrödinger oscillators. In
(a) it has been takenv = 1 while in (b) it has been takent = 1.
Observe the anomalous behavior of the pressure belowv ≈ 1 when
using Planck oscillators: the pressure decreases as the volume de-
creases. This is not right. On the other hand, with Schrödinger
oscillators the behavior is normal: higher pressures are necessary
to compress the solid.

US andUP are given by Eqs. (2b) and (2c) but taking into
account that now the frequencyω depends on the volume as
shown in Eq. (5). Once again, both kinds of oscillators lead
to the same result.

It is appropriate to define a dimensionless pressurep
as: P = p3NkBθ0/V0. Figure 1 shows the dimensionless
Schr̈odinger (dashed line) and Planck (solid line) pressures
in terms of the dimensionless temperaturet (Fig. 1a) and
volumev (Fig. 1b). It has been takenγ = 2 which is a typ-
ical value for the Gr̈uneisen parameter as can be seen from
experimental data [9].

Note the anomalous behavior of the pressure in the case
of Planck oscillators: as the volume decreases belowv ≈ 1,
the pressure decreasesiii. This result is contrary to our physi-
cal intuition: the pressure is expected to increase to decrease
the volume. And this is exactly the behavior when using
Schr̈odinger oscillators. With this result we could conclude
our task: it has been shown that using Planck oscillators
in this modified Einstein solid, a non-physical result is ob-
tained, while using Schrödinger oscillators everything works
correctly. But it will also be shown that both types of oscilla-
tors lead to different mechanical properties.

The bulk modulusK is given by:

K = −V

(
∂P

∂V

)

T

. (10)

And if we remember that the pressure can be evaluated in
terms of the partition functionZ as shown in (6), it turns out
that:

K = −KBTV

(
∂2(lnZ)

∂V 2

)

T

. (11)

At this point, we find that there are two different bulk
moduli: KP for Planck oscillators andKS for Schr̈odinger
oscillators:

Ks = −3NKBTV

(
∂2(ln Zs)

∂V 2

)

T

, (12a)

Ks = −3NKBTV

(
∂2(ln Zp)

∂V 2

)

T

. (12b)

All is left to do now is to replace the expressionszS and
zP given by Eq. (1a) and (1b) in Eq. (12) and to perform the
calculation. This gives:

Ks =
3NkBθ0

V0

(
e2v−γ/tv−1−γ(1 + γ)γ

2(e(v−γ/t) − 1)2

− v−1−γ(1 + γ)γ
2(ev−γ/t − 1)2

− e(v−γ/t)v−1−2γγ2

(ev−γ/t − 1)2t

)
(13a)

Kp =
3NkBθ0

V0

(
e(v−γ/t)v−1−γ(1 + γ)γ

(ev−γ/t − 1)2

− v−1−γ(1 + γ)γ
(ev−γ/t − 1)2

− e2v−γ/tv−1−2γγ2

(ev−γ/t − 1)2t

)
. (13b)

The two expressions are clearly different; there are fac-
tors “2” in theKs formula that are absent inKp. This means
that, when a volume-dependent frequency is introduced, the
use of Planck or Schrödinger oscillators leads to different re-
sults which can be observed quite easily because measuring
the bulk modulus is a routine experiment (see [10] and refer-
ences therein). Anyway, the MES is too simple of a model to
allow a detailed comparison with experimental data.

It is convenient to define a dimensionless bulk modu-
lus kS and kP as: KS = kS3NkBθ0/V0 and KP =
kP3NkBθ0/V0. Figure 2 showskS (dashed line) andkP

(solid line) as a function of the dimensionless temperaturet
(Fig. 2a) and of the dimensionless volumev (Fig. 2b) using
a Gr̈uneisen parameterγ = 2.

The significant outcome from Fig. 2 is that the bulk mod-
ulus becomes negative when Planck oscillators are used, and
this is physically impossible. From this it can be inferred that
the use of Planck oscillators leads to incorrect results. In-
stead, with Schr̈odinger oscillators, the bulk modulus results
positive in the entire range of temperatures and volumes, as
it should be.
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FIGURE 2. a) The dimensionless bulk modulusk as a function of the dimensionless temperaturet and b) of the dimensionless volumev.
The solid line is obtained from Planck oscillators, while the dashed line corresponds to Schrödinger oscillators. As it is a typical value, a
Grüneisen parameterγ = 2 was used. In (a) the case for a fixed volumev = 1 is considered, and in (b) for a fixed temperaturet = 1. Note
in both cases thatk becomes negative for Planck oscillators, and that is physically incorrect. The result that makes physical sense is obtained
with Schr̈odinger oscillators.

4. Conclusions

The intention in this article has been to show the physical im-
plications of taking into account or not the zero-point energy
of an oscillator. The term1/2~ω in the energy of a quantum
oscillator is not irrelevant.

We have considered a modified Einstein solid (MES),
characterized by a certain characteristic temperatureθ0 and
a certain value for the Grüneisen parameterγ, i.e. this is a
solid where the frequency of the oscillators changes with the
volume. Our analysis has shown that:

a) The specific heat of the MES is the same as that of the
usual Einstein solid.

b) The MES equation of state is given by Eq. (9) and it is
formally the same for both kinds of oscillators.

c) The relation between pressure and volume shows an
unusual behavior if Planck oscillators are used.

d) The bulk modulus becomes negative for certain ranges
of volume and temperature if Planck oscillators are

used. This result is unphysical. If Schrödinger oscil-
lators are considered, the bulk modulus is always posi-
tive.

In summary, a simple generalization of the Einstein
model has been introduced and it has been shown that it is
not the same to use Planck or Schrödinger oscillators.

Finally, it should be noted that some statistical mechanics
textbooks omit the zero-point energy when dealing with the
harmonic oscillator and the Einstein solid, both in the canon-
ical and the microcanonical ensembles. And surely, many
university lecturers (the present author included) also omit
it. But in this article, such a practice has been proven in-
correct. Although there are no differences in the common
results, when we look into subtler questions, differences do
arise. Certainly, Schrödinger and Planck oscillators do not
lead to the exact same physics.
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i. In a more advanced treatment, the Einstein model [3,4,5] is seen
as a set of phonons, all of them with the same frequency. An
electromagnetic analogy can help to understand the meaning of
the Gr̈uneisen parameter. Consider a resonant microwave cavity
like that is used in microwave ovens. The resonant frequency of
the cavity depends on its physical dimensions. A change in the
size of the resonant cavity means a change in the resonant fre-
quency and therefore in the frequency of the photons there. The
Grüneisen parameter describes this frequency change with size
for mechanical waves and its associated particles (phonons).

ii. Notice θ0 that would be the Einstein temperature if the fre-
quencyω was be constant.

iii. The pressurepP reaches its maximum value atv = 1.0695 as
it was kindly noticed by the article referee. Below that value,
the behavior of the pressure with the volume is anomalous.
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SCHRÖDINGER AND PLANCK OSCILLATORS: NOT QUITE THE SAME PHYSICS FOR A MODIFIED EINSTEIN SOLID 137

2. Wikipedia, “Casimir Effect”, Wikipedia.org, https://en.
wikipedia.org/wiki/Casimir effect .

3. R. K. Pathria,Statistical Mechanics, 2nd ed. (Butterworth-
Heinemann, Oxford, 1996), https://doi.org/10.
1016/B978-0-7506-2469-5.X5000-2 .

4. R. H. Swendsen,An Introduction to Statistical Mechanics and
Thermodynamics, (Oxford University Press, Oxford, 2012).

5. C. Kittel, Introduction to Solid State Physics, 8th ed. (Wiley,
New York, 2004).
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