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This Addendum reports exact and complete solutions for the electromagnetic field of poloidal currents uniformly distributed on spherical
toroidal surfaces, which has been a pending task of Sec. 3 in [1]. This result is important by itself, and also because it allows the identification
of new and alternative solutions and the reasons behind them.
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The writing of this Addendum is motivated by the citations
of our work [1] in the reports on the observation of toroidal
dipole interactions in metamaterials [2, 3] and nanomaterials
and molecules [4], as recently reviewed in RMF [5]. In fact,
the emphasis in [1] was on the distinction between the fa-
miliar electric and magnetic multipole moments and the new
toroidal ones, with their respective sources of longitudinal,
toroidal, and poloidal current distributions. Notice the last
sentence at the end of Sec. 3.2. “For the sake of space, the
complete expressions for the electric intensity and magnetic
induction fields are not written out explicitly”.

This Addendum reports the final form of the toroidal
magnetic induction field, reminding the readers that: the cur-
rent is uniformly distributed on meridian loops, with pairs of
concentric circular arcs connected with pairs of radial seg-

ments, forming a toroidal surface, Eq. (23); the outgoing
wave Green function in its spherical multipole expansion is
given by Eq. (8); and the magnetic induction field is evalu-
ated via their integral of Eq. (10). The solutions outside the
toroidal surface, including its hole, involve outgoing waves,
and the solutions inside are well-behaved.

To begin, the second angular integral in Eq. (29) involves
the Legendre Polynomials of associativitym = 1, and their
corresponding eigenvalues with the result
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which is different from the integral of Eq. (27).
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Then, the magnetic induction field outside the toroid involves the radial integral over thej` (kr′) at the surface:
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The normal components of~B inside and outsidêr · ~B andθ̂ · ~B are zero, and consequently continuous at the circular boundaries
r = a andb, and at the radial boundariesθ = θ1 andθ2, satisfying Gauss’ law in its boundary condition form. In contrast,



ADDENDUM TO: COMPLETE ELECTROMAGNETIC MULTIPOLE EXPANSION INCLUDING TOROIDAL MOMENTS. . . 139

its tangential components are discontinuous at the successive boundaries yielding the constant linear distribution currents,
consistent with Ampere’s law:
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The differences between the first terms of Eqs. (A.2)
and (A.1) at the circular boundaries involve the product of
the radial variableka and the Wronskian of the spherical
Bessel functions−i/k2a2, and its counterpart for the exter-
nal boundary, respectively, displaying the harmonic superpo-
sition of the meridian currentsP 1

` (cos θ), in opposite direc-
tions. Similar results were recognized in the analysis of the
magnetic dipole and electric dipole radiations inside and out-
side a sphere [6]. On the other hand, the differences between
the second terms of Eqs. (A.2) and (A.1) at the radial segment
boundariesθ = θ1 andθ2, involve the differences between
the products of the respective spherical Bessel functions and
the integral of its companion:
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Its common value, independent of`, can be proven from
the Spherical Bessel differential equation. It also describes
the inverse proportionality of the radial dependence of the
linear current density. Notice that at the end of the radial seg-
ments where the connection with the circular arcs occur, the
values become−i/ka and−i/kb, common with those in the
respective circular boundaries.

Additionally, the summations over the complete sets of
orthonormal associated Legendre polynomials are identified
as follows. We start with those of Eq. (A.4), identifying
them with the Dirac Delta functionsδ(cos θ − cos θi) =
δ(θ − θi)/ sin θ defining the radial segments where the cur-
rents are located; the presence of the factorr sin θ as the ra-
dius of the parallel circle of the location is also recognized.
Next, the coefficients in the ordinary Legendre polynomials

in Eq. (A.3) the coefficients in the associated Legendre poly-
nomials in Eq. (A.4), respectively, were obtained from the
integrations in Eqs. (27-28); the corresponding summations
are identified as the difference of the integrals of the Dirac
delta functions inθ = θ1 andθ = θ2 with the value of1 in
the corresponding interval. The connection of these currents
with that of Eq. (23) shows the consistency in the analysis. It
is also important to point out the one-to-one correspondence
for the respective multipoles, in the source and in the mag-
netic field.

The electric intensity field can be computed as the rota-
tional of the toroidal magnetic induction field, Eqs. (A.1) and
(A.2) using Faraday’s Law, becoming a poloidal field sharing
the same character as its current source Eq. (23).

The new results in this addendum are contained in
Eqs. (A.1) and (A.2): exhibiting the multipole compositions
of the toroidal magnetic induction field inside and outside,
respectively, as well as in Eqs. (A.3) and (A.4), showing the
multipole compositions of the poloidal currents in the respec-
tive spherical and conical components of the toroidal surface.

The solutions analyzed so far have been restricted to have
m = 1. The solutions with other values ofm are still
open to be analyzed and applied. The internal solutions have
been constructed with the ordinary spherical Bessel func-
tions. More general solutions, as superpositions ofj` (kr)
andn` (kr), can and should also be considered.

The representations of the Dirac delta-function and Heav-
iside functions imply complete and orthonormal sets of func-
tions, associated with specific boundary conditions. Our
treatment deals with families of solutions for antennae and
resonant cavity radiations with the same formalism. Ref. [6]
shows that the latter correspond to a Dirichlet boundary con-
dition problem, while the optimum solutions for the antennae
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correspond to a Neumann boundary condition problem. Non-
optimized solutions for the antennae come with the Robin
boundary condition.
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