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Horizontal projectile motion: comparing free fall and drag resistance
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Received 4 February 2020; accepted 26 March 2020

The motion of a particle that is projected into a resistant medium and subjected to a uniform gravitational field is considered. The drag force
that acts upon the particle within the medium is proportional to the particle’s speed, the density of the medium, and the cross-section area of
the projectile. We review the problem of a horizontal motion with a drag force that is linear in speed. The problem is formulated in terms of
particle speed, mass, height, time, and expelled gas velocity. The equations of motion are solved analytically, and a case study is discussed.
As a result, we obtain the deviation of the projectile as a function of time because of the expelled gases with or without drag force.

Keywords: Newtons Laws; drag force; projectile.

El movimiento de una partı́cula que es proyectada en un medio con fricción y sujeta a un campo gravitacional uniforme es considerada. La
fuerza de arrastre que actua sobre la partı́cula debida al medio es proporcional a la velocidad de la partı́cula, la densidad del medio y la
seccíon transversal del proyectil. En este trabajo se revisa el problema del movimiento horizontal con fuerza de arrastre lineal en velocidad.
Dicho problema es formulado en terminos de la velocidad de la partı́cula, la masa, la altura, el tiempo y la velocidad del gas expulsado. Las
ecuaciones de movimiento son resueltas de manera analı́tica, y un caso de estudio es discutido. Como resultado, se obtiene la desviación del
proyectil como funcíon del tiempo debida a la expulsión del gas con o sin fuerza de arrastre.

Descriptores: Leyes de Newton; fuerza de arrastre; proyectil.
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1. Introduction

Newton’s second law was stated in the masterpiece of Sir
Isaac Newton, “Philosophiae Naturalis Principia Mathemat-
ica”, in 1687 [1].

This law establishes a quantification method for the con-
cept of force and describes that the acceleration of a body is
proportional to the force applied on it and is inversely pro-
portional to its mass,i.e.,

∑
F = ma. (1)

That means that the heavier the body is, the stronger the ap-
plied force must be in order to achieve greater acceleration.
This relation is true when the mass of the body is constant,
but what happens if the mass is not constant? A good exam-
ple of this is a rocket system that burns fuel as it rises in the
air; in this case, Eq. (1) is not correct. Now, remembering
that Newton stated his law as

∑
F =

d(mv)
dt

. (2)

In this way it is possible to relate force with mass and ac-
celeration. In the case where the mass is constant, it can be
pulled out of the derivate and thus we obtain Eq. (1); there-
fore, the force is a concept that is equal to the derivate of the
linear momentum of a given particle. This law helps us to un-
derstand why it is harder to accelerate a heavier object than a
lighter one.

Rocket propulsion is an interesting field of study because
its own method of acceleration is different from that of any
other object. Compared to a runner, who uses the ground to

accelerate by pushing against the ground constantly with his
feet, or a car, which uses the road to accelerate due to the
friction between the wheels and the road surface, or even a
plane, which uses chemical energy from the fuel for heating
and accelerating the air that is expelled from the rear side of a
turbine, a rocket moves itself by expelling its own mass rear-
ward. Thus, a rocket does not need a medium to impulse it-
self. If an object does not have any external agent that pushes
it or one that it can push, how can the rocket get moving?
The engine of a rocket is designed to throw the burned fuel
out rearward, and by Newton’s third law, the fuel pushes the
rocket forward. If the reader has ever tried to build a proto-
type and recreate the experience of launching a scale rocket,
they could have had some questions,e.g., what is the influ-
ence of air resistance? After obtaining the equations for the
velocity as a function of time of a rocket fired vertically up-
ward near the surface of the Earth, what are the conditions
for liftoff? If the rocket’s initial motion followed a horizon-
tal path instead of a vertical one, the same questions would
apply.

An object moving through a fluid is influenced by the re-
sistant force, or drag, that acts oppositely to the relative mo-
tion of objects. Depending upon the characteristics of the
flow, represented by a Reynolds number, two different types
of drag models are used: a linear drag model and a quadratic
drag model. To handle a projectile’s motion while incorpo-
rating these drag models, various researches have been con-
ducted to find their solutions while addressing several aspects
of the problem [2-7]. Since neglecting the resistant force to
projectile motion is impractical, is desirable to develop an-
alytic solutions from a simplified model so as to elucidate
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some of the essential features and structure of this problem.
The linear model, in which the resistance is taken to be pro-
portional to the instantaneous velocity of the projectile, is
generally accepted as the first approximation to such resis-
tive behavior [8, 9] and it is the model we use here. Simula-
tion of the projectile’s motion with and without drag forces
is extended. The equation of motion was formulated in order
to cancel the inertial velocity of the projectile mounted on a
mobile that is able to move at a constant inertial velocity.

2. Variable mass problem

Rocket propulsion is based on the principle that the rate of
change of the linear momentum is equivalent to an external
net force, and if the external net force is zero, the change in
the linear momentum is also zero and so the linear momen-
tum must be conserved. Consider Fig. 1, in which a rocket of
massm is shown to be under the action of an external force
F, is expelling gas with a constant velocityu relative to the
rocket, and has a time-dependent velocityv.

Let the initial linear momentum of the rocket be written
as

pi = mv. (3)

As soon as the rocket begins to burn and expel gas at velocity
u relative to it, its mass decreases as a function of time. Let

FIGURE 1. Mass rocketm under the action of an external forceF
[10].

FIGURE 2. Rocket ejecting gas with velocityu [10].

the mass and velocity of the rocket at timet + dt is equal
m + dm andv + dv, respectively, wheredm = −|dm| is
a small decrease in rocket mass due to its loss of fuel in the
short timedt. The gas mass ejected is then−dm and has
velocityv + u relative to the ground, as shown in Fig. 2.

The total linear momentum of the rocket-gas system is

PT = (m + dm)(v + dv)− dm(v + u)

PT = mv + mdv− udm. (4)

In Eq. (4), the small termdmdv has been neglected. The
net force over the system, by the second law of Newton, is

F = lim
x→0

∆P
∆t

= lim
x→0

∆Pf −∆Pi

∆t
,

or m
dv
dt

= u
dm

dt
+ F. (5)

Equation (5) is known as the rocket equation.

3. Velocity as a function of time

In this section, two different situations can be considered, one
in which the rocket is leaving the Earth’s surface and other in
which the rocket has already left the Earth’s surface and finds
itself in outer space without any external forces acting on it.

Free Space

Assuming a constant gas-expelled velocity in free space,
there are no external forces acting on the rocket and the force
F = 0. From Eq. (5), usingv = v̂ andu = −û, whereu is
constant, we get

m
dv

dt
= −

(
dm

dt

)
u. (6)
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The right term in Eq. (6) is known as the thrust; it acts to
propel the rocket forward and it is a negative quantity. That
differential equation can be solved to yield

v∫

v0

dv = −u

m∫

m0

dm

m
, (7)

wherem is the mass of the rocket’s structure and the engine,
m0, is the initial fuel plusm. Thus, we have the velocity
equation as a function of the relation between the fuel and
useful load

v = v0 − u ln
(

m

m0

)
,

or v = v0 + u ln
(

m

m0

)
. (8)

This equation implies that a large amount of fuel is needed
(m0/m > 1) to reach high velocities.

Air resistance

The functionf(v) that gives the magnitude of the air resis-
tance varies with speedv in a complicated way. It is quite
useful to describe it with a Taylor expansion series as

f(v) = a + bv + cv2 + . . . , (9)

in which the terma = 0 whenf = 0 with a speedv = 0.
This implies both linear and quadratic terms for the function
f(v). That is

f(v) = flin + fquad, (10)

whereflin andfquad stand for the linear and quadratic terms,
respectively. There are objects in which the linear term dom-
inates over the function and the quadratic term can be dis-
carded; this happens in large objects inside highly viscous
fluids, like a sphere that moves through dense honey. The
linear term arises from the viscous drag of the medium and
is generally proportional to the viscosity of the medium and
linear size of the projectile.

On the other side, for most objects that move like pro-
jectiles, such as tennis balls, bowling balls, and even the hu-
man body, the dominant term in the air resistance force is
quadratic and the linear term can be discarded. The quadratic
term is proportional to the density of the medium and the
cross-sectional area of the projectile.

4. The model problem

A system composed of three parts is introduced in this sec-
tion: a mobile that slides without friction over a smooth sur-
face at a certain height; a spring built into the mobile, which
is fully compressed at the initial time; and an idealized rocket
that acts as a point mass laying on the mobile beside the
spring (Fig. 3).

FIGURE 3. Setup sketch.

FIGURE 4. System at timet0.

At time t0, the system has a constant inertial velocityvs,
as shown in Fig. 4.

At time t1, the spring and the rocket are set free in such a
way that at timet2, the rocket reaches a null inertial velocity,
as shown in Fig. 5. This way, at timet2, the gravitational
effects will cause a free-fall motion on the rocket.

Now, if the effects of the spring at the time when it is re-
leased are viewed from a local reference frame fixed in the
mobile, and assuming that the idealized rocket slides without
friction over the mobile, the following equations describe the
motion of the rocket from a non-inertial reference frame:
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FIGURE 5. System at timet1 andt2.

∑
Fcx = mcacx, (11)

−Kx(t) = mcacx, (12)

where:acx = ẍ(t), so:

mcẍ(t) + Kx(t) = 0. (13)

As the system is being observed from a non-inertial reference
frame, the velocityvCL0 = 0; also, the initial distancexo is
equal to the compression distance of the springdr.

x0 = −dr vCL0 = 0 m
s

Solving the differential equation (13) under the initial condi-
tions allows us to obtain the equation for relative horizontal
displacement (14)

x(t) = −dr cos(ωt), (14)

where: ω =
√

K/mc. To obtain velocityvCL(t), is neces-
sary to differentiate Eq. (14)

vCL(t) = ẋ(t) = ωdr sin(ωt). (15)

For the inertial horizontal velocity to be null at timet2, con-
dition Eq. (16) must be satisfied.

vCL2(t2) = vCL2 = −vs (16)

If the inertial reference framevs is negative, condition (16)
shows that the relative velocity of the rocket has reached the
same magnitude as the inertial velocity of the system and in
the opposite direction. In that instant, the rocket will start
a free fall in which, if no external horizontal forces act on
the rocket, it would fall in a straight line until it reaches the
ground.

FIGURE 6. Sketch of the rocket at timet2.

To analyze the horizontal deviation of the rocket from its
free-fall trajectory because of the external force produced by
the expulsion of a gas contained inside the rocket, we assume
that the rocket should have a deviation in the opposite direc-
tion of the freed gas velocity. Figure 6 shows a sketch of the
rocket at timet2, exactly when the gas is released. Assuming
a constant gas-expelled velocity u, the following equations
describe the motion of the rocket from timet2.

∑
Fcy = mc

dvcy

dt
− uy

dm

dt
(17)

∑
Fcx = mc

dvcx

dt
− ux

dm

dt
(18)

where:ux À uy, souy
∼= 0 m/s.
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From the vertical forces balance, Eq. (17), we have

∑
Fcy = mc

dvcy

dt
= mcacy, (19)

acy = −g, (20)

−mcg = mc
dvcy

dt
+ uy

dm

dt
. (21)

From the vertical forces balance, Eq. (18), two cases can be
derived.

Case I: No air resistance

In this case, there are no external forces in the horizontal di-
rection acting on the rocket other than the one generated by
the expulsion of the gas.

0 = mc
dvcx

dt
+ ux

dm

dt
(22)

Solving Eq. (22), an expression for the horizontal velocity of
the rocket as a function of time can be obtained.

mc
dvcx

dt
= ux

dm

dt
(23)

dvcx

dt
= − ux

mc

dm

dt
(24)

dvcx = −ux
dm

mc
(25)

vcxf∫

vcxi=0

dvcx = −ux

mcf∫

mci

dm

mc
(26)

vcxf = −ux ln
mcf

mci
(27)

wherevcxf = vcx(t),

ṁA = ρAAux, (28)

whereρA denotes the expelled gas density,A is the cross-
sectional area where the gas is being expelled andux =
const.

mcf = mc(t) = mci − ρAAuxt, (29)

so

vcx(t) = −ux ln
(

mci − ρAAuxt

mci

)
, (30)

vcx(t) = −ux ln
(

1− ρAAuxt

mci

)
. (31)

By integrating Eq. (31), we obtain the deviation of the rocket
due to of the expelled gases as a function of time.

xc(t)=−ux . . .

{
ρAAuxt−mci

ρAAux

[
ln

(
1−ρAAuxt

mci
−1

)]

+
ρAAuxt−mci

ρAAux

}
(32)

In the vertical direction, the only external force present is
the one applied by the gravitational field of the Earth, which
leads to Eq. (33).

−mcg = mc
dvcy

dt
+ uy

dm

dt
, (33)

where:uy = 0 m/s yvcyi = 0 m/s

−mcg = mc
dvcy

dt
(34)

dvcy = −gdt (35)

vcy(t) = −gt (36)

so, by integrating Eq. (36)

yc(t) =
g

2
t2 − yci. (37)

Equation (37) and its equivalent expressions for all differ-
ent cases are essential because by solving them for timet in
which yc(t) = 0, a time limit for the rocket to develop a
deviation from its free-fall trajectory is determined.

Case II: Considering linear air resistance.

Since the study is stated for an idealized rocket as a particle
with small dimensions, low velocities, and low heights, this
case will only consider a linear air resistance.

Fdx = mc
dvcx

dt
+

dm

dt
(38)

mc
dvcx

dt
+ ux

dm

dt
= −bvcx, (39)

whereFdx = bvcx (linear term). In particular, for a spherical
projectile, the coefficientb have the formb = βDvcx, where
D denotes the diameter of a sphere and the coefficientβ de-
pend on the nature of the medium (β = 1.6× 10−4 m/s in air
at standard temperature and pressure).

In addition, as the changes of mass and velocity are de-
pendent on time, by applying the chain rule, these changes
can be expressed with respect to a mass deferential instead of
a time deferential, giving us

d

dt
=

dm

dt

d

dm
= α

d

dm
, (40)

whit

α
d

dm
=

d

dt
, (41)

α =
dm

dt
. (42)

The coefficientα represents the mass flow rate. Thus,
Eq. (39) can be expressed as

mcα
dvcx

dm
+ αux + bvcx = 0 (43)

dvcx

−bvcx − αux
=

dm

mcα
(44)
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vcx∫

0

dvcx

bvcx + αux
= −

mcf∫

mci

dm

mcα
(45)

1
b

(Ln|bvcx + αux| − Ln|αux|) =
1
α

(Ln (mcf )

− Ln (mci)) (46)

Ln

(
1 +

bvcx

αux

)
=

b

α
Ln

(
mcf

mci

)
(47)

1 +
bvcx

αux
=

(
mcf

mci

) b
α

(48)

vcx(t) =
αux

b

((
mcf

mci

) b
α

− 1

)
. (49)

From Eq. (42), we have

α = −ρAAux. (50)

So, Eq. (49) takes the form

vcx(t) =
−ρAAu2

x

b

((
mcf

mci

) −b
ρAAux

− 1

)
. (51)

Note that,mcf = mci − ρAAuxt,

vcx(t)=
−ρAAu2

x

b

((
mci−ρAAuxt

mci

) −b
ρAAux

−1

)
, (52)

vcx(t) =
−ρAAu2

x

b

((
1− ρAAuxt

mci

) −b
ρAAux

− 1

)
. (53)

By integrating Eq. (53), we obtain the deviation of the rocket
due to the effects of the expelled gases as function of time
and while considering air resistance.

xc(t) = −−ρAAu2
x

b
. . .

(
(mci− ρAAuxt)

b− ρAAux

×
(

1− ρAAuxt

mci

) −b
ρAAux

− t− mci

b− ρAAux

)
(54)

As for the vertical direction, because the gas is being ex-
pelled horizontally, the equations for velocity and position
will be the following:

−bvcy −mcg = mc
dvcy

dt
+ uy

dm

dt
, (55)

where:uy = 0 m/s andvcyi = 0 m/s.
Also, as the mass of the expelled gas much smaller than

the initial mass of the system, we can consider the mass of the
system to be constant along the displacement on the vertical
direction or even that the air resistance can be neglected; this
second assumption can be made because the small velocities
and reduced dimensions of the stated system.

Case II.1: Constant mass of the system

−bvcy −mcg = mc
dvcy

dt
(56)

dvcy

dt
+

b

mc
vcy + g = 0 (57)

vcy(t) =
gmc

b

(
e
−bt
mc − 1

)
(58)

yc(t) =
gmc

b

(
−mce

−bt
mc

b
− t +

mc

b

)
+ yci (59)

Case II.2: Neglectable air resistance in the vertical direc-
tion.

−mcg = mc
dvcy

dt
(60)

−g =
dvcy

dt
(61)

vcy(t) = gt (62)

yc(t) =
g

2
t2 − yci (63)

From cases II.1 and II.2, a discrepancy between both consid-
erations will be observed.

Cases study

After developing the fundamental equations under the previ-
ously stated conditions, the physics problem is fully defined.
At this point, it is possible to assign values to fixed parame-
ters, such as the rocket massmc, aperture area of the rocket
A from where the gas is expelled, gravity magnitude g, the
expelled gas density (air)ρA, idealized rocket diameterD,
and linear air resistance constantβ. All these parameters are
listed in Table I.

TABLE I. Parameters of the case study.

Parameter Unit

mc 0.5 kg

A 3.1416× 10−6 m2

g 9.81 m/s2

ρA 1.225 kg/m3

D 0.06 m

β 1.6× 10−4 Ns/m2

b 9.6× 10−6 kg/s
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162 R. YÁÑEZ VALDEZ, P. A. GÓMEZ VALDEZ, AND F. DE ARMAS RIVERO

FIGURE 7. Free fall time case I.

FIGURE 8. Free fall time case II.1.

FIGURE 9. Free fall time case II.2.

Now, it is possible to use Eqs. (27), (49), and (53) to ob-
tain the time that takes the rocket to reach the ground from the
instant when it is released. For evaluating purposes, it’s nec-
essary to variate the initial height valueyci within a certain
range applicable for all cases:4 ≤ yci ≤ 15 m.

Figures 7, 8, and 9 represent the free-fall times as a func-
tion of initial heightyci for cases I, II.1, and, II.2, respec-
tively.

Note that Eqs. (27) and (53) are the same, so the free-fall
times for cases I and II.2 are the same. Likewise, the average

FIGURE 10. Horizontal deviation as function of time and gas ve-
locity, Case I.

FIGURE 11. Horizontal deviation as function of time and gas ve-
locity, Case II.1 and II.2.

difference between the free fall times of cases I and II.1 is
5.8× 10−6 s, and therefore, they can be considered equal.

Finally, in order to obtain the horizontal deviation of the
rocket, the values of expelled gas velocity values can vary
when using the time range0.90304 ≤ t ≤ 1.74874 s. It is
necessary to remark that the velocity ranges for cases II.1 and
II.2 have larger magnitudes due to the air resistance; knowing
this, the expelled gas velocity ranges are:

Case I: 50× 10−3 ≤ ux ≤ 1.74874 m/s.
Cases II.1 and II.2: 400× 10−1 ≤ ux ≤ 150 m/s.

5. Results

Figure 10 contains the plot for the horizontal rocket devia-
tion as a function of time and expelled gas velocity for case I
using Eq. (22). For the horizontal rocket deviations of cases
II.1 and II.2. Figure 11 contains the same graph, because both
cases use Eq. (44).

Figure 12 shows a graph of the trajectories of the rocket
where the green line represents free-fall motion withux = 0
m/s. The red line represents case I where the air resistance is
neglected and an expelled gas velocity ofux = 50×10−3 m/s

Rev. Mex. F́ıs. E 17 (2) 156–164
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FIGURE 12. Rocket trajectories, Free fall (Green), Case I (Red),
Case II (Blue).

is used. The blue line represents cases II.1 and II.2 in which
linear air resistances are considered and an expelled gas ve-
locity of ux = 800× 10−1 m/s is used; this large magnitude
of expelled gas velocity for case II was arbitrarily selected to
have the graphs on a similar scale. For all cases, a height of
15 m and a respective time interval of:0 ≤ t ≤ 1.74874 s
are used.

6. Discussion

In both case studies, the horizontal deviation due to the expul-
sion of the gas is more noticeable when the gas velocity or the
time increases. However, in these case studies, we decided to
use air as the gas was expelled and to fix a value for the mass
and diameter of the idealized rocket. All these parameters
could also be varied to increase the horizontal deviation.

In the case studies, external forces are considered to act
on the center of gravity of the rocket in purely horizontal or
vertical directions so that they do not generate any moment
on the rocket’s center of gravity.

In practice, different difficulties would be presented when
one tried to carry out the experiment, such as determining the
time in which the spring is released to ensure that the inertial
horizontal velocity of the rocket is zero, determining a ge-
ometry for the idealized rocket that allows it to maintain its
orientation without turning on its center of gravity, or imple-
menting a system that keeps the expelled gas velocity effec-
tively constant.

On the other hand, the proper experiment requires the
measurement and determination of other necessary physical
parameters that are not within the scope of this work,e.g.,
the friction forces between sliding elements, dimensions of
the mobile, elastic spring constant, dimensions of the rocket,
materials to be used, volume of the gas, and pressure level.

In addition, if the experiment is performed in a vacuum,
the condition of zero air resistance can be ensured, thus pre-
senting an area of opportunity for future work that gives con-
tinuity to this topic.

7. Conclusions

In this work, the equations of motion to cancel the inertial
velocity of a rocket mounted on a mobile that moves at a
constant inertial velocity have been formulated. It was done
through the application of an elongation force of a spring cou-
pled to the mobile, which causes the relative speed of the
rocket on the mobile.

In this way, both for the case that does not consider the
air resistance as well as for the case that considers the air re-
sistance, under the conditions described in this work, it was
possible to formulate the equations of movement of the rocket
from the moment in which its inertial speed is zero and a
free-fall movement begins. Through these equations it can
be verified that for vertical movement when there is no exter-
nal force that drives the rocket in that direction, the effects of
air resistance are negligible.

Finally, it was observed that for a rocket that expels a gas
as a method of propulsion, several parameters, such as the
velocity of the gas, the mass of the system, the time during
which the gas is expelled, the geometry of the rocket, and the
coefficient of resistance of the air, significantly impact the
velocity and displacement of the rocket.
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