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Applications of the double and the dual numbers. The Bianchi models
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We show that by using complex, double, and dual numbers one can find the invariant one-forms employed in the metrics of the Bianchi
cosmological models. The result is equivalent to find, locally, all the Lie groups of dimension three.
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Mostramos que usando números complejos, dobles, y duales uno puede hallar las uno-formas invariantes empleadas en las métricas de los
modelos cosmológicos de Bianchi. El resultado es equivalente a hallar, localmente, todos los grupos de Lie de dimensión tres.
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1. Introduction

The double and the dual numbers can be regarded as gener-
alizations of the complex numbers. The double numbers are
objects of the forma + jb, wherea andb are real numbers,
and j2 = 1 (but j 6= ±1), while the dual numbers have the
form a + εb, wherea andb are real numbers, withε2 = 0
(but ε 6= 0). As shown in Ref. [1], even though these num-
bers do not have all the algebraic properties of the real and the
complex numbers, they are useful in the solution of the dif-
ferential equations that appear in some problems of classical
mechanics. These three sets of numbers are also useful to ex-
press the nonequivalent actions ofSL(2,R) on the Cartesian
plane [2].

In this paper we show that the complex, double, and dual
numbers can be employed to find the invariant one-forms em-
ployed in the metrics of the Bianchi cosmological models or,
equivalently, in finding locally all the Lie groups of dimen-
sion three, without making use of the exponential map. In
Sec. 2, we summarize the algebraic properties of the double,
and the dual numbers to be employed in the rest of the pa-
per. In Sec. 3, with the aid of the formalism of differential
forms, we show that the complex, double and dual numbers
are very useful in finding the metric tensor for the cosmologi-
cal Bianchi models or, equivalently, the Lie groups of dimen-
sion three.

2. Algebraic preliminaries

In the following section we shall make use of “hypercom-
plex” numbers of the forma + hb, wherea and b are real
numbers and the unith may bei, j, or ε. By definition, the
hypercomplex numbersa + hb andc + hd are equal to each
other if and only ifa = c andb = d. The real numbersa
andb will be called the real and imaginary parts ofa + hb,
respectively. The sum and the product of these numbers are
defined in the natural manner

(a + hb) + (c + hd) = a + c + h(b + d),

and

(a + hb)(c + hd) = ac + h2bd + h(ad + bc).

Then one can show that the sum and the product are commu-
tative and associative, and that the product is distributive over
the sum.

If x+hy is the multiplicative inverse ofa+hb 6= 0, then
we must have

ax + h2by = 1,

bx + ay = 0.

Hence,a+hb possesses a multiplicative inverse if and only if
∆ ≡ a2−h2b2 is different from zero. Thus, the double num-
bera+jb does not possess a multiplicative inverse ifa = ±b,
and the dual numbera + εb does not possess a multiplicative
inverse ifa = 0. This implies that the double and the dual
numbers are not fields with the operations defined above, but
only rings; however, this fact does not limit their usefulness
for some purposes.

3. The Bianchi models

In the Bianchi models of the relativistic cosmology, it is as-
sumed that the space-time is foliated by three-dimensional
hypersurfaces with a metric admitting a three-dimensional
isometry group that acts transitively on these hypersurfaces
(see,e.g., Refs. [3–6]). This means that the metric tensor
of each of these three-dimensional hypersurfaces possesses
three Killing vectors, which are linearly independent at each
point, and generate a Lie algebra. If{X1,X2,X3} is a basis
for these Killing vectors, then[Xi,Xj ] = ck

ijXk, where the
ck
ij are constants, the Latin indicesi, j, k, . . . run from 1 to 3,

and there is summation over repeated indices. The structure
constants have to satisfy the relations

ck
ij = −ck

ji, cm
ij cl

mk + cm
jkcl

mi + cm
kic

l
mj = 0. (1)
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All the solutions of these conditions can be given explicitly
and constitute the various Bianchi types [3–6].

The metric of the hypersurfaces mentioned above is of the
form aijω

i ⊗ ωj , where theaij are the entries of a symmet-
ric positive definite matrix, constants on each hypersurface,
and the one-formsωi are invariant under the transformations
generated by the vector fieldsXj . The one-formsωi can be
chosen in such a way that

dωi =
1
2
ci
jkωj ∧ ωk, (2)

wheredωi denotes the exterior differential of the one-form
ωi.

In the study of a particular cosmological model of this
class, one starts by selecting the structure constantsck

ij

[which have to satisfy the relations (1)], and then one looks
for the one-forms satisfying Eq. (2), in order to construct the
space-time metric. As we shall show in Sec. 3.1, starting
from a solution of Eq. (2), with specific values of the structure
constants, expressed with the aid of the imaginary uniti, one
can readily construct solutions for other values of the struc-
ture constants by simply replacingi by j or ε. In Sec. 3.2, we
solve Eq. (2) simultaneously for six different Bianchi types,
making use of structure constants that depend on a parameter
that may take the valuesi, j or ε.

3.1. Obtaining two Bianchi types from one

In this subsection we make use of a solution of Eq. (2) for the
structure constantsci

jk = εijk and use it to find the solution
of (2) for other values of the structure constants.

One can readily verify that the one-formsω1, ω2, ω3,
given by

ω1 = cos ψ dθ + sin ψ sin θ dφ,

ω2 = sin ψ dθ − cos ψ sin θ dφ, (3)

ω3 = dψ + cos θ dφ,

whereφ, θ, ψ is a local coordinate system, satisfy the rela-
tions (2) with ci

jk = εijk, corresponding to the type IX alge-
bra in the Bianchi classification (see,e.g., Ref. [3], Exercise
[26.2]). Equations (3) are equivalent to

ω1 + iω2 = eiψ(dθ − i sin θ dφ),

ω3 = dψ + cos θ dφ, (4)

and if we replace the imaginary uniti appearing in Eqs. (4)
by the unith, which can bei, j, or ε, we obtain

ω1 + hω2 = ehψ(dθ − h sin θ dφ),

ω3 = dψ + cos θ dφ, (5)

which define new sets of one-forms (which we shall denote
by the same symbolsωi), depending on the choice ofh. In
fact, a straightforward computation shows that

d(ω1 + hω2) = hω3 ∧ (ω1 + hω2), dω3 = ω1 ∧ ω2.

Separating the real and imaginary parts of the first of these
equations (assuming that theωi are real) we see that the one-
formsωi defined by Eqs. (5) satisfy Eqs. (2) with

c1
23 = −h2, c2

31 = 1, c3
12 = 1. (6)

The other structure constants are equal to zero or are obtained
from those given in Eq. (6) making use of the antisymmetry
of the structure constants in the two subscripts. (Note that, in
all cases, these constants are real.)

Whenh = j (i.e., h2 = 1) the structure constants (6) cor-
respond to the type VIII algebra in the Bianchi classification,
and (using the fact thatejψ = cosh ψ+j sinhψ) Eqs. (5) give

ω1 = cosh ψ dθ − sinh ψ sin θ dφ,

ω2 = sinh ψ dθ − cosh ψ sin θ dφ, (7)

ω3 = dψ + cos θ dφ

[cf. Eqs. (3)].
When h = ε the structure constants (6) correspond to

the type VII0 algebra and Eqs. (5) amount to (note that
eεψ = 1 + εψ)

ω1 = dθ, ω2 = ψ dθ − sin θ dφ,

ω3 = dψ + cos θ dφ (8)

[cf. Eqs. (3) and (7)] and one can readily verify that these
one-forms satisfy

dω1 = 0, dω2 = ω3 ∧ ω1, dω3 = ω1 ∧ ω2, (9)

in agreement with Eqs. (6), for h = ε. It should be remarked
that Eqs. (7) and (8) have been obtained without making use
of changes of coordinates or limiting processes.

The three Lie algebras considered in this subsection are
the Lie algebras of the dynamical symmetry groups found in
Ref. [1] and they correspond to the rotation groupSO(3), the
Lorentz group in two spatial dimensions, and the group of
rigid motions of the Euclidean plane.

3.2. Direct integration. Six Bianchi types for the price
of one

In this subsection, we follow a direct approach specifying a
family of structure constants, similar to (6), and looking for
solutions of Eqs. (2).

We shall consider the family of structure constants deter-
mined by

c2
12 = −K, c2

31 = −h2, c3
12 = 1, c3

31 = K, (10)

whereK is a real constant and, again,h can be the uniti, j or
ε. Depending on the choice ofh andK, we have six different
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Bianchi types; ifK = 0, they belong to the class A (charac-
terized by the conditionci

ij = 0) and if K 6= 0, they belong
to the class B (withci

ij 6= 0).
Substituting the values (10) into Eq. (2) we have the ex-

plicit expressions

dω1 = 0, dω2 = −Kω1 ∧ ω2 − h2ω3 ∧ ω1,

dω3 = ω1 ∧ ω2 + Kω3 ∧ ω1. (11)

The first of these equations is equivalent to the existence of a
functionx such thatω1 = dx. The remaining two equations
in (11) are equivalent to the single equation

d(ω2 + hω3) = (h−K)ω1 ∧ (ω2 + hω3)

= (h−K) dx ∧ (ω2 + hω3),

hence,d
[
e−(h−K)x(ω2+hω3)

]
= 0, which, in turn, is equiv-

alent to the existence of two real-valued functions,y andz,
such that

ω2 + hω3 = e(h−K)x(dy + hdz)

= ehxe−Kx(dy + hdz). (12)

Separating the real and imaginary parts of Eq. (12) we obtain
the expressions forω2 andω3.

Whenh = i, from Eqs. (12) we obtain

ω1 = dx, ω2 = e−Kx cosx dy − e−Kx sin xdz,

ω3 = e−Kx sin xdy + e−Kx cosxdz. (13)

Equations (10) show that, ifK = 0, these one-forms corre-
spond to the type VII0 algebra in the Bianchi classification
and, ifK 6= 0, they correspond to the type VII algebra. The
one-forms (8) also correspond to this algebra; in fact, the co-
ordinate transformationx = θ, y = ψ sin θ, z = φ + ψ cos θ
shows the equivalence of the two results.

Similarly, whenh = j, Eqs. (12) yield

ω1 = dx, ω2 = e−Kx coshx dy + e−Kx sinhxdz,

ω3 = e−Kx sinhxdy + e−Kx cosh xdz, (14)

which correspond to the type VI0 algebra ifK = 0, and to
the type VI algebra ifK 6= 0. (WhenK has the specific value
1, we obtain the type III algebra.)

Finally, whenh = ε, from Eqs. (12) we have

ω1 = dx, ω2 = e−Kxdy, ω3 = e−Kx(xdy + dz).
(15)

WhenK = 0 these forms correspond to the type II algebra
and, ifK 6= 0, to the type IV algebra.

3.3. Two isolated types

There are two Bianchi types not included in the results above:
the types I and V. The type I correspond toci

jk = 0 and the
solution of Eqs. (2) is trivially given byω1 = dx, ω2 = dy,
ω3 = dz, wherex, y, z are real-valued functions.

For the type V, the structure constants can be chosen as

c2
12 = −1, c3

31 = 1.

Then Eqs. (2) give dω1 = 0, dω2 = −ω1 ∧ ω2, dω3 =
−ω1 ∧ ω3. The first of these equations leads toω1 = dx,
wherex is some real-valued function, and the last two equa-
tions can be combined in the form

d(ω2 + hω3) = −ω1 ∧ (ω2 + hω3)

= −dx ∧ (ω2 + hω3),

which leads to

ω2 + hω3 = e−x(dy + hdz), (16)

and this is equivalent toω2 = e−xdy, ω3 = e−xdz, regard-
less of the choice forh.

It may be noticed that in the case of the type I we can
write ω2 +hω3 = dy +hdz, but this leads to the expressions
given above, no matter how we chooseh.

4. Lie groups

The vector fieldsXi mentioned at the beginning of Sec. 3
define a Lie algebra and therefore can be regarded as left-
invariant vector fields on the manifold of a Lie group gener-
ated by this Lie algebra (which is defined up to homomor-
phism) (see,e.g., Refs. [7, 8]). The one-formsωi are then a
basis for the right-invariant one-forms on the group manifold
(and Eqs. (2) are essentially the Maurer–Cartan equations).
The explicit expression for the one-forms in terms of coordi-
nates and the fact that they are right-invariant allow us to find
the group operation, without making use of the exponential
map (see,e.g., Ref. [8], chap. 7).

For instance, making use of the one-forms (15), with
K = 0, one finds that, in terms of the coordinatesx, y, z, the
group operation is locally given byx(gg′) = x(g) + x(g′),
y(gg′) = y(g) + y(g′), z(gg′) = z(g) + z(g′) − y(g)x(g′),
for any pair of elements of the group,g, g′. One can verify
that these formulas can be reproduced by associating to an
elementg of the group, the3× 3 matrix




1 y −z
0 1 x
0 0 1


 .

5. Final remarks

The results of Sec. 3 show that, at least in the examples con-
sidered here, the nonlinear appearance of the unith in Eqs.
(5) and (12) leads to nonequivalent solutions of Eqs. (2). It
would be interesting to know in which other cases a simi-
lar trick may produce effortlessly new solutions from a given
one by means of the use of the complex, double, and dual
numbers.
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