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Numerical study of the fundamental fiber soliton propagation
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This work presents a numerical approach to understand the self-regeneration mechanism of the fundamental soliton propagation driven by the
nonlinear Schr̈odinger equation in the nonlinear fiber formalism. This approach shows that the interplay between dispersion and nonlinearity
results in a compensation effect in the phase and the instantaneous frequency representation of the pulse envelope. For a better understanding
of this compensation process, 3D mapping propagation graphs are presented.
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1. Introduction

Nowadays, soliton-related phenomena are studied in many
fields, such as gravitational physics [1], superconductivity
theory [2, 3], neurosciences [4], oceanography [5], nonlinear
fiber optics [6,8,9], among others. The soliton can be viewed
as a structure with a self-regeneration mechanism that pro-
duces a periodic propagation behavior over a long distance
through a specific nonlinear medium. This work is based on
the nonlinear fiber optics formalism characterizing the soliton
(in a conservative context, known as fundamental soliton) as
a light intensity profile (optical pulse) confined in an optical
fiber that maintains an invariant envelope over propagation
through the interplay of dispersion and nonlinear effects. The
latter effects are introduced by the nonlinear response of the
optical fiber in the presence of an intense optical field [8–10].
On the other hand, in the same formalism, a soliton can be
called dissipative soliton [11] when its intensity profile un-
dergoes over propagation a continuous shaping driven by dis-
sipative processes, in addition to conservative ones; examples
of such nonconservative systems are a fiber laser cavity [12]
and an optical microresonator [13,14].

In general, soliton propagation is modeled by a nonlinear
partial differential equation, for instance, the complex cubic-
quintic Ginzburg-Landau equation (GLE) [9,11,12], the non-
linear Korteweg-de Vries equation (KdV) [5, 15, 16], the
Gross-Pitaevskii equation (GPE) [17, 18], the sine-Gordon
equation [19,20], the nonlinear Schrödinger equation (NLSE)
[6, 8, 9, 18] and others. In this study, we focus on the NLSE
that models the optical pulse propagation in an optical fiber.
This equation is deduced by a classical Maxwell forma-
lism, considering a quasi-monochromatic electric field with a
transversal component (modal distribution in an optical fiber
F (x, y)) and a longitudinal component (pulse temporal pro-
file A(z, T ) = |A(z, T )| exp(iφ(z, T ))), as well as the in-
stantaneous nonlinear response of the optical fiber. This op-

tical medium is viewed as a centrosymmetric material that
introduces a third-order susceptibility contribution and third-
order nonlinear effects. Adding other considerations taken
into account for deducing the NLSE, which are explained
in detail in [8, 9], this propagation equation (without losses)
writes as

∂

∂z
A(z, T ) = −i

β2

2
∂2

∂T 2
A(z, T )

+ iγ|A(z, T )|2A(z, T ) (1)

wherez is the spatial coordinate,T = t − z/vg is the tem-
poral coordinate in the frame of reference that moves with
the pulse at the group velocity (vg), β2 is a parameter that
represents the group velocity dispersion andγ is the nonlin-
ear parameter. The first right-hand term is the contribution of
chromatic dispersion that introduces a pulse broadening and
a delay between the spectral components driven by the de-
pendence of the group velocity of the pulse as a function of
the optical frequency [8,9]. The second right-hand term is the
nonlinear contribution of the Kerr effect that produces spec-
tral changes and modifies the refractive index as function of
the instantaneous intensity (∝ |A(z, T )|2) [8–10,21]. It is re-
markable that the evolution of the temporal profileA(z, T ) in
Eq. (1) is governed by conservation laws as discussed in [22].

The NLSE in a conservative formalism Eq. (1) can be
used to describe multiple dynamics, including modulation in-
stability [23–25], fundamental and high-order solitons [8],
dark solitons [8, 26], breathers dynamics [23, 27, 28] and
others. In this work, we focus on fundamental solitons
whose temporal profiles (hyperbolic secant form) maintain
themselves invariant over propagation by a self-regeneration
mechanism that relies on the compensation effect taking
place in the interplay between dispersion and Kerr effect dur-
ing the pulse propagation, as discussed in [29]. On the other
hand, the fundamental soliton preserves its hyperbolic secant
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form when interacts with other pulses of this type, whichin
means that if two fundamental solitons collide each other,
then this interaction dynamics is driven as an elastic collision
process. Thus, it can be argued that the fundamental soliton
is robust against perturbations.

In the present work, we analyze the role of the individ-
ual contributions of the dispersion and the nonlinearity in the
self-regeneration mechanism that explains the invariant tem-
poral profile characterizing the fundamental soliton propaga-
tion, as illustrated from an original point of view in Sec. 2.
Finally, the conclusions are presented in Sec. 3.

2. Origin of the fundamental fiber soliton
propagation

The soliton nature of a pulse propagating in fiber is due to the
compensation between the Kerr effect and fiber dispersion in
the anomalous regime (β2 < 0). To understand this compen-
sation, we follow closely [29] for the study of the NLSE ap-
plied to pulse propagation with independent contributions of
nonlinear effect and fiber dispersion, for a better understand-
ing of the phenomenology we do not remove the constant
phase offsets. In our analysis, we consider a solitary wave
solution, describing a first-order soliton (N = 1, whereN is
the soliton order) defined by an initial unchirped hyperbolic
secant envelope (A(z = 0, T ) =

√
P0sech(T/T0) that is

discretized in210 temporal gridpoints) propagating through
a single-mode fiber (SMF-28,β2 = −21.66 ps2/km and
γ = 1.5 /W/km at 1550 nm). A first-order soliton is defined
by the principle of the equality between the dispersion length
LD and the nonlinear lengthLNL (N2 = LD/LNL = 1;
LNL = 1/(γP0); LD = T 2

0 /|β2| = 1.15 km, with T0 = 5
ps that it is related with the initial full width at half max-
imum duration asTFWHM ≈ 1.763T0), according to the
initial power expressed byP0 = 1/(γLD) = 577.6 mW.

Firstly, the nonlinear contribution in the NLSE consists
of the spatial evolution of the temporal profile in the pres-
ence of the Kerr effect that produces changes that depend on
the pulse intensity. More precisely, a nonlinear phase propor-
tional to the pulse intensity envelope (self-phase modulation,
SPM) affects the pulse temporal profile along z-propagation.
This contribution is defined as

∂

∂z
A(z, T ) = iγ|A(z, T )|2A(z, T ), (2)

Eq. (2) can be solved through the fourth-order Runge-Kutta
(RK4) method [30]. The nth step inz-propagation is defined
as

A(zn, Tm) = A(zn−1, Tm) +
1
6
4 z(k1 + 2k2 + 2k3 + k4),

(3)
whereM z = zn − zn−1 is the iterative step-size,

k1 = f(A(zn−1, Tm)),

k2 = f(A(zn−1, Tm) + 0.5(4z)(k1)),

k3 = f(A(zn−1, Tm) + 0.5(4z)(k2)),

k4 = f(A(zn−1, Tm) + (4z)(k3)),

f(A(z, T )) = iγ|A(z, T )|2A(z, T ).

We present the temporal profile evolution obtained from
the numerical resolution of Eq. (3), as shown in Appendix A,
thus the iterative application of the RK4 Eq. (3) models the
initial pulse profile (A(z = 0, T )) evolution after each4z
displacement from the initial position (z = 0) to the final
propagation distance (z = 3LD). Hence, it is possible to
generate a mesh-grid array representation in(T, z, |A(z, T |2)
coordinates that can be depicted as a 3D mapping of the pulse
propagation with multicolor scale in the intensity compo-
nents (|A(z, T )|2). As a result, the 3D mapping of the funda-
mental soliton propagation shows a sech2 envelope that re-
mains unchanged over z-propagation, as illustrated in Fig.
1(a). On the other hand, using the fast Fourier transform
(FFT ) algorithm [30] in Eq. (3), the numerical solution
of the pulse propagation can be obtained in the spectral do-
main, as well as its 3D spectral mapping representation,
which shows that the spectral profile presents a broaden-
ing, and changes in its shape overz−propagation, as illus-
trated in Fig. 1b). As a basic explanation, it is impor-
tant to remark that the temporal profile represents a com-
plex quantity (A(z, T ) = |A(z, T )|eiφ(z,T )), and the non-
linear contribution in the NLSE provides a nonlinear phase
evolution in the temporal domain, which can be calculated
asφ(z, T ) = φNL(z, T ) = γ|A(0, T )|2z from analytic in-
tegration of Eq. (2), as illustrated in Appendix B. The non-
linear phase profile is thus proportional to the pulse inten-
sity profile so that one can say that the pulse profile mod-
ulates its phase over propagation, describing the SPM due
to the Kerr effect. On the other hand, the Kerr effect alone
does not provide any changes in the pulse profile envelope
(|A(z, T )|2 = A(z, T )A†(z, T )), as confirmed by the tem-
poral profile evolution in Fig. 1a), obtained by the numerical
resolution of Eq. (3). In contrast, in the spectral domain
(Ã(z, ω) = FFT (A(z, T ))), the nonlinear phase contribu-
tion introduces changes in the form of a symmetric broaden-
ing of the spectral profile, as depicted in Fig. 1b).

Besides, using the four-quadrant inverse tangent (atan2)
[31] in Eq. (3), the numerical solution of the phase
propagation can be calculated in the temporal domain
(φ(z, T ) = atan2(Im(A(z, T )), Re(A(z, T ))), as explained
in Appendix A. As discussed before, the nonlinear contribu-
tion (arising from the Kerr effect) produces the SPM which
introduces the nonlinear phaseφNL; accordingly, the nonlin-
ear phase evolution obtained numerically shows that asech2-
like profile (proportional to the intensity profile) is reached,
with its central value (atT = 0 ps) increasing in a linear rate
of 1 rad per unit nonlinear length (1 rad/LNL = 1 rad/LD),
as shown in Fig. 1b). On the other hand, the pulse tem-
poral profile can also be characterized by the instantaneous
frequency defined as
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FIGURE 1. Fundamental fiber soliton propagation associated with the nonlinear contribution. a) Temporal profile propagation, b) spectral
profile propagation, c) phase evolution and d) instantaneous frequency evolution.

δν = ν − ν0 = − 1
2π

d

dT
φ, (4)

whereν0 (λ0 = 1550 nm) is the central frequency of the
spectral pulse profile.

As a basic explanation, the instantaneous frequency
shows the temporal location of the different spectral compo-
nents of a signal, that means that the instantaneous frequency
can be viewed as a time-frequency mapping; consequently,
it is a versatile parameter to understand some physical phe-
nomenologies that involve a signal analysis, as discussed in
detail in [32]. In contrast, the pulse propagation problem in
optical fiber, as well as in other transparent media, is char-
acterized by a temporal dependence of the instantaneous fre-
quencyδν = δν(T ) that builds up over propagation due to
the dispersion contribution and nonlinear effects, this specific
dependenceδν(T ) is known as “pulse chirp”. Hence, the
variations in the temporal and spectral pulse profile evolution
can be analyzed with the pulse chirp characteristic, which
can be used to interpret how the spectral components are dis-
tributed along the pulse profile in the temporal domain.

Accordingly, the instantaneous frequency is obtained nu-
merically from Eq. (4), introducing the numerical deriva-
tive of the nonlinear phase (φ = φNL), as illustrated in

Appendix A; for a better accuracy in the numerical deriva-
tive, the three points forward difference formula [30] is used.
Therefore, the instantaneous frequency representation, as
shown in Fig. 1d), describes an S-shaped chirp which de-
fines two regions where the pulse spectral components are
localized in the temporal domain. The first region at the lead-
ing edge of the temporal profile (T < 0) has negativeδν
(ν < ν0), which means that the red-shifted (longer wave-
length) spectral components (λ > λ0) are localized in this
region. The second region at the trailing edge of the tempo-
ral profile (T > 0) reaches positive values ofδν (ν > ν0),
meaning that the blue-shifted (shorter-wavelength) spectral
components (λ < λ0) are concentrated in this region. On the
other hand, the central region of the instantaneous frequency,
which is bounded between the maximum|δν| values at the
leading and trailing edges of the temporal profile, depicts a
roughly linear chirp with a positive slope (up chirp). Besides,
the validation of the spectral broadening effect induced by
the nonlinear contribution is evidenced in the instantaneous
frequency representation when the linear chirp evolution in-
creases over propagation. In other words, the generation of
new red-shifted and blue-shifted components inthe broad-
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FIGURE 2. Fundamental fiber soliton propagation associated to the dispersion contribution. a) Temporal profile evolution, b) spectral profile
evolution, c) phase evolution and d) instantaneous frequency evolution.

ening effect is demonstrated by steepening of the instanta-
neous frequency and the corresponding increase of the posi-
tive linear chirp between the leading and trailing edges of the
pulse profile as the maximum|δν| values increase over prop-
agation; considering that if the maximumδν value at trail-
ing edge of the temporal profile increases, then new shorter
blue-shifted wavelengths are generated; symmetrically, if the
minimumδν value at the leading edge of the temporal profile
decreases, then new longer redshifted wavelengths are gener-
ated.

On the other hand, the dispersion contribution in a first-
order soliton propagation is reproduced by

∂

∂z
A(z, T ) = −i

β2

2
∂2

∂T 2
A(z, T ), (5)

Eq. (5) can be integrated by RK4 in the frequency domain.
The nth step overz−propagation is defined as:

Ã(zn, ωm) = Ã(zn−1, ωm) +
1
6
4 z(d1 + 2d2 + 2d3 + d4),

(6)

where

d1 = g(Ã(zn−1, ωm)),

d2 = g(Ã(zn−1, ωm) + 0.5(4z)(d1)),

d3 = g(Ã(zn−1, ωm) + 0.5(4z)(d2)),

d4 = g(Ã(zn−1, ωm) + (4z)(d3)),

g(Ã(z, ω)) = 0.5iβ2ω
2
mÃ(z, ωm).

Using the inverse fast Fourier transform (IFFT ) in
Eq. (6), the numerical solution of pulse propagation can
be found in the time domain, as discussed in Appendix A;
therefore, its 3D mapping evolution (Fig. 2a)) shows that
the dispersion contribution alters the pulse temporal profile,
broadening it. Besides, the spectral profile is invariant over
z−propagation (in amplitude), as depicted in Fig. 2b). As a
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FIGURE 3. Compensation effect between the individual nonlinear and dispersion contributions in the phase and instantaneous frequency
after a small propagation distance of: a)z = 0.05LD, b) z = 0.1LD and c)z = 0.2LD.

basic explanation, the mathematical equation driven by the
dispersion contribution Eq. (5) in the spectral domain (re-
placing ∂T → −iω) evidences that the dispersion intro-
duces its effect as a spectral phase shift (φD(z, λ)), as
discussed in Appendix B, so the envelope of the spectral
profile (|Ã(z, λ)|2 = Ã(z, λ)Ã†(z, λ), where Ã(z, λ) =
|Ã(z, λ)|eiφD(z,λ)) remains constant over propagation, as
validated by the numerical solution in Fig. 2b). In contrast,
in the temporal domain (A(z, T ) = IFFT (Ã(z, λ))), the
spectral dispersion phase introduces a symmetric broadening
effect in the temporal profile, as confirmed in Fig. 2a).

On the other hand, the tendency of the phase and the in-
stantaneous frequency due to the dispersion contribution are
obtained by the same numerical approach as for the case of
the nonlinear contribution, as shown in Appendix A; thus,
the phase is calculated by theatan2 algorithm applied to the
temporal profile A(z,T), and the instantaneous frequency by
the numerical derivative of the calculated phase, as defined
in Eq. (4). Accordingly, the phase evolution shows a profile
that modifies its shape and expands overz−propagation, as
shown in Fig. 2(c); it is notable that for a distancez < LD,
the constant phase level at the endpoints of a negative sech2-
like form increases at a linear rate of 0.5 rad/LD; on the other
hand, for a distancez > LD in the constant phase level ap-
pears a small ripple that increases over propagation until an
induced parabolic phase profile is expanded over all timeT
range, as depicted in the insets of Fig. 2c).

Also, the instantaneous frequency evolution describes a
negative linear slope (chirp< 0) in the central region of
the pulse (corresponding to the region of negative sech2-like
form in its phase forz < LD), whose temporal extension
is broadening over z-propagation as illustrated in Fig. 2d).
A negative chirp is obtained in accordance with the nega-
tive value ofβ2 (anomalous dispersion regime): indeed, in
this regime, the blue-shifted components of the pulse spec-
trum travel faster than the red-shifted spectral components, so
that they separate temporally; as a consequence, the former
concentrate in the leading edge of the pulse temporal profile
(T < 0), and the latter in the trailing edge (T > 0), yielding a
negative linear chirp. If nowβ2 were positive (normal disper-

sion regime), then the opposite separation would take place,
and the chirp would be positive. Thus, it is important to re-
mark that the instantaneous frequency displays an S-shaped
form with a negative chirp in the central temporal region of
the pulse forz < LD, whereas forz > LD the instantaneous
frequency tends to a negative linear slope with small oscil-
lations that expand over the whole timeT range; eventually,
these small oscillations disappear over z-propagation until a
roughly linear slope is achieved over the whole time range,
as depicted Fig. 2d). The negative linear chirp expansion
over the whole time range can be understood physically by
the distribution of the spectral components over time, accord-
ing to the linear relationship between arrival time and fre-
quency caused by the anomalous dispersion, this linear rela-
tion is defined by the pulse spread functionδT = β2zδν, with
β2 < 0 (anomalous dispersion); thus, the blue-shifted com-
ponents with positiveδν values shift towards negative times
(δT < 0), whereas the red-shifted components with negative
δν values are delayed towards positive times (δT > 0).

At a small propagation distance (z < 0.2LD), it is in-
teresting to compare the phase and instantaneous frequency
associated with the nonlinear and dispersion effects acting
separately, as well the sum of these two contributions, as de-
picted in Fig. 3. Notably the phase associated with dispersion
compensates almost exactly the nonlinear phase; at the same
time, the phase introduced by dispersion introduces the con-
stant phase level at the endpoints of the pulse. On the other
hand, the negative and positive slopes of the instantaneous
frequency in the central region of the pulse (associated with
the dispersion and nonlinear contribution, respectively) com-
pensate each other to achieve a nearly constant level. In con-
sequence, if the phase and instantaneous frequency reach a
constant and unchirped level inT , then the physical interpre-
tation is that the interplay of the nonlinear effect and disper-
sion contribution (if the latter is anomalous) allows preserv-
ing both temporal and spectral pulse profiles over the propa-
gation. For propagation over longer distances, the compensa-
tion is not exact if the two effects are taken separately (see for
example the small ripple in the total instantaneous frequency
in Fig. 3c)), so it is necessary to analyze the numerical so-
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FIGURE 4. Fundamental soliton propagation with both contribution of nonlinear and dispersion part. a) Pulse temporal profile propagation,
b) phase evolution, and c) instantaneous frequency evolution over 3 timesLD.

lution with the simultaneous interplay of the nonlinear and
dispersion contributions in the NLSE Eq. (1) to get correct
results.

In general, when both the nonlinear and dispersion con-
tributions are applied simultaneously in the fundamental soli-
ton propagation, it is possible to compensate for the pulse
broadening that occurs in the case of purely anomalous dis-
persive propagation and to achieve a constant instantaneous
frequency over allz-propagation. The latter is explained by
the compensation of the positive and negative chirps associ-
ated with nonlinear and anomalous dispersion effects, respec-
tively. These characteristics of fundamental soliton propaga-
tion are evidenced by the numerical solution of the complete
NLSE Eq. (1) solved using a pseudo-spectral method; in
particular, we implemented the symmetric split-step Fourier
method (S-SSFM) [8]. So, its nth z-step is defined as

A(zn, T ) = F−1

{
e

Mz
2 D̃F

[
eMzÑF−1

×
(
e

Mz
2 D̃F (A(zn−1, T ))

) ]}
, (7)

whereF andF−1 are the fast Fourier transform and its in-
verse, respectively;M z = zn − zn−1 is the spatial step; be-
sides,D̃ = 0.5iβ2ω

2 is the linear (dispersion) operator and
Ñ = iγ|A(zn−1, T )|2 is the nonlinear operator.

Firstly, by the numerical solution of the temporal profile
of Eq. (7), it can be demonstrated that, in a 3D mapping of
the pulse propagation, the sech2 pulse envelope is preserved
overz-propagation, as shown in Fig. 4a). The sech2 form as-
sociated to the nonlinear phase (Fig. 1c)) is compensated by
the form associated to the dispersion contribution (Fig. 2c));
therefore, a constant phase (over time) that increases over
z at a linear rate of 0.5 rad/LD is achieved, as depicted in
Fig. 4b). As discussed previously, at small propagation dis-
tance (Fig. 3), it is clear that the dispersion contribution
drives the phase level offsets outside of the central tempo-
ral position of the soliton, that increases in a linear rate of 0.5
radian per dispersion length (LD), whereas the central tem-
poral position of the soliton achieves a constant phase level
with the same linear increase rate but the origin is introduced
by the simultaneous interplay of the dispersion and the Kerr
effect. Finally, if the phase is constant inT , it is clear that
the instantaneous frequency (Eq. 4) is zero over the whole
temporal profile duringz−propagation (Fig. 4c)).

3. Conclusions

In general, we have shown that the interplay between the lin-
ear and nonlinear parts of the NLSE has an important corre-
lation with each other in order to reproduce a specific phe-
nomenology in the nonlinear fiber optics formalism. In this
paper, a complete understanding of the fundamental soliton
dynamics modeled by the NLSE that represents a conserva-
tive system in the nonlinear fiber optics formalism is stud-
ied. It is noticeable that the self-regeneration mechanism of
the fundamental soliton is a broadening compensation pro-
cess between the dispersion contribution and the Kerr ef-
fect, which ensures the invariance of the temporal profile over
propagation.

Appendix

A. Numerical algorithm to obtain the pulse tem-
poral profile, the phase and instantaneous fre-
quency

To understand the numerical approach used to analyze the
fundamental soliton propagation problem, the algorithms to
solve the NLSE, as well as to obtain the phase and instanta-
neous frequency, are presented.

FIGURE A.1. The numerical approach in the fundamental soliton
propagation problem. Diagram of the algorithm to solve a) the non-
linear and b) the dispersion contributions of the NLSE. c) Diagram
of the split-step Fourier method to solve the NLSE. d) Diagram to
obtain numerically the phase and the instantaneous frequency of
the pulse temporal profile.
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FIGURE A.2. Fundamental fiber soliton propagation associated to the nonlinear contribution. a) Temporal profile propagation, b) spectral
profile propagation, c) phase evolution and d) instantaneous frequency evolution.

Firstly, it is important to remark that the numerical so-
lution of the pulse temporal profile is represented by a
mesh-grid array in(z, T, A(z, T )) coordinates where thez-
propagation with4z step is distributed inN + 1 levels
(z = [z0, z1, ..., zn, ..., zN−1, zN ] wheren ∈ [0, N ]) and the
temporal variableT with 4T step is distributed inM + 1
elements (T = [T0, T1, ..., TM , ..., TM−1, TM ] wherem ∈

[0,M ]), as shown in Fig. A.1. To represent the 3D mapping
pulse intensity propagation used in this work in Figs. 1a) and
2a), theA(z, T ) (complex quantity) coordinate is replaced by
|A(z, T )|2 (W). On the other hand, the 3D mapping represen-
tation of the pulse intensity profile in the spectral domain (in
Figs. 1b) and 2b)) are obtained numerically when theA(z, T )
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coordinate is replaced bỹA(z, ω) = FFT (A(z, T )), then
Ã(z, ω) coordinate is expressed as|Ã(z, λ)|2.

The diagram of the algorithm to solve the nonlinear con-
tribution in the NLSE Eq. (2) is depicted in Fig. A.2a).
Firstly, the input parameters are defined, including the ini-
tial temporal profile (A(z0, T ) =

√
P0sech(T/T0)), the

nonlinear parameter (γ), the mesh-grid array size(N, M),
the temporal-step size (4T ) and the z-step size (4z).
Then, the fundamental soliton condition (LD = LNL) is
confirmed; if this condition is not fulfilled, then the ini-
tial power is changed to guarantee the fundamental soli-
ton propagation. Additionally, the temporal and spatial
distribution are defined (T → [−TF , ..., 0, ..., TF ]; z →
[0, ..., zF ]), as well as the initial temporal profile is introduced
(A(0, T ) → [A(0,−TF ), ..., A(0, 0), ..., A(0, TF )]). Thus,
the RK4 method is applied to integrate Eq. (2) from z = 0
to z = zF ; ending this iterative process, the pulse temporal
profile solution (A(z, T )) is reached.

On the other hand, the diagram of the algorithm to solve
the dispersion contribution in the NLSE Eq. (5) is shown
in Fig. A.2(b). In this case, the diagram follows the same
stage description implemented for the nonlinear case, but the
NLSE is solved in the spectral domain. Thus it is necessary
to introduce the frequency distribution, as well as the initial
pulse spectral profile (̃A(z0, ω) = FFT (A(z0, T ))); at the
same time, theIFFT is used to obtain the pulse profile in
the temporal domain.

Besides, the diagram of the algorithm to solve the con-
tinuous interplay between the nonlinear and dispersion con-
tribution in the NLSE Eq. (1) is shown in Fig. A.2(c). In
this case, the temporal and frequency distributions are intro-
duced to implement the SSFM, which involves integrating
the NLSE in the temporal and spectral domain.

Finally, the diagram of the algorithm to obtain numer-
ically the phase and instantaneous frequency is illustrated
in Fig. A.2(d). Firstly, implementing the four-quadrant in-
verse tangent (atan2) in the pulse temporal profile solution,
the unwrapped phase representation is reached. Then, in-
troducing the numerical derivative of the phase by the three
points forwards difference formula, the instantaneous fre-
quency Eq. (4) is gotten.

Note: the presented algorithms can be implemented in
multiple computing environments, such asc, c++, python,
GNU OCTAVE, and others. Also, it is necessary to ver-
ify that the discrete representation of the fast Fourier trans-
form (FFT ) and its inverse (IFFT ) are consistent with their
continuous representation established in the derivation of the
NLSE:

Ã(z, ω)=FFT (A(z, T )) ↔
∞∫

−∞
A(z, T )eiωT dT (A.1)

A(z, T )=IFFT (Ã(z, ω)) ↔
∞∫

−∞
Ã(z, ω)e−iωT dω. (A.2)

B. Nonlinear phase and dispersion phase in
the pulse propagation problem modeled by the
NLSE

To analyze the foundation of the induced phase due to the in-
dividual effect of the nonlinear contribution or the dispersion
contribution, the next analytic approach is presented.

Firstly, let us introduce a proposed temporal profile ex-
pressed as

A(z, T ) = CeiφNL(z,T ), (B.1)

whereC = C(T ) is constant overz-propagation, andφNL is
the nonlinear phase.

Then, inserting the proposed temporal profile Eq. (B.1)
in the nonlinear contribution of the NLSE Eq. (2), the non-
linear phase is deduced asφNL(z, T ) = γ|C|2z. Besides,
taking into account that the initial temporal profile is known
(A(z = 0, T ) = C), thus the nonlinear phase is defined as

φNL(z, T ) = γ|A(z = 0, T )|2z. (B.2)

In consequence, the nonlinear phase is proportional to the in-
tensity components of the initial temporal profile (|A(z =
0, T )|2), the nonlinear parameter (γ = 1.3 W−1 km−1 at
1550 nm) and the propagation distance (z). Hence, the non-
linear phase has the same tendency of the initial temporal pro-
file, that means that if a sech2 initial pulse envelope is con-
sidered, then the nonlinear phase depicts a sech2-like form
along the temporal variableT . On the other hand, the nonlin-
ear phase increases over propagation, and it is easy to demon-
strated thatφNL introduces a linear rate of 1 rad per nonlin-
ear length at the central temporal position of the pulse profile
(T = 0 ps, where|A(z = 0, T )|2 = P 2

0 ), as demonstrated:

φNL(z = LNL = LD, T = 0) = γP 2
0 LNL = 1 rad. (B.3)

On the other hand, the dispersion contribution induced a
phase in the spectral domain. Thus, the proposed spectral
pulse profile solution is defined as

Ã(z, ω) = GeiφD(z,ω), (B.4)

whereG = G(ω) is constant overz-propagation andφD is
the dispersion phase. In the spectral domain, the dispersion
contribution is driven by Eq. (5) (replacing∂T → −iω) is
written as

∂

∂z
Ã(z, ω) = i

1
2
β2ω

2Ã(z, ω). (B.5)

Thus, inserting the proposed spectral solution Eq. (B.4) in
Eq. (B.5), the dispersion phase is expressed mathematically
as

φD(z, ω) =
1
2
β2ω

2z. (B.6)

Accordingly, the dispersion phase is a function of the fre-
quency andz-propagation distance in the spectral domain. In
contrast, the dispersion phase in the temporal domain is not
easy to define as analytic representation; in consequence, its
temporal tendency over propagation is obtained numerically,
as analyzed in Sec. 2.
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