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Numerical study of the fundamental fiber soliton propagation
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This work presents a numerical approach to understand the self-regeneration mechanism of the fundamental soliton propagation driven
nonlinear Schisdinger equation in the nonlinear fiber formalism. This approach shows that the interplay between dispersion and nonlinea
results in a compensation effect in the phase and the instantaneous frequency representation of the pulse envelope. For a better underst
of this compensation process, 3D mapping propagation graphs are presented.
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1. Introduction tical medium is viewed as a centrosymmetric material that

introduces a third-order susceptibility contribution and third-
Nowadays, soliton-related phenomena are studied in manyrder nonlinear effects. Adding other considerations taken
fields, such as gravitational physics [1], superconductivityinto account for deducing the NLSE, which are explained

theory [2, 3], neurosciences [4], oceanography [5], nonlinealn detail in [8, 9], this propagation equation (without losses)
fiber optics [6,8,9], among others. The soliton can be viewegyrites as

as a structure with a self-regeneration mechanism that pro-

duces a periodic propagation behavior over a long distance QA(z,T) = _i@izA(%T)
through a specific nonlinear medium. This work is based on 0z 2 017
the nonlinear fiber optics formalism characterizing the soliton +iy|A(z,T)|?A(2,T) (1)

(in a conservative context, known as fundamental soliton) as
a light intensity profile (optical pulse) confined in an optical wherez is the spatial coordinatd, = t — z /v, is the tem-
fiber that maintains an invariant envelope over propagatiomporal coordinate in the frame of reference that moves with
through the interplay of dispersion and nonlinear effects. Thehe pulse at the group velocity), 8. is a parameter that
latter effects are introduced by the nonlinear response of theepresents the group velocity dispersion anig the nonlin-
optical fiber in the presence of an intense optical field [8—10]ear parameter. The first right-hand term is the contribution of
On the other hand, in the same formalism, a soliton can behromatic dispersion that introduces a pulse broadening and
called dissipative soliton [11] when its intensity profile un- a delay between the spectral components driven by the de-
dergoes over propagation a continuous shaping driven by digendence of the group velocity of the pulse as a function of
sipative processes, in addition to conservative ones; examplése optical frequency [8,9]. The second right-hand termis the
of such nonconservative systems are a fiber laser cavity [12jonlinear contribution of the Kerr effect that produces spec-
and an optical microresonator [13, 14]. tral changes and modifies the refractive index as function of
In general, soliton propagation is modeled by a nonlineathe instantaneous intensity ( A(z, T')|?) [8-10,21]. Itis re-
partial differential equation, for instance, the complex cubic-markable that the evolution of the temporal proflléz, T') in
quintic Ginzburg-Landau equation (GLE) [9,11,12], the non-Eq. (1) is governed by conservation laws as discussed in [22].
linear Korteweg-de Vries equation (KdV) [5, 15, 16], the The NLSE in a conservative formalism Egl) (can be
Gross-Pitaevskii equation (GPE) [17, 18], the sine-Gordorused to describe multiple dynamics, including modulation in-
equation [19,20], the nonlinear Séidinger equation (NLSE) stability [23—25], fundamental and high-order solitons [8],
[6,8,9,18] and others. In this study, we focus on the NLSEdark solitons [8, 26], breathers dynamics [23, 27, 28] and
that models the optical pulse propagation in an optical fiberothers. In this work, we focus on fundamental solitons
This equation is deduced by a classical Maxwell forma-whose temporal profiles (hyperbolic secant form) maintain
lism, considering a quasi-monochromatic electric field with athemselves invariant over propagation by a self-regeneration
transversal component (modal distribution in an optical fibermechanism that relies on the compensation effect taking
F(z,y)) and a longitudinal component (pulse temporal pro-place in the interplay between dispersion and Kerr effect dur-
file A(z,T) = |A(2,T)|exp(i¢(2,T))), as well as the in- ing the pulse propagation, as discussed in [29]. On the other
stantaneous nonlinear response of the optical fiber. This ofrand, the fundamental soliton preserves its hyperbolic secant
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form when interacts with other pulses of this type, whichin ks = f(A(zn-1,Tm) + 0.5(A2)(k2)),

means that if two fundamental solitons collide each other, X

then this interaction dynamics is driven as an elastic collision ks = f(A(zn-1,Tm) + (B2)(ks)),

process. Thus, it can be argued that the fundamental soliton  f(A(z, 7)) = iy|A(z, T)|?A(z, T).

is robust against perturbations.

In the present work, we analyze the role of the individ-

ual contributions of the dispersion and the nonlinearity in the =~ We present the temporal profile evolution obtained from

self-regeneration mechanism that explains the invariant tenthe numerical resolution of EG3), as shown in Appendix A,

poral profile characterizing the fundamental soliton propagathus the iterative application of the RK4 E) (nodels the

tion, as illustrated from an original point of view in Sec. 2. initial pulse profile @A(z = 0,7)) evolution after each\z

Finally, the conclusions are presented in Sec. 3. displacement from the initial positior: (= 0) to the final

propagation distancez (= 3Lp). Hence, it is possible to

generate a mesh-grid array representatidfin, | A(z, T|?)

. coordinates that can be depicted as a 3D mapping of the pulse

propagation propagation with multicolor scale in the intensity compo-

The soliton nature of a pulse propagating in fiber is due to th&ents (A(ZZ T)P%). Asa r?S”'t' the 3D mapping of the funda-
. : . .~ " .mental soliton propagation shows a seemvelope that re-

compensation between the Kerr effect and fiber dispersionin . . ) -

the anomalous regime}{ < 0). To understand this compen- mains unchanged over z—propagatlon, as |Ilus_trated in Fig.

sation, we follow closely [29] for the study of the NLSE ap- 1(a). On the other hand, using the fast Fourier transform

plied to pulse propagation with independent contributions 01(FFT) algorithm [30] in Eq. 1), the numerical solution

nonlinear effect and fiber dispersion, for a better understanuQf t_he pulse propagahon can be obtalneq in the spectral_do-
main, as well as its 3D spectral mapping representation,

ing of the phenomenology we do not remove the constant .. .

pr?ase oﬁsgts. In our an%)llysis we consider a solitary wav&vhICh shows that.th? spectral profile presgnts a proaden-

solution, describing a first-order solitoV(= 1, whereN is ![rr]a?t’ezn% c'?iangelsb;n IfssgaEZsci)c\:ée;fr&an%Eg:\Oﬂi't alf Iilrl’r:JS(-)r-

the soliton order) defined by an initial unchirped hyperbolic 9. : Pt ' P

secant enveloped(z — 0,T) = /Pysech(T/Tp) that is tant to remark that the temporal profile represents a com-
- Y — Vv41io0 0

. _ ip(z,T) _
discretized in2'° temporal gridpoints) propagating through Fgeexaqggr?:n')l; (?g;’ ? ﬂ; |l\1|4|_(§;ET)|Z ide ), agdl.t:: nor;]a e
a single-mode fiber (SMF-283, = —21.66 ps’/km and inear ribution | provides a honiinear pnas

~ = 1.5 /W/km at 1550 nm). A first-order soliton is defined Z\S/(;JEJ:%T) m_tk;e te(:“;%raldO‘2?6”’T\;\‘/Q;CROcrinagzlit?gciﬁl?ted

by the principle o_f the equality betwezen the dispersion lenthegrati’on of_Eq].VL(2)7 as iﬁugtrateé in Appendix B. The non-

éD arldlt?(e ;%?'Ilzear_legzg/ﬂ‘ﬁévf_(]\i 15:kr€1D\{vﬁ]r\{LT :_ 15’ linear phase profile is thus proportional to the pulse inten-
NL = 2\, BD == o /1P2] = o - 0 sity profile so that one can say that the pulse profile mod-

ps that it is related with the initial full width at half max- ulates its phase over propagation, describing the SPM due

imum duration asl’ryw gy ~ 1.7631), according to the ’

initial power expressed by = 1/(vLp) = 577.6 mW. to the Kerr effect. On the other hand, the Kerr effect alone

Firstly, the nonlinear contribution in the NLSE consists does not provide any changes in the pulse profile envelope

2 t i -
of the spatial evolution of the temporal profile in the pres-qA(Z’T)‘. = A(z,T)A'(2,T)), as confirmed by the tem
ence of the Kerr effect that produces changes that depend (g)r(])ral p_r0f|le evolution in Fig. 1a), opta|ned by the numen(_:al
the pulse intensity. More precisely, a nonlinear phase propo{_zsolunon_o;?g; jf) ' I;J C)OT;ZiSr;[é)r']?ntgzr S‘ilzcst;algri??;":'
tional to the pulse intensity envelope (self-phase moduIationﬁOEIZi’n“;’r)O(;JCeS crsargzés)i% ’the form (;f as ‘r)nmetric brolaéjen-
SPM) affects the pulse temporal profile along z-propagation. Y y

This contribution is defined as ing of the spectral profile, as depicted in Fig. 1b).
9 Besides, using the four-quadrant inverse tangettr{2)
——A(z,T) = ir|A(z, T)PA(z,T), (2) [31] in Eq. [3), the numerical solution of the phase

0 . . .
: propagation can be calculated in the temporal domain

Eqg. 2) can be solved through the fourth-order Runge—Kutta( ;
. ; o . ¢(z,T) = atan2(Im(A(2,T)),Re (A(z,T))), as explained
(RK4) method [30]. The nth step irrpropagation is defined in Appendix A. As discussed before, the nonlinear contribu-

as tion (arising from the Kerr effect) produces the SPM which
A(zn, Ty) = A(2n—1,Trm) + 1 A z(ky + 2ky + 2ks + k),  introduces the nonlinear phage . ; accordingly, the nonlin-
6 @) ear phase evolution obtained numerically shows thata2-

like profile (proportional to the intensity profile) is reached,

with its central value (af” = 0 ps) increasing in a linear rate
k1= f(A(zn-1,Tn)), of 1 rad per unit nonlinear length ¢ad/Ly . = 1 rad/Lp),

. as shown in Fig. 1b). On the other hand, the pulse tem-

ko = f(A(zn—1, Tm) + 0.5(22) (k1)) poral profile can also be characterized by the instantaneous
frequency defined as

2. Origin of the fundamental fiber soliton

whereaA z = z, — z,_1 is the iterative step-size,
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FIGURE 1. Fundamental fiber soliton propagation associated with the nonlinear contribution. a) Temporal profile propagation, b) spec
profile propagation, c) phase evolution and d) instantaneous frequency evolution.

7ii¢ (4) Appendix A; for a better accuracy in the numerical deriva-
) 2 dT™’ tive, the three points forward difference formula [30] is used.
wherew, (Ao = 1550 nm) is the central frequency of the Therefore, the instantaneous frequency representation, as
spectral pulse profile. _ shown in Fig. 1d), describes an S-shaped chirp which de-
As a basic explanation, the instantaneous frequencynes two regions where the pulse spectral components are
shows the temporal location of the different spectral compOtgcalized in the temporal domain. The first region at the lead-
nents of a signal, that means that the instantaneous frequen% edge of the temporal profile( < 0) has negativeiv
can be viewed as a time-frequency mapping; consequentlx,, < 1), which means that the red-shifted (longer wave-
it is a versatile parameter to understand some physical ph?éngth) spectral componenta (> \o) are localized in this
nomenologies that involve a signal analysis, as discussed ir’égion. The second region at the trailing edge of the tempo-
det_ail in_[32]. In contras‘_[, the pulse propagation prot_)lem iNral profile (' > 0) reaches positive values 6 (v > ),
optical fiber, as well as in other transparent media, is charmeaning that the blue-shifted (shorter-wavelength) spectral
acterized by a temporal dependence of the instantaneous fr@c')mponents)( < o) are concentrated in this region. On the

quencydr = év(T) that builds up over propagation due t0 sher hand, the central region of the instantaneous frequency,
the dispersion contribution and nonlinear effects, this specifignich is bounded between the maximudw| values at the
dependencév(T) is known as “pulse chirp”. Hence, the |ga4ing and trailing edges of the temporal profile, depicts a
variations in the tem_poral and spectr_al pulse profl!e _evolutl_or}ougmy linear chirp with a positive slope (up chirp). Besides,
can be analyzed with the pulse chirp characteristic, whiche yalidation of the spectral broadening effect induced by
can be used to interpret how the spectral components are digje nonlinear contribution is evidenced in the instantaneous
tributed along the pulse profile in the temporal domain. frequency representation when the linear chirp evolution in-
Accordingly, the instantaneous frequency is obtained NUgreases over propagation. In other words, the generation of

merically from Eq. 4), introducing the numerical deriva- new red-shifted and blue-shifted components inthe broad-
tive of the nonlinear phasep(= ¢yn1), as illustrated in

ov=v—1y=
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FIGURE 2. Fundamental fiber soliton propagation associated to the dispersion contribution. a) Temporal profile evolution, b) spectral profile
evolution, c) phase evolution and d) instantaneous frequency evolution.

ening effect is demonstrated by steepening of the instantawhere
neous frequency and the corresponding increase of the posi-
tive linear chirp between the leading and trailing edges of the

pulse profile as the maximufir| values increase over prop- di = 9(Alzn—1,0m)),

agation; considering that if the maximuéw value at trail- do = g(A(zn—1,wm) + 0.5(Az2)(dy)),

ing edge of the temporal profile increases, then new shorter

blue-shifted wavelengths are generated; symmetrically, if the ds = g(A(zn-1,wm) + 0.5(A2)(da)),

minimumdv value at the leading edge of the temporal profile dy = (A(z Lwm) + (A2)(ds))

decreases, then new longer redshifted wavelengths are gener- nehm ’

ated. 9(A(z,w)) = 0.5i 82w, Az, wp,).

On the other hand, the dispersion contribution in a first-

order soliton propagation is reproduced by
9 3 Using the inverse fast Fourier transformi{F'T) in
@A(Z’T) =— ?QW (2,T), (5) Eq. 6), the numerical solution of pulse propagation can

be found in the time domain, as discussed in Appendix A,
‘therefore, its 3D mapping evolution (Fig. 2a)) shows that
the dispersion contribution alters the pulse temporal profile,

A(zp,wm) = A(zn—1,wm) +5 A 2(dy + 2dg + 2d3 + dy), broadening it. Besides, the spectral profile is invariant over
©6) z—propagation (in amplitude), as depicted in Fig. 2b). As a

Eq. () can be integrated by RK4 in the frequency domain
The nth step ove,f—propagation is defined as:
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FIGURE 3. Compensation effect between the individual nonlinear and dispersion contributions in the phase and instantaneous freque
after a small propagation distance of:za= 0.05Lp, b)z = 0.1Lp and ¢)z = 0.2Lp.

basic explanation, the mathematical equation driven by thesion regime), then the opposite separation would take place,
dispersion contribution Eq. (5) in the spectral domain (re-and the chirp would be positive. Thus, it is important to re-
placing 0r — —iw) evidences that the dispersion intro- mark that the instantaneous frequency displays an S-shaped
duces its effect as a spectral phase shif(z,\)), as form with a negative chirp in the central temporal region of
discussed in Appendix B, so the envelope of the spectrahe pulse for: < Lp, whereas for > Lp the instantaneous
profile (A(z,\)?2 = A(z,A)Af(z,)\), where A(z,\) =  frequency tends to a negative linear slope with small oscil-
|[1(z,)\)\ei¢D(zv*)) remains constant over propagation, aslations that expand over the whole tirfierange; eventually,
validated by the numerical solution in Fig. 2b). In contrast,these small oscillations disappear over z-propagation until a
in the temporal domainA(z,T) = IFFT(A(z,)))), the  roughly linear slope is achieved over the whole time range,
spectral dispersion phase introduces a symmetric broadenirag depicted Fig. 2d). The negative linear chirp expansion
effect in the temporal profile, as confirmed in Fig. 2a). over the whole time range can be understood physically by
On the other hand, the tendency of the phase and the irthe distribution of the spectral components over time, accord-
stantaneous frequency due to the dispersion contribution aiag to the linear relationship between arrival time and fre-
obtained by the same numerical approach as for the case qfiency caused by the anomalous dispersion, this linear rela-
the nonlinear contribution, as shown in Appendix A; thus,tion is defined by the pulse spread functin = 32 zdv, with
the phase is calculated by th&un?2 algorithm applied to the 3y < 0 (anomalous dispersion); thus, the blue-shifted com-
temporal profile A(z,T), and the instantaneous frequency byonents with positivér values shift towards negative times
the numerical derivative of the calculated phase, as define@T < 0), whereas the red-shifted components with negative
in Eq. (4). Accordingly, the phase evolution shows a profiledv values are delayed towards positive tim&g (> 0).
that modifies its shape and expands ovepropagation, as At a small propagation distance (< 0.2Lp), it is in-
shown in Fig. 2(c); it is notable that for a distance< Lp,  teresting to compare the phase and instantaneous frequency
the constant phase level at the endpoints of a negativé-sechassociated with the nonlinear and dispersion effects acting
like formincreases at a linear rate of 0.5 fég,; onthe other  separately, as well the sum of these two contributions, as de-
hand, for a distance > Lp in the constant phase level ap- picted in Fig. 3. Notably the phase associated with dispersion
pears a small ripple that increases over propagation until acompensates almost exactly the nonlinear phase; at the same
induced parabolic phase profile is expanded over all filme time, the phase introduced by dispersion introduces the con-
range, as depicted in the insets of Fig. 2c). stant phase level at the endpoints of the pulse. On the other
Also, the instantaneous frequency evolution describes hand, the negative and positive slopes of the instantaneous
negative linear slope (chirp< 0) in the central region of frequency in the central region of the pulse (associated with
the pulse (corresponding to the region of negative s¢ikk  the dispersion and nonlinear contribution, respectively) com-
form in its phase forz < Lp), whose temporal extension pensate each other to achieve a nearly constant level. In con-
is broadening over z-propagation as illustrated in Fig. 2d)sequence, if the phase and instantaneous frequency reach &
A negative chirp is obtained in accordance with the negaconstant and unchirped level1n then the physical interpre-
tive value of 3, (anomalous dispersion regime): indeed, intation is that the interplay of the nonlinear effect and disper-
this regime, the blue-shifted components of the pulse specion contribution (if the latter is anomalous) allows preserv-
trum travel faster than the red-shifted spectral components, dag both temporal and spectral pulse profiles over the propa-
that they separate temporally; as a consequence, the formgation. For propagation over longer distances, the compensa-
concentrate in the leading edge of the pulse temporal profiléon is not exact if the two effects are taken separately (see for
(T < 0), and the latter in the trailing edg@' (> 0), yieldinga  example the small ripple in the total instantaneous frequency
negative linear chirp. If now, were positive (normal disper- in Fig. 3c)), so it is necessary to analyze the numerical so-
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FIGURE 4. Fundamental soliton propagation with both contribution of nonlinear and dispersion part. a) Pulse temporal profile propagation,
b) phase evolution, and c) instantaneous frequency evolution over 3 fimes

lution with the simultaneous interplay of the nonlinear and3. Conclusions
dispersion contributions in the NLSE Eq1) (to get correct
results. In general, we have shown that the interplay between the lin-
In general, when both the nonlinear and dispersion conear and nonlinear parts of the NLSE has an important corre-
tributions are applied simultaneously in the fundamental soli{ation with each other in order to reproduce a specific phe-
ton propagation, it is possible to compensate for the puls@omenology in the nonlinear fiber optics formalism. In this
broadening that occurs in the case of purely anomalous digaper, a complete understanding of the fundamental soliton
persive propagation and to achieve a constant instantaneodgnamics modeled by the NLSE that represents a conserva-
frequency over alk-propagation. The latter is explained by tive system in the nonlinear fiber optics formalism is stud-
the compensation of the positive and negative chirps assodied. It is noticeable that the self-regeneration mechanism of
ated with nonlinear and anomalous dispersion effects, respethe fundamental soliton is a broadening compensation pro-
tively. These characteristics of fundamental soliton propagacess between the dispersion contribution and the Kerr ef-
tion are evidenced by the numerical solution of the completdect, which ensures the invariance of the temporal profile over
NLSE Eq. @) solved using a pseudo-spectral method; inpropagation.
particular, we implemented the symmetric split-step Fourier
method (S-SSFM) [8]. So, its nth z-step is defined as .
Appendix
_ 1 42D AzN —1
Al T) = F {e F[e r A. Numerical algorithm to obtain the pulse tem-

ps A poral profile, the phase and instantaneous fre-
x (eZDF(A(zn_l,T)))”, M quency

where " and ! are the fast Fourier transform and its in- To understand the numerical approach used to analyze the
verse, respectively) z = z, — 2,1 is the spatial step; be- fundamental soliton propagation problem, the algorithms to
sides,D = 0.5i3w? is the linear (dispersion) operator and solve the NLSE, as well as to obtain the phase and instanta-

N = iy|A(z,_1,T)|? is the nonlinear operator. neous frequency, are presented.
Firstly, by the numerical solution of the temporal profile

of Eq. (7), it can be demonstrated that, in a 3D mapping of AT AlzuTo)

the pulse propagation, the séqgbulse envelope is preserved z4

over z-propagation, as shown in Fig. 4a). The Sefdrm as- T ¢¢ e QrerQrerQresQers QerrQrerQreaQeeeQ 11 =31,

sociated to the nonlinear phase (Fig. 1c)) is compensated by % o el Gl O

the form associated to the dispersion contribution (Fig. 2¢)); _ | « & [6::60b:ubdubbdinidbind| b

therefore, a constant phase (over time) that increases overs 644 Ll ® 2

z at a linear rate of 0.5 rdd., is achieved, as depicted in 'f | |E{n *f ’%—

Fig. 4b). As discussed previously, at small propagation dis- < T3

tance (Fig. 3), it is clear that the dispersion contribution = OZ OI S
n=1 === Roa O T

drives the phase level offsets outside of the central tempo- —_— —
ral position of the soliton, that increases in a linear rate of 0.5 =0~ $=4—4—0=0—9—0=0—0—b—t—0—0-9-
radian per dispersion lengttL (), whereas the central tem- REFAERE LN NS SN I
pqral position (.)f the _sollton achieves a conjstfan_t phase Ievq'-llGURE A.1. The numerical approach in the fundamental soliton
with the same linear increase rate but Fhe originis mtroduce%rop‘,j1gati0n problem. Diagram of the algorithm to solve a) the non-
by the simultaneous interplay of the dispersion and the Keffineay and b) the dispersion contributions of the NLSE. c) Diagram
effect. Finally, if the phase is constantTh it is clear that  of the split-step Fourier method to solve the NLSE. d) Diagram to
the instantaneous frequency (Eq. 4) is zero over the whol@btain numerically the phase and the instantaneous frequency of
temporal profile during—propagation (Fig. 4c)). the pulse temporal profile.

A(zo,T)
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FIGURE A.2. Fundamental fiber soliton propagation associated to the nonlinear contribution. a) Temporal profile propagation, b) spec
profile propagation, c) phase evolution and d) instantaneous frequency evolution.

Firstly, it is important to remark that the numerical so- [0, M]), as shown in Fig. A.1. To represent the 3D mapping
lution of the pulse temporal profile is represented by apulse intensity propagation used in this work in Figs. 1a) and
mesh-grid array if(z, T, A(z,T)) coordinates where thee  2a), theA(z, T') (complex quantity) coordinate is replaced by
propagation withAz step is distributed inV + 1 levels  |A(z,T)|? (W). On the other hand, the 3D mapping represen-
(z = 20,21, - Zn, -, 2N —1, 2] Wheren € [0, N]) and the tation of the pulse intensity profile in the spectral domain (in
temporal variablél” with AT step is distributed in\/ + 1 Figs. 1b) and 2b)) are obtained numerically whenAlie, T')
elementsT = [Ty, T4,y Tasy ooy Taa—1, Tas] Wherem €
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coordinate is replaced byi(z,w) = FFT(A(z,T)), then B. Nonlinear phase and dispersion phase in

A(z,w) coordinate is expressed a$(z, \)|*. the pulse propagation problem modeled by the
The diagram of the algorithm to solve the nonlinear con-N_SE

tribution in the NLSE Eq. 2) is depicted in Fig. A.2a).

Firstly, the input parameters are defined, including the ini-To analyze the foundation of the induced phase due to the in-

tial temporal profile d(zg,T) = +/Pysech(T/Ty)), the dividual effect of the nonlinear contribution or the dispersion

nonlinear parametery§, the mesh-grid array sizev, M), contribution, the next analytic approach is presented.

the temporal-step size/I') and the z-step size {z). Firstly, let us introduce a proposed temporal profile ex-
Then, the fundamental soliton conditiodf = Ly;) is  pressed as 4
confirmed; if this condition is not fulfilled, then the ini- A(z,T) = Cetone (1), (B.1)

tial power is changed to guarantee the fundamental soli; _

. o "~ whereC' = C
ton propagation. Additionally, the temporal and spatial
distribution are defined{ — [-TF,...,0,....Tr|; z —

[0, ..., zr]), as well as the initial temporal profile is introduced

(A0, T) — [A(O’__TF)’,“"A(Q’O)"“’A(O’TF)D' Thus,  jinear phase is deduced as1,(z,7) = v|C|?z. Besides,
the RK4 methqd IS ""PP"ed t'o integrate E) from z = 0 taking into account that the initial temporal profile is known
to z = zp; ending this iterative process, the pulse temporaI(A(Z — 0,T) = C), thus the nonlinear phase is defined as
profile solution (A(z, T')) is reached. ’ ’

On the other hand, the diagram of the algorithm to solve énz(2,T) = y|A(z = 0,T)|?2. (B.2)
the dispersion contribution in the NLSE Eg5) (is shown _ _ ) )
in Fig. A.2(b). In this case, the diagram follows the sameln consequence, the nonhnga.rlphase is proportlpnal to the in-
stage description implemented for the nonlinear case, but tHgNSity components of the initial temporal profilel(z =
NLSE is solved in the spectral domain. Thus it is necessar{: Z)|*) the nonlinear parametet (= 1.3 W= km™" at
to introduce the frequency distribution, as well as the initial 1250 Nm) and the propagation distane (Hence, the non-
pulse spectral profiled(zo,w) = FFT(A(z0,T))); at the linear phase has the same tendency of the initial temporal pro-

same time, thd FFT is used to obtain the pulse profile in file, that means that if a setfinitial pulse envelope is con-
the temporal domain. sidered, then the nonlinear phase depicts a’stké form
Besides, the diagram of the algorithm to solve the Con_along the temporal variablE. On the other hand, the nonlin-

tinuous interplay between the nonlinear and dispersion corc! phase increases over propagation, and itis easy to demon-

tribution in the NLSE Eq. 1) is shown in Fig. A.2(c). In strated thatp 1, introduces a linear rate of 1 rad per nonlin-
this case, the temporal and frequency distributions are intro2&" length at the central temporal position of the pulse profile

— — 2 _ p2 .
duced to implement the SSFM, which involves integrating! = 0 PS: wherdA(z = 0, T = Fg), as demonstrated:
the NLSE in the tgmporal and spectrgl domain. . éni(z=Lyy = Lp, T =0)=~yP2Ly; = lrad (B.3)

Finally, the diagram of the algorithm to obtain numer-

ically the phase and instantaneous frequency is illustrated On the other hand, the dispersion contribution induced a
in Fig. A.2(d). Firstly, implementing the four-quadrant in- phase in the spectral domain. Thus, the proposed spectral
verse tangentafan2) in the pulse temporal profile solution, pulse profile solution is defined as
the unwrapped phase representation is reached. Then, in-
troducing the numerical derivative of the phase by the three
points forwards difference formula, the instantaneous freynare — G(w) is constant ovee-propagation andp is

quency Eq.4) is gotten. _ _ _the dispersion phase. In the spectral domain, the dispersion
Note: the presented algorithms can be implemented iRontribution is driven by Eq.5) (replacingdy — —iw) is
multiple computing environments, such @sc++, python,  \ritten as

GNU OCTAVE and others. Also, it is necessary to ver- 0 A(%w) _ i%ﬂguﬂfl(z,w). (B.5)

(T) is constant ovet-propagation, ang 1, is
the nonlinear phase.

Then, inserting the proposed temporal profile EB.1J
in the nonlinear contribution of the NLSE Ec2)( the non-

A(z,w) = Ge'*r=), (B.4)

ify that the discrete representation of the fast Fourier trans- 0z

form (FF'T) and its inversel(F' 'T) are consistent with their Thus, inserting the proposed spectral solution Bi4)in
continuous representation established in the derivation of theq. (B.5), the dispersion phase is expressed mathematically
NLSE: as

Bp(2,) = 3B, (B.6)

A(z,w)=FFT(A(z,T)) < / Az, T)e™TdT  (A.1)  Accordingly, the dispersion phase is a function of the fre-

quency and-propagation distance in the spectral domain. In
contrast, the dispersion phase in the temporal domain is not
easy to define as analytic representation; in consequence, its
temporal tendency over propagation is obtained numerically,
as analyzed in Sec. 2.

— 00

A(z, T)=IFFT(A(z,w)) < /A(z,w)e—wdw. (A.2)
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