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Confined free motion under a dipole potential
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The classical motion of a particle in an attractive dipolar potential,Udip(q) = −k/q2, and free motion along a curve in phase space are
proven to be equivalent. We also prove that the singularity atq = 0 in the dipolar potential is strong enough as to prevent the flow of
particles from one side of the singularity to the other. This effect does not depend on whether the dipole potential is regarded as attractive
(k > 0) or as repulsive (k < 0). All the proofs are given using the Hamitonian formalism; thus, they may be used for illustrating the power
the Hamiltonian approach confers in analysing mecanical systems. The discussion is kept within the reach of advanced undergraduate or
beginning graduate students of Hamiltonian mechanics.
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1. Introduction

There is no simpler physical system than a particle moving
free from any interaction. That is, a point-mass moving in
a straight line with constant velocity. If we try to imagine
an interacting classical particle in canonical phase space (PS)
moving under similar conditions, we would need to substitute
the interaction potential for something else, which, taking a
clue from gravitation [1], we may take as the PS geometry
—not the geometry of the spacetime. That is, we would need
a warped PS as the arena in which the motion unfolds. But
how can it be that we may change the PS while mantaining
the effect of the interaction on the particle motion? It is one
of the aims of this paper is to try to answer this question in a
way as simple as possible.

Hamiltonian mechanics [2–5] may come to our minds
as the formulation of dynamics appropriate for tackling the
aforementioned problem. The Hamiltonian formulation al-
lows us to peer deeper into the fundamental structure of clas-
sical mechanics, allowing us to prove surprising general re-
sults as Poincaré’s or Liouville’s theorems, or even the fa-
mous KAM theorem [2, 6]. And, as we are going to exhibit
in this work, the features of such formulation of mechanics
also allow us to pose and solve our problem. We are going
to exhibit that the motion under the radial inverse square po-
tential is equivalent to geodesic motion on a PS curve. We
should notice that our result might also be demonstrated us-

ing the global approach of Moser [7] or the local approach
discussed in [8–10].

The classical systems in which this feature holds, are
termedgeometric, that is, systems which are equivalent to
a free, geodesic motion in a curved space. This is a feature
first proved by Moser [7] for the Coulomb problem, though
physicist had used the result several times before Moser’s for-
mal proof [11, 12]. It is the purpose of this paper to stablish
that such equivalence also holds for the 1D inverse square po-
tential and to show that the singularity atq = 0 in the dipolar
potential acts as a repulsive one, resulting in the confinement
of the particle to just one side of the singularity.

We first aim to prove that the motion of a particle moving
in the 1D dipole potential,Udip(q) = −k/q2, k > 0 [13],
and hence described by the Hamiltonian,

H =
p2

2m
− k

q2
, (1)

may be transformed using classical canonical (Hamiltonian)
techniques into free, purely geodesic, motion in a curve in the
transformed PS of the problem. However, at difference with
Moser more global approach [7], we here make use of canon-
ical transformations in the Hamiltonian formulation of classi-
cal mechanics to establish the equivalence, an approach more
appropriate for the pedagogical nature of this work. Note also
that Hamiltonian of (1) describes a two body problem from
the viewpoint of its center of mass. Therefore, we are allowed
to study the equivalent motion of a single mass–point.
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FIGURE 1. The vector field associated with Hamiltonain of (1).
This plot clearly illustrates that the particle never reaches the sin-
gularity atq = 0 and thus that it remains in just one side of the
singularity without ever crossing to the other side.

2. Impenetrability of the dipolar potential

The Hamiltonian of (1) is time independent or autonomous;
therefore, the energy (E) is a constant of motion. Another fea-
ture of the motion in the 1D dipole potential is the complete
separation between the right and left regions of the origin (the
so-called space splitting), which is the site of the singularity.
This can be proven as follows, consider the sign of the co-
ordinateq, and let us define the variables ass = 1 if and
only if q > 0 ands = −1 if and only if q < 0; this quantity
carries the information about the side of the origin in which
the particle moves. We are going to show thats is a constant,
independent of the sign ofk, meaning that the particle never
crosses from one side of the origin to the other. To this end,
it suffices to note that the following Poisson bracket vanishes

{s,H} = 0, (2)

meaning that the sign of the particle’s coordinates is a con-
stant of the motion, or that the particle never reaches nor
crosses the origini. The particle gets confined to move on a
single side of the singularity. Thus we have proved the origin
to be impenetrable for a particle moving in a dipole potential.
This feature is illustrated by the phase plot in Fig. 1. Notice
that such impenetrability does not depend on the sign of the
coupling constantk.

3. The particle trajectories

What are the trajectories a particle follows in the system? To
answer this, let us begin writing the energyE

E =
p2

2m
− k

q2
. (3)

That is, the particle moves following the constant energy
curves in PS, which we may obtain from Eq. (3) as

p(q) = ±
√

2mE +
2mk

q2
, (4)

describing the trajectories of particles moving in the dipolar
system for any value of the energy. Notice that, despite at-
tracting particles more strongly than the Coulomb potential,
this potential is actually weaker at large distances from the
center of force enough to prevent the bounding of particles—
except, as we show below, in the case of vanishing energy.
Equation (4) describes the unbound trajectories of particles
moving under a dipole potential.

If the energy vanishes (E = 0), the curves are hyperbolas
as, in such a case,

p = ±
√

2mk

q
. (5)

Such curves divides the phase space in two a zone of trajec-
tories with positive energy and another with trajectories of
negative energy. You should also be aware that ifE = 0,
the particle falls to the center, where it bounces off to infin-
ity, then falling down and bouncing off again in an endless
cycle. A particle moving in an inverse square potential at
negative energies is never trapped. The only bounded orbit,
is the ‘falling and bouncing’ motion at vanishing energy.

4. Equivalence to free motion on a curve in
phase space

To prove the mentioned equivalence, we first need to notice
that we may express the Hamiltonian Eq. (1) as

H =
p2

2m

(
1− 2mk

p2q2

)
(6)

and, as suggested by the previous expression and using the
freedom afforded by the Hamiltonian approach, we may de-
fine a new canonical momentumP as

P = p

√
1− 2mk

p2q2
. (7)

From Eq. (7), and after tinkering a bit, we may find the gener-
ating functionG(P, q), and the conjugate variableQ, making
the variablesQ andP canonical, as follows. If we set

p =
∂G

dq
, (8)

then, a simple integration gives the generating function

G(P, q) =
√

P 2q2 + 2mk + 2mk

×
[
ln(Pq)− ln

(√
2mk+

√
P 2q2+2mk

) ]
. (9)
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FIGURE 2. On the left, representation of the straight lines,p constant andq constant, in the original phase space. On the right, representation
of the corresponding curves in the transformed PS of the system. We have hightlighted two geodesics,Q = Q0 andP = P0.

As we have said, the above expression, Eq. (7), is going to
help us to transform the Hamiltonian Eq. (1) into the free
particle formP 2/2m. Of course, we would still need a new
cordinate,Q, defined for making sure the whole transforma-
tion is canonical. Such canonical variable can also be found
usingG(P, q) above, as

Q =
G(P, q)

∂P
. (10)

Therefore, the new PS canonical coordinateQ has to be

Q =
q√

1− 2mk

p2q2

. (11)

In the new canonical coordinates(Q,P ), the new Hamil-
tonian of the system has only a kinetic energy term,

H̃(P, Q) =
P 2

2m
, (12)

hence the new momentumP is a constant in time. The
Hamiltonian of a particle moving in a dipole potential has
been transformed into a free particle form.

It is important to emphasize that the free motion occurs
not in the original PS, but in a warped one in which the parti-
cle’s trajectory is just a geodesic. As it should be clear by the
previous discussion, such warping is the cost for the suppres-
sion of the explicit appearance of the interaction potential.
This could be visualized in the Fig. 2 below.

We may additionally describe the trajectories in the orig-
inal PS starting from the ones in the transformed PS. In this
transformed PS, we have

P =P0 a constant,

Q =P0t + Q0. (13)

And, if we use the canonical transformations from Eqs. (7)
and (11), we may get the solution to the problem expressed in
the original coordinates. We leave this task as an exercise for
the readers. Another point worth dicussing is the possibility
of doing this transformation for other potentials. The answer
to the reviewer’s question we think should be in the affirma-
tive as you may conclude by yourself just by following our
dicussion and taking a look to the Refs. [8,9].

5. Conclusions

In this paper, we have intended to illustrate the flexibility af-
forded to us by the mehods of Hamiltonian mechanics for
analysing the motion of a particle under the inverse square
potentialUdip(q) = −k/q2 with a positive coupling con-
stantk. It is to be noted that this potential is both stronger
than Coulomb’s near the origin, and weaker as|q| → ∞. We
have also shown that, despite the stronger attraction than in
the Coulomb case, the inverse square potential behaves at the
origin as an impenetrable barrier exhibitting what it is known
as the “space splitting” phenomena [14]. This happens be-
cause the sign of the coordinates is a constant of the motion.
This behavior may be extended to the quantum case, where it
shows itself as asuperselection rule[18].

We must recognize that the−k/q2 potential is rather
problematic because, being an attractive potential, it may be
regarded as an impenetrable barrier — for an early discus-
sion of such kind of trouble see [15]. On the other hand, such
potential may be regarded as the radial potential associated
with the interaction of moving electrons within the electric
field of a stationary polar molecule, as the actual field is the
dipolar one−p cos θ/q2, wereq andθ are polar coordinates
in a plane,p is the dipole moment. Therefore, Hamiltonian
Eq. (1) describes the motion of electrons coming towards the
singularity directly from the directionθ = 0. In fact, this
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classical study may help to clarify some features of the scat-
tering cross section of electrons on molecules with a perma-
nent electric dipole moment [16]. We must pinpoint also that
by applying the inverse canonical transformation to the solu-
tion described here, we may uncover the precise solution of
the problem in the original PS. Such explicit calculation can
be made, but it requires too much space, it would be better to
have a look to a simpler example in which the suggested pro-
cedure was explicitly applied. Such example is the harmonic
oscillator, whose discussion using a technique similar to one
used here, was published recently with all details in [10].

We have shown that, in spite of it being an interaction
stronger than Coulomb’s, the Hamiltonian of the problem,
that of Eq. (1), may be regarded as analogous to that of
a particle moving freely on a curve in phase space, as it is
shown in Fig. 2. You should notice that this curve is tra-
versed from an extreme to the other in cyclic fashion and that
the effect of the singularity atq = 0 gets transformed into
the two motions exhibitted in the transformed coordinates.
This is analogous to the case of the two circular motions into
which the effect of the bouncing occurring in the classical
one-dimensional hydrogen atom is canonically transformed
—as described in [12]. Furthermore, the particle under the
dipolar potential avoids approaching the origin, as the vector
field of the system clearly exhibits, see Fig. 1. If you aim

directly towards the singularity, on getting there the particle
bounces back to the initial position and, after coming to a
rest momentarily, it gets attracted again towards the origin.
Such bouncing and returning motion happens indefinitely. In
a sense, we have an example of a classical system which is
both free and confined by a singularity —in the ranges(0,∞)
or (−∞, 0)— but unable to move through the origin despite
its free-like behavior. The bouncing at the origin repeats itself
an infinite number of times.

In summary, we think that a classical discussion of this
problem may teach a lot about what we may accomplish by
the purely classical analysis of potential problems notwith-
standing the fact the final aim were to analyse the problem in
a quantum setting. The problem analized in this paper may
be regarded as the classical 1D version of the interaction of
an electron with a polar molecule, as the discussion in [16]
may show.

Finally, we mention that this paper allows one of us
(ALSB) to write a correction to another work whose con-
clussions are correct, but whose analysis is badly written
and wrongly explained [17]. We should emphasize that
the responsability for the errors of that paper is exclusively
ALSB’s, none other of the participants in that work has any
responsability for any such mistakes.

i. To establish Eq. (2) we use∂ s/∂x = 0, not ∂ s/∂x = δ(x).
This is so because we are working in a purely classical setting.
In such a realm, it is difficult, if not altogether impossible, to
give meaning to a distribution like Dirac’s — which, on the
other hand, it is easily understood as an operator in quantum
mechanics.
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16. J. M. Lévy-Leblond, Electron Capture by Polar Molecules,
Phys. Rev.153 (1967) 1,https://doi.org/10.1103/
PhysRev.153.1 .
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