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1. Introduction over which the integrals are performed, a crucial point in this
formulation. Neither is discussed the relation between the co-

Itis a historical fact that relativity theory emerged from clas-variant and non-covariant formulation, particularly about the
sical electrodynamics. Thus, an inertial frame, in relativityintégration regions involved in both formulations.

theory, is one relative to which Maxwell equations hold, and One reason for which the covariance of the integral forms
we change from one inertial frame to another by means o@re less studied is that the differential equations refer to points
Lorentz transformations [1]. After the introduction by Ein- of space and time that can be trivially written covariantly,
stein of space-time, classical electrodynamics could be writwhile the integral equations refer to continuous sets of points
ten in the language of tensor analysis in space-time. Du# the space and time. How these equations can be expressed
to the intrinsic property of the tensors, this form of writ- covariantly is not as evident as in the differential formula-
ing the equations has the advantage that one can be suien. Nevertheless, as we will see, the transition can be done
that the equations have the same form in all inertial frameswithout many difficulties if it is recognized how the different
For this reason, we call this formulation explicitly covari- integration regions that appear in the conventional formula-
ant. In contrast, writing the Maxwell Equations in the usualtion can be chosen such that all of them corresponds to parts
three-dimensional form does not explicitly exhibit the covari- of a single hyper-surface embedded in the four-dimensional
ance. Unfortunately, in most texts on electromagnetism [2Space-time. The objective of this paper is to discuss all these
10] or relativity [11-14] we find only the covariant formu- points in detail.

lation of the differential Maxwell equations. As far as we  Our presentation is as follows. Section 2 is focused to
know, only Aharoni [15] and Ley [16] have discussed thethe derivation of the covariant integral forms. Nevertheless,
integral Maxwell equations in their covariant form. Never- as a preamble and in order to introduce our notation, in Sub-
theless, those studies are incomplete. In Ref. [15] only theec. 2.1, we first present a brief review of the procedure to
case where no sources are present is discussed. Furthermaterive the explicitly covariant differential Maxwell equations
its formulation cannot be directly used to obtain the correc{fECDME) starting from the usual three-dimensional differ-
form for the case where sources are present due to an errential Maxwell equations (DME3). In Subsec. 2.2 we derive
in one of its expressions as discussed in sub-section 2.2. lihe explicitly covariant integral Maxwell equations (ECIME)
Ref. [16], the expressions obtained are not properly integrastarting from the ECDME. This formulation is a generaliza-
forms, since such expressions also contain derivatives, tion of the one of Aharoni [15] and goes beyond the discus-
they are integro-differential equations. Furthermore, in nonesion of Ley [16]. The objective of Subsec. 2.3 is to analyze
of these references is it described the role of the surfaces aride formulation of the previous sub-section from the point of
hyper-surfaces embedded in the four-dimensional space-timgew of the usual three-dimensional differential equations. In
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Subsec. 2.4 we derive the ECIME starting from the usuatharacteristic will be explicitly stated without proving that it
three-dimensional integral Maxwell equations IME3. Sub-satisfies the required transformation law.
section 2.4 is the most important and interesting. It contains We proceed as follows. We identify first the Cartesian
many crucial and non-trivial details that must be consideredcomponents of the following four components objects, which
Unfortunately, their discussion is almost absent in the liter-are contravariant tensors of first rank (we use Heaviside units
ature. The summary of Sec. 2 can be written symbolicallywith ¢ = 1).
as
() = (2%, 2, 2%, 2%) = (t,2,9,2) = (t,1)
2.1 Differential three-vector- Differential four-vector

(DME3 — ECDME) four-vector of coordinates Q)

Gy (50 12 s3y . . Sy .
2.2 Differential four-vector— Integral four-vector ) = 50750707 = (P Jes Jus 32) = (1)
(ECDME — ECIME) density current four-vector (2)

2.3 Differential three-vector— Integral four-vector —and the covariant tensor of first rank

(DME3 — ECIME) 98 9 8
(au):(aOaalaaQaaB): (&,a,a,a)
2.4 Integral three-vector> Integral four-vector (IME3 x oy Oz
— ECIME) P
=\ V | four-nabla operator. 3)

In Subsec. 3.1 we obtain other forms of the non-covariant
integral Maxwell equations, which are not usually discussed We also need the contravariant second-rank antisymmet-
in the literature. In Subsec. 3.2 we obtain a new form offic electromagnetic field tensdr*?. It has the matrix ele-
explicitly covariant integral Maxwell equations starting from ments
the usual three-dimensional differential equations. Finally, in mo m
Subsec. 3.3 we obtain this new covariant expression from the F = E" = Em, )
covariant differential equations. With this we offer a different Fn— _gmntp, (5)
perspective that we hope will leads to understand the close re-
lationship between electromagnetism in its integral form andvhereF,,, and B,,, are the Cartesian components of the elec-

special relativity. tric and the magnetic induction field&and B respectively.
The symbolo™™ denotes the totally antisymmetric third
. . . . . rank tensor
2. Electromagnetism in explicitly covariant in-
tegral form
1 for m=1, n=2, (=3 orany
2.1. Preamble. Explicitly covariant differential Maxwell omnt even permutation ©)
equations from the usual differential Maxwell equa- —1 for any odd permutation
tions 0 ifany two indices are equal

. . i 1Y g writi
In order to make the subsequent analysis clearer and to intro- In matrix form the tensoF+* s writing as

duce our notation, we recall the procedure to exhibit the co- 0 -E, -E, -E.

variance of the Maxwell equations in differential form start- | B 0 -B. B,

ing from the usual three-dimensional differential form. In (F) = E, B, 0 -B, |- @)

this work the Latin indexes (lower or upper) take values on E, -B, B, 0

the sef{1, 2, 3} while the Greek indexes take values on the set

{0,1,2,3} . Furthermore, we follow the Einstein summation  The totally antisymmetric fourth- -rank tengst’*’ is also
convention which implies summation over repeated covariuseful; it is defined as an obvious generalizatiod®t* Fur-

ant and contravariant indexes. It is important to be awarghermore, one can get the corresponding covariant tensor of
that expressing the Maxwell equations by means of foura given contravariant tensor by using the metric tersor.
dimensional mathematical objects does not erpifori a  This tensor can be defined by means of a diagonal matrix
relativistic generalization neither the required properties ofvhose diagonal elements aggy = 1 andg;; = go2 =
covariance [17]. For this it is necessary that the objects wergss = —1. For example, the electromagnetic tensor with
tensors with respect to the Lorentz transformations. Only iriwo covariant indicesF,; is equal toF,s = gy.g95. F*

this way one guarantees that the equations are covariant. And it is easily shown that his elements can be obtained from
general, an arbitrary four-component object is not a tensod™** by puttingE — —E. Similarly, the totally antisymmet-

To know if the object is a tensor it is necessary to prove thatic fourth-rank tensor with covariant indic&s, s is equal

the law of transformation of the tensors is satisfied. In whato 0.gys = gakg,g,\gwg(s,,b M and is easily shown that
follows, whenever an object which is a tensor is used, suck,z,; = —d"”
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With these elements, the Cartesian components of the in- Equations (10) and (17) can be integrated in the four-

homogeneous Maxwell equations: dimensional space-time over different regions. For exam-
ple they can be integrated over open or closed lines, open
V-E=p, (8)  or closed surfaces, open or closed hyper-surfaces or hyper-
OE) volumes. However, usually only certain integration regions
(VxB)y= o+ (9)  are considered. This is so because they are the ones that are

directly related with the experimental procedures (see Sub-
can be written a8, F#° = J* andd, F** = J* respectively. ~sec. 2.4) or because one is interested in considering regions
These four equations can be written as a single expression in which the role of the spatial coordinates and the time coor-

dinate is symmetrical (as will be discussed in this and in the

O =Jv, (10)  next sub-sections).
which are the desired four explicitly covariant inhomoge-  In the following we will integrate Eq. (10) over an arbi-
neous differential Maxwell equations. trary hyper-surface by means of a three-dimensional hyper-
The homogeneous equations surfaceH, ¢ R* integral. See definition of this kind of inte-
gral in Appendix A. We assume that this hyper-surface is the
V-B=0, (11)  image of a three-dimensional regi®f,., C R® by means of
the mapping
OBy,
E)y=——F7 12
(V X )k: It ) ( )
can be written in covariant form using the dual electromag- X = X(u) = (X°u), X' (u), X%(u), X3(u)),

netic field tensoff*” whose elements are again the compo-
nents ofE and B but arranged differently. This tensor is eas-
ily constructed using the tensaF§; ando,,, »s. The relation  whereX = (z#) = (2%, 2!, 22, 23) is the four-vector defined

is in Eq. (1),X : Viww — Hg is a four-component function de-
1 5 pending on the three-dimensional variable= (u,v,w) €
I = 50"” Fys, (13) Vv, beingu, v, w the three parameters generatidg. As

mentioned,Hg is totally arbitrary, the only restriction that

which implies the correspondences is asked is that it can be parameterized as indicated above.

0 _pm_p (14) We denote aéV,,,.,, the boundgry of/,uw- We also assume

ms that not all the points of the s&t(0V,,,.,) are double points

Fmn — oM, (15) (possibly none of them) and therefdte is an open region.

The surface surroundirlgs denoted agH g is a closed sur-
In matrix form we have face which is generated by the subse%jBVuw) formed

of all the non-double points. Since three-dimensional hyper-
surface integrals are to be used, the integrations elements
(T = (16)  must be differential of measure of hyper-surface and, in order
B, —-E, 0 E, ) ;
By I 1> 0 to have covariant expressions, they must be the components
# y e of a tensor. The candidate is the antisymmetric contravari-

Then, the four homogeneous Maxwell Eqs. (11) and (120t third-rank tensordl/*7) whose elements are defined by

0 -B, -B, -B.

can be written in covariant form as means of the determinant
9, 8" = 0. (17)
L OX*9XP oX"
. o _ dVerr = (s”k - ) du'du’du®,  (18)
2.2. Explicitly covariant integral Maxwell equations out Ou?d Ou

from explicitly covariant differential Maxwell equa-

tions ) _
whereu! = u, u? = v, u®> = w. This tensor has only four

In this sub-section we derive the ECIME starting from theindependent components different from zero. The sign of
ECDME: Egs. (10) and (17). This formulation is a general-dV*#7 is not an intrinsic property since it depends of the or-
ization of the one of Aharoni [15] since we include the case inder assigned to the parameters u?, 3. Instead of that, its
which the sources are different from zero. We also go beyoneghagnitudeldV “#7| is equal to the measure of the projection
the discussion of Ley [16] since we obtain properly integralof the differential of hyper-surface on the hyper-plang ~,
forms and not only integro-differential equations as is done~or our purposes, however, it is more useful to construct a co-
in [16]. Additionally, we describe in detail the surfaces andvariant tensor and to have its indices assigned in another way.
hyper-surfaces embedded in the four-dimensional space-tinihis is easily accomplished by means of the dual covariant
over which the integrals are done. one-rank tensod@:; defined asd{% = (1/31)0apsdV 5.
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This implies whereH g is an arbitrary hyper-surface. It is worth mention-
ing that for some hyper-surfaces the RHS of Eq. (26) can
d¥h = qv123 be equal to zero even though the sources are different from
! 930 zero (see appendix B). In this case, Eq. (26) is not a proper
d¥y = —dVv Maxwell integral equation and it is necessary to search for
dk}z _ gy them as is done in Sec. 3. Nevertheless, for the case in which

the sources are equal to zero, Eq. (26) reduces to the Aharoni
d% — Y012 (19) result and the error in the factor 2 disappears.
Following the same procedure, we obtain for the homo-

The explicit form of these differential elements dependsd€neous

of the parameterization to be used. For example, when the w
parameterization i$u, v, w) = (z,y, z) one obtainsdaa = m/g doj, = 0. (27)
dxdydz and di, = —0XY/0zdxdydz while when the pa- OHs
rameterization iSu,v,w) = (¢,z,y) one obtainsd@g = The covariance of expressions (26) and (27) is a conse-
dtdzdy, etc. guence of the transform properties of the tendots, d@W,
We now multiply Eq. (10) bylﬁ, and we sum over the etc.
indexv. After integration over the hyper-surfatl; we ob-
tain 2.3. Explicitly covariant integral Maxwell equations
from the usual differential Maxwell equations
v — 12
/H// Ol d&” B /H//7 d@;" (20) The objective of this sub-section is to discuss the derivation
S S

of the ECIME: Egs. (26) and (27) from the point of view
Next we will use the following integral theorem that re- ©f the usual DME3 and to analyze the relationship between

lates a hyper-surface integral over an open three-dimensionHlis formulation and the one discussed in the previous sub-
hyper-surfacéds c R* with a surface integral over the two- S€ction. The integration regions involved in both treatments

dimensional surfacdH g ¢ R* surroundingH, is also described in detail. This and the next sub-sections
contain several fundamental and subtle points.
We will start from the usual three-dimensional form of
2 o ayt, = [[|f o d,,, 21 . .
/// O Y m/ H (21) the inhomogeneous Maxwell equations (8) and (9). As we
Hs OHg

want to compare with the expressions derived in the previous

being®" an arbitrary antisymmetric function. This theorem SUP-section, what must be done is to integrate on the same
is written with an error in Ref. [15], it lacks the factor of 2. r€gion in both formulations. So, we will integrate the three-
The tensotld,, is the dual of the contravariant antisymmetric dimensional Egs. (8) and (9) over the hyper-surfligeof

two-rank tensorlo” defined by means of the determinant  SUPsec. 2.2. Multiplying Egs. (8) and (9) respectively by the
elementsi¥, andd¥, defined in Eqg. (19) and summing over

M 9=V i
do — <€” %gi 6593* ) d6'de?, 22) k, we obtain
V- EdVy = pd¥y = j°d¥, (28)
whereZ : {(0',6%)} — dHg C R*is the mapping generat- OEy, .
ing OHs and#?!, 62 are the two parameters. This tensor has (V x B)ydb - ot d¥; = jod¥. (29)

only six independent components different form zero. Theynerek = 1,2, 3. The sum of these four equations gives
magnitude|d@W\ is the differential of area of the projection OE,

of OHg on the planeuv The dual tensod@w is defined as (V x B)kd@',C T
> 0B i i
dg"” = (1/2)0ado®” which implies Now we integrate over the hyper-surfagg In the in-

dW, + v -Ed¥ = 7. (30)

23 03 tegral of the functionV x B)ld@i we use the parameters
doby = —do™, oo = ~do®, (23) (ul,u2,u3) = (t,y, z) and therefore

_ 13 _ 02
dob = do'?,  dohy = o, (24) d¥ = dydzdt = cosadSdt = mdSdt,  (31)
dohs = —do'2,  dohs = —do®". (25)  beinga the angle between the differential surfat®and its

' . _ projection on the plan¥ Z. The symbol, is the first com-
From Egs. (20), (21) we finally obtain the inhomoge- ponent of the unitary vector = (cos a, cos 3, cos ) which

neous ECIME is perpendicular tds. So,
m/FWdQW - 2///]%@;, (26) ///(v x B)id¥; = ///(v x B)inidSdt.  (32)
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80 J. L. JIMENEZ AND G. MONSIVAIS

The other terms can be handled in a similar form. Fortain

example, in the integral of the functidiv x B)Qd@'g we use
the parameteréu!, u?, u®) = (t,y, z) and in the integral of /// -NdSdt = m/E hds
the functionV - Edﬂ’g we use the parametefs!, u?, u?) = OHs
(z,y, z). This leads to
—///(VE)dV. (37)
. 0E i
// (VxB)-ndet—///—-ndet s
s s ot Note that this result clearly indicates that
+// V-Edvz///j“d@;. (33) m/E ”ds#///
OHsg
HS HS

which contrasts with the usual expression of the divergence
Note that when working with the usual three-dimensionaltheorem inR>. Substituting (36) and (37) into (33), obtains

equations it is customary to add only the three Eqgs. (29)
and to integrate them over the open surface, while Eq. (28) M/B dldt + m/E nds = /// (38)
is worked out separately and integrated over the vollime OHs
However, since what is desired here is to compare with the r
sults of the previous sub-section what must be done is to ad
up the four equations and to integrate over the same region. 1
The RHS of Eqg. (33) already has the desired form, whereas = m/F’“’dQ,w
the LHS is an integro-differential expression. To convert Eq. 2
(33) into a purely integral expression the following integral
theorem will be used

[ s [

which is already a purely integral expression, and it is easy to
e that the LHS can be written as

OHg

and hence Eq. (38) reduces to the inhomogeneous ECIME:
Eq. (26), as desired.

Following a similar procedure we obtain that the hyper-
wv: (34) surface integral of the sum of the four Eqgs. (11) and (12)
multiplied respectively by the integration eIemeu]E% y d%

n =

is equal to
This theorem is one of the generalizations of the usual
divergence theorem iR® which can be written for example /// (V x E) - AdSdt + // — -AdSdt =0. (39)
as
/// dv = m ddydz. Applymg theorem (34) to the first and second integrals of

Eq. (39) gives respectively

A more detailed discussion on this point is included in this // (V x E) - dSdt = — m/E dldt, (40)
paper as quotes (Refs. [18,19]). Note that Eq. (34) has an
extra term respect to this usual trleorem because the integral OHs
is over the hyper-surfacds C R® instead of the volume oB _ R
V c R®. ltis also worth noting that theorem (34) can be /// oy - Ndsdt= - m/B hdS. - (41)
used to demonstrate expression (21) (which is the one incor- Hs OHs
rectly written in Ref. [15]); it is enough to apply it to an We again observe the contrast with the usual expression
anti-symmetric function of two indices. of the divergence theorem R? applied to the field:
Applying theorem (34) to the first integral of (33), after .
some cumbersome algebra, we obtain m/B NdS =0
// (V x B) - AdSdt = — // (V x B) - AdSdt Replacing Egs. (40) and (41) in (39) one obtains

—Zm/B.dldt, (35) R _B@ZE:d'dt—a@ZB-ﬁds:o, (42)

OH's and it is easy to verify that using Eq. (16) this equation can
be written as
V x B) - hdSdt = — B - dldt. 36 1
J[[~® I (30) 3 [ =0 (43)
Hs OHg 2
OHs

We now apply (34) to the second integral of (33), we ob-which demonstrates Eq. (27) as desired.
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2.4. Fromthe non-covariant integral Maxwell equations  (46) and (49) written in their Cartesian components become,
to an explicitly covariant integral form respectively,

While the transition from the DMES3 to the ECDME, as dis- M/(Exdydz + Bydzdx + E.dxdy)
cussed in Subsec. 2.1, is almost direct, we must proceed more '
carefully to obtain the ECIME starting from the usual IME3:

M/ EDAS = Q / / / oV, @) = /V/ / pdedydz, (50)
v i

d / (Bydzdt + Bydydt + B,dzdt)
m BOal — / / ETRAS — / / iHas,  (s)
dt T
S S

oS
m/ BOAdS = 0, (46)
oV

m E0dI + % / / BOAdS = 0, (47)
S

oS

a8
— //(Exdydz + Eydzdx + E.dzdy) (51)
s

= ///(jzddedt + jydzdzdt + j.dxdydt)
T 'S

m/(Bxdydz + Bydzdzx + B,dzdy) =0 (52)
oV

where we have assumed that the surfice R® is at rest
in the frame of the observer. We are using for the closed
surface which is the boundary of the voluiviec R® anddS / m (Epdadt + Bydydt + P.dzdt)
for the closed curve surrounding the boundary of the open T o8
surfaceS. As it is well known, the form of Eqs. (44)-(47)
are closely related to the experimental observations of the + / / (Badydz + Bydzdr + B.drdy) = 0. (53)
electromagnetic phenomena. We must notice the following s
points: Since the integration regions of these expressions are
quite different, they do not show a clear way to grouping
a) Equations (44)-(47) involve line integrals, surface inte-them, which is an important difference between the differ-
grals and/or volume integrals. ential and integral formulations. For example, in Eq. (50),
the elements of integratiodydz, dzdx, dxdy etc. referto a
closed surface while those in Eq. (51) refer to an open sur-
c) There are two types of surface integrals: in Eqgs. (44Yace. Furthermore, as time appears as a new variable of in-
and (46)0V is a closed surface while in Egs. (45) and tegration, the regions of integrations in space-time are more
(47) S is an open surface. varied that in the three-dimensional space. The key point is
to note that these elements can be chosen so that they were
The point b) is particularly important. It shows that sybsets of a same three-dimensional hyper-surface embedded
the usual integral Maxwell equations are indeed integroin the four-dimensional space. We proceed as follows.

differential equations, since time derivatives appear together \we first consider the inhomogeneous Maxwell equation
with flux integrals. This fact constitutes the first obstacle to(50). The LHS can be written as

a direct identification of these equations with the explicitly
covariant integral equations in space-time. Our procedure to m/(Exdydz + Eydzdz + E.dzdy) = m/Emdydz
obtain this identification is first to integrate Eqgs. (45) and i

(47) with respect to time. This yield

T/ 8@ Bl df — /S/ EdndS = J /S/ jOMasd:  (48) +a@z/z E$ldzd1:+$/ E.dvdy. (54)

Vi

b) Equations (45) and (47) also involve time derivatives.

OVy=

Let us now consider the hyper-surfadg = Hg) U H(SQ)
where

[ s [[omis =0 49 WOy e V) R (55)

T 0S8

and

HP={(t,2,y,2)[0 <t < T;(2,y,2) € OV} C RL. (56
With these integrations, in addition to avoiding time — ° bz, 2)0 <t < T3 (o 9,2) / (50

derivatives, the left side of the equations involves only in-  This hyper-surface is discussed in detail in Appendix B.
tegrals over two-dimensional regions. Then, Egs. (44), (48)H (52) is an hyper-cylinder anHi (Sl) is one of its caps (the one
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82 J. L. JIMENEZ AND G. MONSIVAIS

att = 0). Thus,Hgs is an open hyper-surface whose bound-are (u!,u?,u?) = (x,vy,2) Consequently, using Eq. (19),
ary OHg is att = 7. We must observe that, unlike what the RHS of Eq. (50) is equal to
was had in Subsecs. 2.2 and 2.3, ridw is not totally arbi-

trary. The shape of this hyper-surface is dictated by the type /// Odzdydz = /// Odadydz
of regions that are considered in the usual three-dimensional

integral Maxwell equations. In abuse of the notation, the set (HS )y
HY) will be denoted agV), dHY as (aV), andH as , ,
= §Odxdydz = ]Od&. (61)
(T x 9V'). HenceHs = (V) U (T' x 0V). LetA be an
arbitrary set oR*, we will use the symbo(A),,. to denote HO) HO)
the region in the spac¥Y Z that generates the projection of
A on this space. The symb@h).., has a similar meaning Therefore, Eq. (50) can be written as

So, since the sét” generates the projection bf( on the

spaceXY Z we have:(H()),,. = V, (8H(1)):m/z = 9V, m/Fomd@o m/Fmodgmo = /// Odvh.  (62)

and(aHg))w = 0V,,. Then Eq. (54) can be written as oY PR HO

m/ (E,dydz + E,dzdx + E.dxdy) = m/E dydz Note the equivalence between the integration regions.
) The last step is the key of the method followed in this sub-

(OHs )y section; it implies that the |ntegrat|on regléﬂ\’ s R? gen-

' erates the projection o’:iHS c R* Asin 6H ) we have

m/E dzde + WEzdxdy' 7 dt = 0, it follows thatdlh, = dih, = aik = 0 and the RHS

(OHD)., (OH) of Eq. (62) can be written agf [, o) j aqit,. For the same

S

It is clear than the more appropriate parameters to b&eason (thatisjt = 0) we havaigu = déhy = dehs = 0 and
used in the first integral of the RHS of this equation gre the LHS of Eq. (62) can be written &8, ", , F#dd,,.
and z. With this parametrization, the form efs23 given Therefore, the first inhomogeneous Maxwell equation (50)
%OEq. (22) is preciselylydz and, from Eq. (23), we have becomes

1 = —dydz. Therefore, this integral can be written as
/ / FoBdd, 5 = / / / dy,. (63)
m BEydydz = — m/E ddy, = m/Fmde, (58) oD WL
(BHD),. GRS oHY)

We now consider the second inhomogeneous Maxwell

where we have used Eq. (3). The other integrals can be hagduation (51). The open surfasec R* appearing there will
dled in a similar way. For the construction of Eq. (60) be-be chosen as follows: the closed surfadeé will be divided
low, it is convenient to use the following antisymmetric ma- into two disjoint parts (except at the points of its boundanes)
trix which shows the form of the elements of the tenddy, ~ denoted asy T) and$?) So thatgv = ST U S (for

when they are expressed in the different parameterizations €xample,st”) can be taken as the top part@¥ with re-
spect to theZ axis andS(?) as the bottom part). These two

0 —dydz —dxdz —dzdy surfaces are open surfaces and expression (51) can be applied
0 dtdz  —dtdy (59) over any of them. Let us take for exampe= S(™). Then,
0 dtdx ' the LHS of Eq. (51) can be written as
.. 0
One must to be aware, however, that this matrix is a mix- / Mdexdt + / mBydydt T / mBdedt
ture of the forms that the elements of the ter‘n&jy have in T (8S(M), T (95(D), T (98(M),
the different parameterizations. Therefore, this matrix is not
necessarily a tensor, a fact that can be easily proved. With / / E.dydz + / E,dzdz
these data the LHS of Eq. (50) becomes (5(13),. (S(T)).,
m (Erdydz + Eydzdr + E.dxdy) / E.dxdy. (64)
ST,
= m/ FO doh . (60) Let us consider the hyper-surfaces

oHY
g HY ={(t, 2,y 2)|0<t<T; (2,y,2)eST} C R, (65)

On the other hand, in the RHS of Eq. (50) there appear (B) (B) 4
dz dy dz which is the form ofdV/!23 when the parameters s ={(t,2,y,2)|0<t<T; (2,y,2)€S"™'} CR". (66)
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Comparing with the expression fbr( givenin Eq. (55)
we see thaH(Q) = H( ) H(B) and that the border of
H(S2) matches the boundaries blt‘T) andH ) after delet-
ing the common pomts In add|t|oS(T) = (BH T))myz and
T x (05™M), = (0H),,. Therefore, for the first integral

of expression (64) we have
/ / F2dzdt =

/ %Bxdxdt =

T (8S(M), (OHY) 1w
- / / F2dedt = — / / F23 b, (67)
o oL

where we have used the fact théat'© = dxdt when the pa-
rameters aréd!, 2) = (z,t). This impliesdbh; = —do®! =

83

It must be remarked one more time that Egs. (19) and
(23) are much more than just a way of writing the inte-
gration elementsglz™dz" anddz'dz°®, they show a deeper
fact: the integration regiongS) associated withio;,, and
the region(T" x 0S), associated withio,,,, are parts of
the same two- dimensional surface in the four-dimensional
hyper-space; analogously, the regi¢hg and(T x 9V') are
parts of the same three-dimensional hyper-surface in the four-
dimensional hyper-space. These facts are not evident from
the integral Maxwell equations, written in their usual form.

It is clear that for the bottom hyper-surfa&tetng ) we
have the analogous result:

dxzdt. For the second and third terms we have something sim-

ilar. For the fourth term we have

— // E,dydz = — // Fdydz

(M), (3Hng))yz
—//Flodydz = —/ FOld@(n, (68)
aHg" aHY"

and something similar for the fifth and sixth terms. Then thecan be grouped into a single integral owH .

sum of the six terms of the LHS of Eq. (51) is equal to

%//Faﬁd@ag.

(T)
OHy

(69)

Note again the equivalence between the integration re-
gions. This implies that the integration region in space-time,

denoted a$7" x 0.5) is part ofoH ng)

On the other hand, we see that in the first integral on

the RHS of Eq. (51) appears the eleméptlzdt which is
the form of dV/23° when the parameters afe!, u?,u?) =

/ / FoBdd, 5 = / / / mayt . (73)
o h o)
Due toHY = HY) U R, the right members of

Egs. (72) and (73) can be grouped into a smgle integral over
H(2). Additionally, as the boundary dﬂS matches the
union of the boundary dﬂ andH (5) (after the common
points have been deleted) and due to the contribution of those
points in the integral ovei?H(ST) U aH(SB) cancel themselves,
we also have that left members of the two previous equations
Therefore,

we have

%//Faﬁzdgag///jmd@m

OHY HE
where m=1,2,3 and «,3=0,1,2,3
Now, as inH'? we have(z,y, z) € OV it follows that

dv = 0 and d@ = 0. As a consequence the integral
fffH(z)j d¥, is equal to zero and it can be added to the

(y, z,t). Consequently, using Eq. (19), that integral is equalprewous equation. So, the second inhomogeneous Maxwell

/ / ' dydzdt = / / / jtdydzdt = / / / i dydzdt

(H) HCD)

mz

s

HCD)

(70)

The other two integrals can be worked in the same wayt

Therefore the RHS of Eq. (51) is equal to

—///j’"d@’m. (71)
HED
With these results, Eq.(51) is written as
5 [[Fods = [[[ i @2

dH(T) H(D)

equation (51) becomes

i ]

OHY HE

(74)

Finally, sinceHs = H) UH Egs. (63) and (74) can
be grouped into a single equation. It suffices to note that
he boundary o ¢ matches the junctions of the boundaries
of HY) y H{? (after the common points have been deleted)
and that the contributions of those points in the integral over
8H(S1) UOH (52) cancel themselves. Therefore,

[ i [

OHg

(75)

This equation is Eg. (26), obtained in Subsec. 2.2 ex-
cept that nowH s is not totally arbitrary. This is so because
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to derive Eq. (75) we have used regions whose geometrid. Maxwell equations integrated over less
characteristics are appropriate for the experimental observa- ysual regions

tion of electromagnetic phenomena. On the other hand, to

derive Eq. (26)H s had no restrictions. Nevertheless, one 0of3.1. Non covariant case

the most important implications of having demonstrated Eq.

(75) is that the usual integral expressions are consistent witfihe region of integration used in the previous section, as
the general covariant integral formulation of Eq. (26). mentioned before, are not the only ones. Therefore, the inte-

It can be shown that for the type of hyper-surfaces such agral Maxwell equations (44)-(47) are not the only ones. As
those considered in Eq. (75) the integral of the RHS is equalve will see below there is a more convenient way to express
to zero even though® is different from zero (see Appendix them to make the transition to an explicitly covariant formu-
B). Therefore, it is necessary to look for another approachation easier. To see this point we remember the usual way of
as will be done in the next section where we use a differenbbtaining the Maxwell integral equations from the differen-
method. tial ones (8), (9), (11) and (12).

The homogenous Maxwell equations, (52) and (53) can  To transform (8) and (11) into (44) and (46), a volume in-
be expressed in an explicitly covariant form if we take intotegral is made, after which the divergence theorem is applied.
account that, fop = 0 andj = 0 Egs. (50) and (51) are On the other hand, to pass from (9) and (12) to (45) and (47),
identical to Egs. (52) and (53) after the transformations (EMa surface integral is made and then Stokes theorem is applied.

duality) The time derivatives are not touched at all. In other words,
E_LB there is no time integration. Therefore, it is clear that this
’ procedure is far from being symmetric in space and time, as
B— —E. (76)  relativity theory demands. Thus, it is necessary to proceed in

another way, trying to put the time and space coordinates on
the same level. We proceed as follows.

We first make a volume integration of all the Egs. (8), (9),
(11) and (12). In the equations that involve divergences we
// S‘“’d@w =0, (77)  use the divergence theorem to pass from a volume integral to

a surface integral, as usual. In equations involving the rota-

This transformation is equivalent to the one that trans
forms the tensoF*” into its dual tensof** defined in Eq.
(16). Therefore, the expression

Q(2) . .
represents the homogeneous ECIME. tional we use the following corollary of the Stokes theorem
We can see now that the procedure to show the covariance
of the integral Maxwell equations is much more complicated // V xGdV = // dSx G. (78)
than the one to show the covariance of the differential equa- % oV

tions.
To end this section, it is convenient to make the following ~ Thus, Egs. (9) and (12) transform into
comments which, although trivial, complement the discus-

sion. //deBjt/V//EdV/V// v,  (79)

— In the previous developments we have started from a ov
certain form of the Maxwell's equations and have ar-

rived at their covariant integral form. But one can alsoalnd

do the inversej.e., to derive the other forms of the d

Maxwell equations starting from the covariant integral // dSx E + dt /// BdV' = 0. (80)
form. v v

— Since the covariant integral equations are expressed in |t is now clear that it is necessary to eliminate the time
terms of tensors with respect to the Lorentz transforderivatives by integration. The results are
mation, their form will be the same in any inertial ref-
erence fra_me. Ther_efore, since the set o_f covariant inte- /dt/ ISx B — /// EdV — /dt // jdv. (81)
gral equations implies the other forms, it is concluded
that the integrals over the transformed regions willgive 7 9V v T v

the transformed Maxwell equations in the new refer-and
ence system.

— Two different inertial observers will assign different /dt // dSx E+ /// BdV = 0. (82)
values to the functiong’*” and j,. But regardless A 4 v
of the system of reference inertial used, the behavior
of these functions will be governed by the same equa- This pair of equations, together with the pair (44), (46) is
tions. an equivalent form of writing the integral Maxwell equations.
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As we will see below, they have significant advantages thaB.2. Covariant integral case starting from the three-
let us to pass to the covariant formulation. This also shows dimensional differential expressions

another perspective of electromagnetic theory. Because our

aim is to achieve complete symmetry in space-time, befordVe begin by writing the non-covariant integral Maxwell
writing Egs. (44), (46), (81) and (82) in terms of Cartesian€guations (85)-(86) in Cartesian coordinates,
coordinates, it is worthwhile to remark that the LHS term of

(44) and (46) involve surface integrations. Thus, we have to / / / (Bodydz + Eydzdz + E.dzdy)dt
deal with two surfaces and three-dimensional hyper-surfaces. 7 9V

In order to have more symmetry in Eqgs. (44) and (46), we
integrate over time, obtaining = //// pdzdydz dt, (89)
T \%4
///(Bzdzdac — Bydydz)dt — // E.dxdydz
/ / / ELdSdt = / / / / pdVt, (83) T oy v
T ov v = / / / / jedrdydz dt, (90)
T 1%
and ///(Bidydx — B.dzdy)dt — // E,dxdydz
T 0V 14
= i, dxdydz dt, 91
///BDdet:O. (84) ////]erz 1)
T 1%
T oV
///(Bydydz — Bpdxdz)dt — // E,dxdydz
T oV |4
Then, the Maxwell equations in other of their integral (92)

:////jzd:):dydz dt.
T \4

forms are

T/ a/v / E0dSdt = T/ /V/ / pdVdt, (85)
T/dtafv/dsw_/V//Edva/dt/v//jdv, (86)
T/ a/v / BOdSdt = 0, (87)

and
/dt!//deEJr/V//BdV_O. (88)

T

Thus, having different forms of writing the integral

Maxwell equations raises the question of which of those
forms can suggest a better way to show the explicit covari-

ance.

It is evident from these equations that integration regions
in the LHS of all these equations are of the same type, which
makes easier to the passage to the covariant formulation.
Now, taking the space-time volume as usual,

d*z = dx dy dz dt.
The RHS of Egs. (89) and (90) can be written as

JIJT pdtx

TxV

JIJ Gadte

TxV

I JJ gydte

TV

JIJI =d'e

TxV

(93)

. / / / / i, (94)
14

where we have introduced a new symb¥l to denote a
hyper-volume. As was the case in the last section again, the
key pointis to recognize that botti’ x V') and(V'), are parts
of V.

Using Egs. (7) and (19) we can express the LHS of (89)

in the form
//(Ewdydz + Eydzdx
av

+ E.dxdy)dt — / / / FOdv,, (95)
ov

T

Rev. Mex. k5. E18(1) 76-89



86 J. L. JIMENEZ AND G. MONSIVAIS

while for the LHS of Eqg. (90), using Eq. (19), we obtain We now transform the LHS of Eq. (91). Using the Stokes

theorem, one obtains
///(Bzdzdx — Bydydx)dt — /// E.dzdydz
T oV / / / / O F* dty = / / / / jYdte. (104)
ff s e !

TxdV Which corresponds to Eq. (87). The homogeneous

z . o Egs. (90) can be obtained in a similar way.
/// AV, ( 5 Enij ”) + ///F dVo As we already mentioned, the form of writing the covari-
s ant Maxwell equations in their integral form is not unique;
this is clearer when we depart from the explicitly covariant
/// F'™av,, + /// F10qv;,. (96)  formulation of the Maxwell differential equations.
TxoV

The left-hand side of Egs. (91) and (92) can be Written4

similarly. Thus, the left hand side of Egs. (90)-(92) can be~ Concluding remarks

written generically as We have discussed several ways to obtain ECIME. In the case
/ / / Flmqy 4 / / / gV, 97) in which we star.ted from the IME3 it was necessary to ex-
press the usual integral expressions without time derivatives
TxoV to obtain a true set of integral equations. Our analysis also
which clearly is the componept = m of shows the difficulties that one faces in the process of choos-
ing the hyper-surfaces on which it is necessary to integrate.
/// Frdv,, (98)  This way is not as straightforward as the one in which one
V)=V directly integrates the explicitly covariant form of the differ-

ential equations. It must be remarked that we proposed an

. : . : ) alternative form of writing the integral Maxwell equations,
(98), with the resuit given in Eq. (94), permits us to write theboth non-covariantly and explicitly covariantly. Our treat-

ECIME in the form ment also opens the perspective of seeing the integral equa-

// Vv, = // // indi, (99) tions of Maxwell in the structure of space-time, that is objec-
tive of relativity theory.

while Eq. (95) is thex = 0 component. Then, expression

(V)=8V
According to usual conventions, we can write the three- )
volume of space-time as the hyper-surface eleniept Appendix A.
v, =do,. (100)  pefinition. Let us consider a hyper-surfabﬁ; c R? gen-

space-time tensor related to the hyper-volume integral of th@e assume thad 5 is generated by only one equation of this
four-vector density current, that is, type, but the generalization for whéty is generated by two
0 more equations of this type is obvious)

V[/@[} o = // // e @0 % = X (u), (A1)

The homogeneous ECIME can be obtained by means afjherex = (z#) = (2°, z'22, 2°) is the four-vector defined
the dual field tensag””. So Egs. (87) and (88) can be written in Eq. (1),)?(u) =(X%%u ),X (u), X2(u), X3(u)) is a four-

as component function depending on the three-dimensional
. : 3
" _ variableu = (u,v,w) € V, beingV;, C R the three-
// 5% do, = 0. (102) dimensional region where the parameters, w take values.
Let us consider a function defined inHg .
3.3. Covariant integral case starting from the four- The hyper-surfacentegral [ f,, ¢d¥; of the functione
dimensional differential expressions over the hyper-surfadd s is defined as
We first multiply Eq. (10) py the hyper volume elemetit: // ¢d% = // ¢()?(u))
and then integrate to obtain

S u
8, F*d* :////*Vd‘l ) 103 a9xB 9
//// neeEE 7 (103) x [gawaxax S N
\% % ou

ou Ow
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where the symbolg(X (u)) and

0X*9XP ax"

CaB 00 ou ow v

are the values o and dW¥on the hyper-surfackl s respec-
tively. Explicitly

4[/¢d%:/v{/¢<%<u>>

oxX' o0Xx? 9x3
ou ou ou
1
« oxX' o0Xx? 9x3 (A3)
ov ov ov
oxX' o0x? 9x3
ow ow ow
[ oa¥ = [[[ ocxw)
Hs Va
0X?2 0x® 09Xx°
ou ou ou
2 3 0
« 0X* 0X° 0X v, (A.4)
ov ov ov
0xX? 9x3 9XO
ow ow ow
[[[ oa¥= [[[ oxw)
Hs Vu
0x3 9x° ox!
ou ou ou
3 0 1
« 0xX° o0XY 00X Vi (A.5)
ov ov ov
X3 0X° oxt
ow ow ow
[ oa¥=- [[] ocxw)
Hs Vu
0X°% ox' 9Xx?
ou ou ou
0 1 2
« o0xXY oXxt 090X v (A.6)
ov ov ov
0X% ox! 9Xx?2
ow ow ow

For example, for the special case in which the parameters

arex = u,y = v, z = w EQq. (A3) becomes

/H{ d¥h E/V//¢>(X0(x,y,z),x,%z)dxdydz, (A7)

Appendix B.

In this appendix we demonstrate that for certain hyper-
surfaces the RHS of Eq. (20) can be equal to zero even though
the sources are different from zero.

Let us consider the hyper-surface

He =HY UHY, (B.1)

where

HY = {(0,2,y,2)|(z,y.2) € V} CRY, (B.2)

HE ={(t,z,y, 2)|0<t<T; (z,y,2) € 9V} CR*, (B.3)

hereV < R? is a three-dimensional volume independent
from ¢ and 0V is the surface surrounding. In abuse of
the notation the sdﬂfgl) will be denoted agV’) ¢ R* and
H® as(T x 8V) c R%. So,Hg = (V) U (T x V).

The hyper-surface-l(;) is a hyper-cylinder amH-I(Sl) is
one of its caps (the one at= 0). For the case in which
the hyper-surfacél s does not contain none of its caps the
expression foH s reduces tdd (52).

Let C an arbitrary set olR* we will use the symbol
(C)zy- to denote the region in the spadgy Z that gener-
ates the projection o on this space. The symbgC),, has
an similar meaning.

So, since the sdt generates the projection bffs on the
spaceXY Z we have

(HS)zyz = Vv (aHS)ryz = 8V,

and (OHg)zy = 0Vyy. (B.4)

Assigning a similar meaning for the symbdld s ).y,
(Hs)tzzr (Hs)ty- we have

(Hg)tay =T X OVyy, (B.5)
(HS)tacz =T x anZa (BG)
(Hs)ty> =T x 0V, (B.7)

wheredV;; is the projection oDV on the plane/J. Then,
the RHS of Eq. (20) becomes

/H[/jvdk}y = /H[/pdxdydz + /H[/jwdydzdt
+ /H { / jydadzdt + /H [ / j.dxdydt. (B.8)

The first integral of this expression is equal to (notice that
this term does not appear whel; does not include its cap)

/ / / pdrdydz = / / / pdrdydz = /V/ / pdrdydz = Q,

Hs (Hs)ay=

(Q = charge insidd/), (B.9)
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while for the second integral of the RHS of Eq. (B.8) we havewhere we have used the fact thais independent fromand

/// Judydzdt = / / / Jodydzdt = / / / judydzdt

(Hs)ty=

T T
:/ //jmdydz dt:/ //jmdydz dt. (B.10)
0o Lov

0 |9Vy-
We now use the formulation above Eg. (32). Thus,

e
///jwddedt :/ //jm cosadS | dt
Hs 0 Lov

//jxnldS dt.
El%

(B.11)

/HZ/de@;:Q+O/T:a/V/j~ﬁds dt
/V//V-jdv dt
///5'0dv dt

8] -0

I
O
_|_

Il
O
|
O\H o\% O\H

I
@

(B.12)

Q=

Q(t). For the case when the hyper-surface does not in-

clude its cap, the first term of Eq. (B.12) not appear and the
result is

(B.13)

fre-

For more details see Ref. [20] where D. van Dantzig ana-

lyzed this problem in 1934 from a different perspective. From
the previous discussion is evident the essential role that an
adequate handling of hyper-surfaces plays.
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[J[,, VOFdV = [fi [, FOndo whereV is an arbitrary vol- y Stokes para funciones continuas y discontin@asl ed. (La
ume, 9V the closed surface that surrounds it, aRda vec- Prensa de Ciencias,&tico, 2013).

tor valued function. If, for example, this theorem is applied

to the functionF = (¢,0,0) one obtains [, d¢/dzdV = 20. D. van Dan_tzig, The fundamer_nal equations of electro-
i [, ¢dos, wheredo,, = nido is the projection oflo on magnetism, independent of metrical geometdath. Proc.
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the planeXY. When this surface integral is evaluated using
101 //50305004100012664

the parameters, y the projectiondo.,, is equal todzdy (see
Ref. [19]).
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