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1. Introduction

It is a historical fact that relativity theory emerged from clas-
sical electrodynamics. Thus, an inertial frame, in relativity
theory, is one relative to which Maxwell equations hold, and
we change from one inertial frame to another by means of
Lorentz transformations [1]. After the introduction by Ein-
stein of space-time, classical electrodynamics could be writ-
ten in the language of tensor analysis in space-time. Due
to the intrinsic property of the tensors, this form of writ-
ing the equations has the advantage that one can be sure
that the equations have the same form in all inertial frames.
For this reason, we call this formulation explicitly covari-
ant. In contrast, writing the Maxwell Equations in the usual
three-dimensional form does not explicitly exhibit the covari-
ance. Unfortunately, in most texts on electromagnetism [2-
10] or relativity [11-14] we find only the covariant formu-
lation of the differential Maxwell equations. As far as we
know, only Aharoni [15] and Ley [16] have discussed the
integral Maxwell equations in their covariant form. Never-
theless, those studies are incomplete. In Ref. [15] only the
case where no sources are present is discussed. Furthermore,
its formulation cannot be directly used to obtain the correct
form for the case where sources are present due to an error
in one of its expressions as discussed in sub-section 2.2. In
Ref. [16], the expressions obtained are not properly integral
forms, since such expressions also contain derivatives,i.e.,
they are integro-differential equations. Furthermore, in none
of these references is it described the role of the surfaces and
hyper-surfaces embedded in the four-dimensional space-time

over which the integrals are performed, a crucial point in this
formulation. Neither is discussed the relation between the co-
variant and non-covariant formulation, particularly about the
integration regions involved in both formulations.

One reason for which the covariance of the integral forms
are less studied is that the differential equations refer to points
of space and time that can be trivially written covariantly,
while the integral equations refer to continuous sets of points
in the space and time. How these equations can be expressed
covariantly is not as evident as in the differential formula-
tion. Nevertheless, as we will see, the transition can be done
without many difficulties if it is recognized how the different
integration regions that appear in the conventional formula-
tion can be chosen such that all of them corresponds to parts
of a single hyper-surface embedded in the four-dimensional
space-time. The objective of this paper is to discuss all these
points in detail.

Our presentation is as follows. Section 2 is focused to
the derivation of the covariant integral forms. Nevertheless,
as a preamble and in order to introduce our notation, in Sub-
sec. 2.1, we first present a brief review of the procedure to
derive the explicitly covariant differential Maxwell equations
(ECDME) starting from the usual three-dimensional differ-
ential Maxwell equations (DME3). In Subsec. 2.2 we derive
the explicitly covariant integral Maxwell equations (ECIME)
starting from the ECDME. This formulation is a generaliza-
tion of the one of Aharoni [15] and goes beyond the discus-
sion of Ley [16]. The objective of Subsec. 2.3 is to analyze
the formulation of the previous sub-section from the point of
view of the usual three-dimensional differential equations. In
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Subsec. 2.4 we derive the ECIME starting from the usual
three-dimensional integral Maxwell equations IME3. Sub-
section 2.4 is the most important and interesting. It contains
many crucial and non-trivial details that must be considered.
Unfortunately, their discussion is almost absent in the liter-
ature. The summary of Sec. 2 can be written symbolically
as

2.1 Differential three-vector→Differential four-vector
(DME3→ ECDME)

2.2 Differential four-vector→ Integral four-vector
(ECDME→ ECIME)

2.3 Differential three-vector→ Integral four-vector
(DME3→ ECIME)

2.4 Integral three-vector→ Integral four-vector (IME3
→ ECIME)

In Subsec. 3.1 we obtain other forms of the non-covariant
integral Maxwell equations, which are not usually discussed
in the literature. In Subsec. 3.2 we obtain a new form of
explicitly covariant integral Maxwell equations starting from
the usual three-dimensional differential equations. Finally, in
Subsec. 3.3 we obtain this new covariant expression from the
covariant differential equations. With this we offer a different
perspective that we hope will leads to understand the close re-
lationship between electromagnetism in its integral form and
special relativity.

2. Electromagnetism in explicitly covariant in-
tegral form

2.1. Preamble. Explicitly covariant differential Maxwell
equations from the usual differential Maxwell equa-
tions

In order to make the subsequent analysis clearer and to intro-
duce our notation, we recall the procedure to exhibit the co-
variance of the Maxwell equations in differential form start-
ing from the usual three-dimensional differential form. In
this work the Latin indexes (lower or upper) take values on
the set{1, 2, 3}while the Greek indexes take values on the set
{0, 1, 2, 3} . Furthermore, we follow the Einstein summation
convention which implies summation over repeated covari-
ant and contravariant indexes. It is important to be aware
that expressing the Maxwell equations by means of four-
dimensional mathematical objects does not entailapriori a
relativistic generalization neither the required properties of
covariance [17]. For this it is necessary that the objects were
tensors with respect to the Lorentz transformations. Only in
this way one guarantees that the equations are covariant. In
general, an arbitrary four-component object is not a tensor.
To know if the object is a tensor it is necessary to prove that
the law of transformation of the tensors is satisfied. In what
follows, whenever an object which is a tensor is used, such

characteristic will be explicitly stated without proving that it
satisfies the required transformation law.

We proceed as follows. We identify first the Cartesian
components of the following four components objects, which
are contravariant tensors of first rank (we use Heaviside units
with c = 1).

(xµ) = (x0, x1, x2, x3) = (t, x, y, z) = (t, r )

four-vector of coordinates (1)

(jµ) = (j0, j1, j2, j3) = (ρ, jx, jy, jz) = (ρ, j)

density current four-vector (2)

and the covariant tensor of first rank

(∂µ) = (∂0, ∂1, ∂2, ∂3) =
(

∂

∂t
,

∂

∂x
,

∂

∂y
,

∂

∂z

)

=
(

∂

∂t
,∇

)
four-nabla operator. (3)

We also need the contravariant second-rank antisymmet-
ric electromagnetic field tensorFµv. It has the matrix ele-
ments

Fm0 = Em = Em, (4)

Fmn = −òmn`B`, (5)

whereEm andBm are the Cartesian components of the elec-
tric and the magnetic induction fieldsE and B respectively.
The symbolòmn` denotes the totally antisymmetric third
rank tensor

òmn` =





1 for m=1, n=2, `=3 or any
even permutation

−1 for any odd permutation
0 if any two indices are equal

. (6)

In matrix form the tensorFµv is writing as

(Fµν) =




0 −Ex −Ey −Ez

Ex 0 −Bz By

Ey Bz 0 −Bx

Ez −By Bx 0


 . (7)

The totally antisymmetric fourth-rank tensoròµνλδ is also
useful; it is defined as an obvious generalization ofòmn` Fur-
thermore, one can get the corresponding covariant tensor of
a given contravariant tensor by using the metric tensorgαβ .
This tensor can be defined by means of a diagonal matrix
whose diagonal elements areg00 = 1 and g11 = g22 =
g33 = −1. For example, the electromagnetic tensor with
two covariant indicesFγδ is equal toFγδ = gγµgδνFµν

and it is easily shown that his elements can be obtained from
Fµv by puttingE → −E. Similarly, the totally antisymmet-
ric fourth-rank tensor with covariant indices̀oµνλδ is equal
to òαβγδ = gαkgβλgγµgδν òkλµν and is easily shown that
òαβγδ = −òαβγδ.
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With these elements, the Cartesian components of the in-
homogeneous Maxwell equations:

∇ · E = ρ, (8)

(∇× B)k =
∂Ek

∂t + jk
, (9)

can be written as∂µFµ0 = J0 and∂µFµk = Jk respectively.
These four equations can be written as a single expression

∂µFµv = Jν , (10)

which are the desired four explicitly covariant inhomoge-
neous differential Maxwell equations.

The homogeneous equations

∇ · B = 0, (11)

(∇× E )k = −∂Bk

∂t
, (12)

can be written in covariant form using the dual electromag-
netic field tensorFµν whose elements are again the compo-
nents ofE and B but arranged differently. This tensor is eas-
ily constructed using the tensorsFγδ andòµνλδ. The relation
is

Fµν =
1
2

òµνγδFγδ, (13)

which implies the correspondences

Fm0 = Bm = Bm, (14)

Fmn = òmn`E`. (15)

In matrix form we have

(Fµν) =




0 −Bx −By −Bz

Bx 0 Ez −Ey

By −Ez 0 Ex

Bz Ey −Ex 0


 . (16)

Then, the four homogeneous Maxwell Eqs. (11) and (12)
can be written in covariant form as

∂µFµν = 0. (17)

2.2. Explicitly covariant integral Maxwell equations
from explicitly covariant differential Maxwell equa-
tions

In this sub-section we derive the ECIME starting from the
ECDME: Eqs. (10) and (17). This formulation is a general-
ization of the one of Aharoni [15] since we include the case in
which the sources are different from zero. We also go beyond
the discussion of Ley [16] since we obtain properly integral
forms and not only integro-differential equations as is done
in [16]. Additionally, we describe in detail the surfaces and
hyper-surfaces embedded in the four-dimensional space-time
over which the integrals are done.

Equations (10) and (17) can be integrated in the four-
dimensional space-time over different regions. For exam-
ple they can be integrated over open or closed lines, open
or closed surfaces, open or closed hyper-surfaces or hyper-
volumes. However, usually only certain integration regions
are considered. This is so because they are the ones that are
directly related with the experimental procedures (see Sub-
sec. 2.4) or because one is interested in considering regions
in which the role of the spatial coordinates and the time coor-
dinate is symmetrical (as will be discussed in this and in the
next sub-sections).

In the following we will integrate Eq. (10) over an arbi-
trary hyper-surface by means of a three-dimensional hyper-
surfaceHs ⊂ R4 integral. See definition of this kind of inte-
gral in Appendix A. We assume that this hyper-surface is the
image of a three-dimensional regionVuvw ⊂ R3 by means of
the mapping

~x = ~X(u) = (X0(u), X1(u), X2(u), X3(u)),

where~x = (xµ) = (x0, x1, x2, x3) is the four-vector defined
in Eq. (1),~X : Vuvw → HS is a four-component function de-
pending on the three-dimensional variableu = (u, v, w) ∈
Vu being u, v, w the three parameters generatingHS . As
mentioned,HS is totally arbitrary, the only restriction that
is asked is that it can be parameterized as indicated above.
We denote as∂Vuvw, the boundary ofVuvw. We also assume
that not all the points of the set~X(∂Vuvw) are double points
(possibly none of them) and thereforeHS is an open region.
The surface surroundingHS denoted as∂HS is a closed sur-
face which is generated by the subset of~X(∂Vuvw) formed
of all the non-double points. Since three-dimensional hyper-
surface integrals are to be used, the integrations elements
must be differential of measure of hyper-surface and, in order
to have covariant expressions, they must be the components
of a tensor. The candidate is the antisymmetric contravari-
ant third-rank tensor (dV αβγ) whose elements are defined by
means of the determinant

dV αβγ =
(

εijk ∂Xα

∂ui

∂Xβ

∂uj

∂Xγ

∂uk

)
du1du2du3, (18)

whereu1 = u, u2 = v, u3 = w. This tensor has only four
independent components different from zero. The sign of
dV αβγ is not an intrinsic property since it depends of the or-
der assigned to the parametersu1, u2, u3. Instead of that, its
magnitude|dV αβγ | is equal to the measure of the projection
of the differential of hyper-surface on the hyper-planeα β γ,
For our purposes, however, it is more useful to construct a co-
variant tensor and to have its indices assigned in another way.
This is easily accomplished by means of the dual covariant
one-rank tensordVδ defined asdVδ = (1/3!)òαβγδdV αβγ .
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This implies

dV0 = dV 123

dV1 = −dV 230

dV2 = dV 301

dV3 = −dV 012 (19)

The explicit form of these differential elements depends
of the parameterization to be used. For example, when the
parameterization is(u, v, w) = (x, y, z) one obtainsdV0 =
dxdydz anddV3 = −∂X0/∂zdxdydz while when the pa-
rameterization is(u, v, w) = (t, x, y) one obtainsdV3 =
dtdxdy, etc.

We now multiply Eq. (10) bydVν and we sum over the
indexν. After integration over the hyper-surfaceHS we ob-
tain

∫∫∫

HS

∂µFµνdVν =
∫∫∫

HS

jµdVν . (20)

Next we will use the following integral theorem that re-
lates a hyper-surface integral over an open three-dimensional
hyper-surfaceHS ⊂ R4 with a surface integral over the two-
dimensional surface∂HS ⊂ R4 surroundingHS ,

2
∫∫∫

HS

∂µΦµνdVν =
∫∫

∂HS

Φµνdσµν , (21)

beingΦµν an arbitrary antisymmetric function. This theorem
is written with an error in Ref. [15], it lacks the factor of 2.
The tensordσµν is the dual of the contravariant antisymmetric
two-rank tensordσµν defined by means of the determinant

dσµν =
(

εij ∂Ξµ

∂θi

∂Ξν

∂θj

)
dθ1dθ2, (22)

where~Ξ : {(θ1, θ2)} → ∂HS ⊂ R4 is the mapping generat-
ing ∂HS andθ1, θ2 are the two parameters. This tensor has
only six independent components different form zero. The
magnitude|dσµν | is the differential of area of the projection
of ∂HS on the planeµν The dual tensordσµν is defined as
dσµν = (1/2)òµναβdσαβ which implies

dσ01 = −dσ23, dσ12 = −dσ03, (23)

dσ02 = dσ13, dσ13 = dσ02, (24)

dσ03 = −dσ12, dσ23 = −dσ01. (25)

From Eqs. (20), (21) we finally obtain the inhomoge-
neous ECIME

∫∫

∂HS

Fµνdσµν = 2
∫∫∫

HS

jνdVν , (26)

whereHS is an arbitrary hyper-surface. It is worth mention-
ing that for some hyper-surfaces the RHS of Eq. (26) can
be equal to zero even though the sources are different from
zero (see appendix B). In this case, Eq. (26) is not a proper
Maxwell integral equation and it is necessary to search for
them as is done in Sec. 3. Nevertheless, for the case in which
the sources are equal to zero, Eq. (26) reduces to the Aharoni
result and the error in the factor 2 disappears.

Following the same procedure, we obtain for the homo-
geneous ∫∫

∂HS

Fµνdσµν = 0. (27)

The covariance of expressions (26) and (27) is a conse-
quence of the transform properties of the tensorsFµν , dσµν ,
etc.

2.3. Explicitly covariant integral Maxwell equations
from the usual differential Maxwell equations

The objective of this sub-section is to discuss the derivation
of the ECIME: Eqs. (26) and (27) from the point of view
of the usual DME3 and to analyze the relationship between
this formulation and the one discussed in the previous sub-
section. The integration regions involved in both treatments
is also described in detail. This and the next sub-sections
contain several fundamental and subtle points.

We will start from the usual three-dimensional form of
the inhomogeneous Maxwell equations (8) and (9). As we
want to compare with the expressions derived in the previous
sub-section, what must be done is to integrate on the same
region in both formulations. So, we will integrate the three-
dimensional Eqs. (8) and (9) over the hyper-surfaceHS of
Subsec. 2.2. Multiplying Eqs. (8) and (9) respectively by the
elementsdV0 anddVk defined in Eq. (19) and summing over
k, we obtain

∇ · EdV0 = ρdV0 = j0dV0, (28)

(∇×B)kdVk − ∂Ek

∂t
dVk = jxdVk, (29)

wherek = 1, 2, 3. The sum of these four equations gives

(∇× B)kdVk − ∂Ek

∂t
dVk +∇ · EdV0 = jνdVν . (30)

Now we integrate over the hyper-surfaceHS In the in-
tegral of the function(∇ × B)1dV1 we use the parameters
(u1, u2, u3) = (t, y, z) and therefore

dV1 = dydzdt = cos αdSdt = n1dSdt, (31)

beingα the angle between the differential surfacedS and its
projection on the planeY Z. The symboln1 is the first com-
ponent of the unitary vector̂n = (cos α, cos β, cos γ) which
is perpendicular todS. So,∫∫∫

HS

(∇× B)1dV1 =
∫∫∫

HS

(∇× B)1n1dSdt. (32)
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The other terms can be handled in a similar form. For
example, in the integral of the function(∇× B)2dV2 we use
the parameters(u1, u2, u3) = (t, y, z) and in the integral of
the function∇ · EdV0 we use the parameters(u1, u2, u3) =
(x, y, z). This leads to

∫∫∫

HS

(∇× B) · n̂dSdt−
∫∫∫

HS

∂E
∂t

· n̂dSdt

+
∫∫∫

HS

∇ · EdV =
∫∫∫

HS

jνdVν . (33)

Note that when working with the usual three-dimensional
equations it is customary to add only the three Eqs. (29)
and to integrate them over the open surface, while Eq. (28)
is worked out separately and integrated over the volumeV .
However, since what is desired here is to compare with the re-
sults of the previous sub-section what must be done is to add
up the four equations and to integrate over the same region.
The RHS of Eq. (33) already has the desired form, whereas
the LHS is an integro-differential expression. To convert Eq.
(33) into a purely integral expression the following integral
theorem will be used

∫∫∫

HS

∂φ

∂xµ
dVν −

∫∫∫

HS

∂φ

∂xν
dVµ =

∫∫

∂HS

φdσµν . (34)

This theorem is one of the generalizations of the usual
divergence theorem inR3 which can be written for example
as ∫∫∫

V

∂φ

∂x
dV =

∫∫

∂V

φdydz.

A more detailed discussion on this point is included in this
paper as quotes (Refs. [18,19]). Note that Eq. (34) has an
extra term respect to this usual theorem because the integral
is over the hyper-surfaceHS ⊂ R4 instead of the volume
V ⊂ R3. It is also worth noting that theorem (34) can be
used to demonstrate expression (21) (which is the one incor-
rectly written in Ref. [15]); it is enough to apply it to an
anti-symmetric function of two indices.

Applying theorem (34) to the first integral of (33), after
some cumbersome algebra, we obtain

∫∫∫

HS

(∇× B) · n̂dSdt = −
∫∫∫

HS

(∇× B) · n̂dSdt

− 2
∫∫

∂HS

B · dIdt, (35)

∫∫∫

HS

(∇× B) · n̂dSdt = −
∫∫

∂HS

B · dIdt. (36)

We now apply (34) to the second integral of (33), we ob-

tain

−
∫∫∫

HS

∂E
∂t

· n̂dSdt =
∫∫

∂HS

E · n̂dS

−
∫∫∫

HS

(∇ · E)dV. (37)

Note that this result clearly indicates that
∫∫

∂HS

E · n̂dS 6=
∫∫∫

HS

(∇ · E)dV,

which contrasts with the usual expression of the divergence
theorem inR3. Substituting (36) and (37) into (33), obtains

−
∫∫

∂HS

B · dIdt +
∫∫

∂HS

E · n̂dS =
∫∫∫

HS

jνdVν (38)

which is already a purely integral expression, and it is easy to
see that the LHS can be written as

1
2

∫∫

∂HS

Fµνdσµν

and hence Eq. (38) reduces to the inhomogeneous ECIME:
Eq. (26), as desired.

Following a similar procedure we obtain that the hyper-
surface integral of the sum of the four Eqs. (11) and (12)
multiplied respectively by the integration elementsdV0 y dVk

is equal to
∫∫∫

HS

(∇× E) · n̂dSdt +
∫∫∫

HS

∂B
∂t

· n̂dSdt = 0. (39)

Applying theorem (34) to the first and second integrals of
Eq. (39) gives respectively

∫∫∫

HS

(∇× E) · n̂dSdt = −
∫∫

∂HS

E · dIdt, (40)

∫∫∫

HS

∂B
∂t

· n̂dSdt = −
∫∫

∂HS

B · n̂dS. (41)

We again observe the contrast with the usual expression
of the divergence theorem inR3 applied to the fieldB:

∫∫

∂V

B · n̂dS = 0.

Replacing Eqs. (40) and (41) in (39) one obtains

−
∫∫

∂HS

E · dIdt−
∫∫

∂HS

B · ñdS = 0, (42)

and it is easy to verify that using Eq. (16) this equation can
be written as

1
2

∫∫

∂HS

Fµνdσµν = 0, (43)

which demonstrates Eq. (27) as desired.
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2.4. From the non-covariant integral Maxwell equations
to an explicitly covariant integral form

While the transition from the DME3 to the ECDME, as dis-
cussed in Subsec. 2.1, is almost direct, we must proceed more
carefully to obtain the ECIME starting from the usual IME3:

∫∫

∂V

E n̂dS = Q

∫∫∫

V

ρdV, (44)

∫

∂S

B dI − d

dt

∫∫

S

E n̂dS =
∫∫

S

j ndS, (45)

∫∫

∂V

B n̂dS = 0, (46)

∫

∂S

E dI +
d

dt

∫∫

S

B n̂dS = 0, (47)

where we have assumed that the surfaceS ⊂ R3 is at rest
in the frame of the observer. We are using∂V for the closed
surface which is the boundary of the volumeV ⊂ R3 and∂S
for the closed curve surrounding the boundary of the open
surfaceS. As it is well known, the form of Eqs. (44)-(47)
are closely related to the experimental observations of the
electromagnetic phenomena. We must notice the following
points:

a) Equations (44)-(47) involve line integrals, surface inte-
grals and/or volume integrals.

b) Equations (45) and (47) also involve time derivatives.

c) There are two types of surface integrals: in Eqs. (44)
and (46)∂V is a closed surface while in Eqs. (45) and
(47)S is an open surface.

The point b) is particularly important. It shows that
the usual integral Maxwell equations are indeed integro-
differential equations, since time derivatives appear together
with flux integrals. This fact constitutes the first obstacle to
a direct identification of these equations with the explicitly
covariant integral equations in space-time. Our procedure to
obtain this identification is first to integrate Eqs. (45) and
(47) with respect to time. This yield

∫

T

∫

∂S

B dIdt−
∫∫

S

E n̂dS =
∫

T

∫∫

S

j ndSdt (48)

and
∫

T

∫

∂S

E dIdt +
∫∫

B n̂dS = 0. (49)

With these integrations, in addition to avoiding time
derivatives, the left side of the equations involves only in-
tegrals over two-dimensional regions. Then, Eqs. (44), (48),

(46) and (49) written in their Cartesian components become,
respectively,

∫∫

∂V

(Exdydz + Eydzdx + Ezdxdy)

=
∫∫∫

V

ρdxdydz, (50)

∫

T

∫

∂S

(Bxdxdt + Bydydt + Bzdzdt)

−
∫∫

S

(Exdydz + Eydzdx + Ezdxdy) (51)

=
∫

T

∫∫

S

(jxdydzdt + jydzdxdt + jzdxdydt)

∫∫

∂V

(Bxdydz + Bydzdx + Bzdxdy) = 0 (52)

∫

T

∫

∂S

(Exdxdt + Eydydt + Ezdzdt)

+
∫∫

S

(Bxdydz + Bydzdx + Bzdxdy) = 0. (53)

Since the integration regions of these expressions are
quite different, they do not show a clear way to grouping
them, which is an important difference between the differ-
ential and integral formulations. For example, in Eq. (50),
the elements of integrationdydz, dzdx, dxdy etc. refer to a
closed surface while those in Eq. (51) refer to an open sur-
face. Furthermore, as time appears as a new variable of in-
tegration, the regions of integrations in space-time are more
varied that in the three-dimensional space. The key point is
to note that these elements can be chosen so that they were
subsets of a same three-dimensional hyper-surface embedded
in the four-dimensional space. We proceed as follows.

We first consider the inhomogeneous Maxwell equation
(50). The LHS can be written as

∫∫

∂V

(Exdydz + Eydzdx + Ezdxdy) =
∫∫

∂Vyz

Exdydz

+
∫∫

∂Vzx

Eydzdx +
∫∫

∂Vxy

Ezdxdy. (54)

Let us now consider the hyper-surfaceHS = H(1)
S ∪H(2)

S

where

H(1)
S ={(0, x, y, z)|(x, y, z) ∈ V } ⊂ R4, (55)

H(2)
S ={(t, x, y, z)|0 ≤ t ≤ T ; (x, y, z) ∈ ∂V } ⊂ R4. (56)

This hyper-surface is discussed in detail in Appendix B.
H(2)

S is an hyper-cylinder andH(1)
S is one of its caps (the one
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at t = 0). Thus,HS is an open hyper-surface whose bound-
ary ∂HS is at t = T . We must observe that, unlike what
was had in Subsecs. 2.2 and 2.3, nowHS is not totally arbi-
trary. The shape of this hyper-surface is dictated by the type
of regions that are considered in the usual three-dimensional
integral Maxwell equations. In abuse of the notation, the set
H(1)

S will be denoted as(V ), ∂H(1)
S as (∂V ), andH(2)

S as
(T × ∂V ). Hence,HS = (V ) ∪ (T × ∂V ). Let A be an
arbitrary set ofR4, we will use the symbol(A)xyz to denote
the region in the spaceXY Z that generates the projection of
A on this space. The symbol(A)xy has a similar meaning.
So, since the setV generates the projection ofH(1)

S on the
spaceXY Z we have: (H(1)

S )xyz = V, (∂H(1)
S )xyz = ∂V,

and(∂H(1)
S )xy = ∂Vxy. Then Eq. (54) can be written as

∫∫

∂V

(Exdydz + Eydzdx + Ezdxdy) =
∫∫

(∂H(1)
S )yz

Exdydz

+
∫∫

(∂H(1)
S )zx

Eydzdx +
∫∫

(∂H(1)
S )xy

Ezdxdy. (57)

It is clear than the more appropriate parameters to be
used in the first integral of the RHS of this equation arey
and z. With this parametrization, the form ofdσ23 given
by Eq. (22) is preciselydydz and, from Eq. (23), we have
dσ01 = −dydz. Therefore, this integral can be written as

∫∫

(∂H(1)
S )yz

Exdydz = −
∫∫

(∂H(1)
S )yz

Exdσ01 =
∫∫

∂H(1)
S

F 01dσ01, (58)

where we have used Eq. (3). The other integrals can be han-
dled in a similar way. For the construction of Eq. (60) be-
low, it is convenient to use the following antisymmetric ma-
trix which shows the form of the elements of the tensordσµν

when they are expressed in the different parameterizations



0 −dydz −dxdz −dxdy
· · · 0 dtdz −dtdy
· · · · · · 0 dtdx
· · · · · · · · · 0


 . (59)

One must to be aware, however, that this matrix is a mix-
ture of the forms that the elements of the tensordσµν have in
the different parameterizations. Therefore, this matrix is not
necessarily a tensor, a fact that can be easily proved. With
these data the LHS of Eq. (50) becomes

∫∫

∂V

(Exdydz + Eydzdx + Ezdxdy)

=
∫∫

∂H(1)
S

F 0mdσ0m. (60)

On the other hand, in the RHS of Eq. (50) there appear
dx dy dz which is the form ofdV 123 when the parameters

are (u1, u2, u3) = (x, y, z) Consequently, using Eq. (19),
the RHS of Eq. (50) is equal to

∫∫∫

V

j0dxdydz =
∫∫∫

(H(1)
S )xyz

j0dxdydz

=
∫∫∫

H(1)
S

j0dxdydz =
∫∫∫

H(1)
S

j0dV. (61)

Therefore, Eq. (50) can be written as
∫∫

∂H(1)
S

F 0mdσ0m =
∫∫

∂H(1)
S

Fm0dσm0 =
∫∫∫

H(1)
S

j0dV0. (62)

Note the equivalence between the integration regions.
The last step is the key of the method followed in this sub-
section; it implies that the integration region∂V ⊂ R3 gen-
erates the projection of∂H(1)

S ⊂ R4. As in ∂H(1)
S we have

dt = 0, it follows thatdV1 = dV2 = dV3 = 0 and the RHS
of Eq. (62) can be written as

∫∫∫
∂H(1)

S

jαdVα. For the same

reason (that is,dt = 0) we havedσ12 = dσ13 = dσ23 = 0 and
the LHS of Eq. (62) can be written as

∑
µ

∑
ν>µ Fµνdσµν .

Therefore, the first inhomogeneous Maxwell equation (50)
becomes

1
2

∫∫

∂H(1)
S

Fαβdσαβ =
∫∫∫

H(1)
S

jαdVα. (63)

We now consider the second inhomogeneous Maxwell
equation (51). The open surfaceS ⊂ R3 appearing there will
be chosen as follows: the closed surface∂V will be divided
into two disjoint parts (except at the points of its boundaries),
denoted asS(T ) andS(B) So that∂V = S(T ) ∪ S(B) (for
example,S(T ) can be taken as the top part of∂V with re-
spect to theZ axis andS(B) as the bottom part). These two
surfaces are open surfaces and expression (51) can be applied
over any of them. Let us take for exampleS = S(T ). Then,
the LHS of Eq. (51) can be written as

∫

T

∫

(∂S(T ))x

Bxdxdt +
∫

T

∫

(∂S(T ))y

Bydydt +
∫

T

∫

(∂S(T ))z

Bzdzdt

−
∫∫

(S(T ))yz

Exdydz +
∫∫

(S(T ))zx

Eydzdx

−
∫∫

(S(T ))xy

Ezdxdy. (64)

Let us consider the hyper-surfaces

H(T )
S ={(t, x, y, z)|0≤t≤T ; (x, y, z)∈S(T )} ⊂ R4, (65)

H(B)
S ={(t, x, y, z)|0≤t≤T ; (x, y, z)∈S(B)} ⊂ R4. (66)
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Comparing with the expression forH(2)
S given in Eq. (55)

we see thatH(2)
S = H(T )

S ∪ H(B)
S and that the border of

H(2)
S matches the boundaries ofH(T )

S andH(B)
S after delet-

ing the common points. In addition,S(T ) = (∂H(T )
S )xyz and

T × (∂S(T ))x = (∂H(T )
S )xt. Therefore, for the first integral

of expression (64) we have∫

T

∫

(∂S(T ))x

Bxdxdt = −
∫∫

(∂H(T )
S )tx

F 23dxdt =

−
∫∫

∂H(T )
S

F 23dxdt = −
∫∫

∂H(T )
S

F 23dσ23, (67)

where we have used the fact thatdσ10 = dxdt when the pa-
rameters are(θ1, θ2) = (x, t). This impliesdσ23 = −dσ01 =
dxdt. For the second and third terms we have something sim-
ilar. For the fourth term we have

−
∫∫

(S(T ))yz

Exdydz = −
∫∫

(∂H(T )
S )yz

F 10dydz

= −
∫∫

∂H(T )
S

F 10dydz = −
∫∫

∂H(T )
S

F 01dσ01, (68)

and something similar for the fifth and sixth terms. Then the
sum of the six terms of the LHS of Eq. (51) is equal to

−1
2

∫∫

∂H(T )
S

Fαβdσαβ . (69)

Note again the equivalence between the integration re-
gions. This implies that the integration region in space-time,
denoted as(T × ∂S) is part of∂H(T )

S .
On the other hand, we see that in the first integral on

the RHS of Eq. (51) appears the elementdydzdt which is
the form ofdV 230 when the parameters are(u1, u2, u3) =
(y, z, t). Consequently, using Eq. (19), that integral is equal
to∫

T

∫

S

j1dydzdt =
∫∫∫

(
H(T )

S

)
tyz

j1dydzdt =
∫∫∫

H(T )
S

j1dydzdt

= −
∫∫∫

H(T )
S

j1dV1. (70)

The other two integrals can be worked in the same way.
Therefore the RHS of Eq. (51) is equal to

−
∫∫∫

H(T )
S

jmdVm. (71)

With these results, Eq.(51) is written as

1
2

∫∫

∂H(T )
S

Fαβdσαβ =
∫∫∫

H(T )
S

jmdVm. (72)

It must be remarked one more time that Eqs. (19) and
(23) are much more than just a way of writing the inte-
gration elementsdxmdxn anddxldxo, they show a deeper
fact: the integration regions(S) associated withdσlo, and
the region(T × ∂S), associated withdσmn, are parts of
the same two- dimensional surface in the four-dimensional
hyper-space; analogously, the regions(V ) and(T × ∂V ) are
parts of the same three-dimensional hyper-surface in the four-
dimensional hyper-space. These facts are not evident from
the integral Maxwell equations, written in their usual form.

It is clear that for the bottom hyper-surface∂H(B)
S we

have the analogous result:

1
2

∫∫

∂H(B)
S

Fαβdσαβ =
∫∫∫

H(B)
S

jmdVm. (73)

Due to H(2)
S = H(T )

S ∪ H(B)
S , the right members of

Eqs. (72) and (73) can be grouped into a single integral over
H(2)

S . Additionally, as the boundary ofH(2)
S matches the

union of the boundary ofH(T )
S andH(B)

S (after the common
points have been deleted) and due to the contribution of those
points in the integral over∂H(T )

S ∪∂H(B)
S cancel themselves,

we also have that left members of the two previous equations
can be grouped into a single integral over∂H(2)

S . Therefore,
we have

1
2

∫∫

∂H(2)
S

Fαβ = dσαβ

∫∫∫

H(2)
S

jmdVm

where m = 1, 2, 3 and α, β = 0, 1, 2, 3

Now, as inH(2)
S we have(x, y, z) ∈ ∂V it follows that

dV = 0 and dV0 = 0. As a consequence the integral∫∫∫
H(2)

S

j0dV0 is equal to zero and it can be added to the
previous equation. So, the second inhomogeneous Maxwell
equation (51) becomes

1
2

∫∫

∂H(2)
S

Fαβdσαβ =
∫∫∫

H(2)
S

jαdVα. (74)

Finally, sinceHS = H(1)
S ∪ H(2)

S Eqs. (63) and (74) can
be grouped into a single equation. It suffices to note that
the boundary ofHS matches the junctions of the boundaries
of H(1)

S y H(2)
S (after the common points have been deleted)

and that the contributions of those points in the integral over
∂H(1)

S ∪ ∂H(2)
S cancel themselves. Therefore,

1
2

∫∫

∂HS

Fαβdσαβ =
∫∫∫

HS

jαdVα, (75)

This equation is Eq. (26), obtained in Subsec. 2.2 ex-
cept that nowHS is not totally arbitrary. This is so because
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to derive Eq. (75) we have used regions whose geometric
characteristics are appropriate for the experimental observa-
tion of electromagnetic phenomena. On the other hand, to
derive Eq. (26),HS had no restrictions. Nevertheless, one of
the most important implications of having demonstrated Eq.
(75) is that the usual integral expressions are consistent with
the general covariant integral formulation of Eq. (26).

It can be shown that for the type of hyper-surfaces such as
those considered in Eq. (75) the integral of the RHS is equal
to zero even thoughjα is different from zero (see Appendix
B). Therefore, it is necessary to look for another approach
as will be done in the next section where we use a different
method.

The homogenous Maxwell equations, (52) and (53) can
be expressed in an explicitly covariant form if we take into
account that, forρ = 0 and j = 0 Eqs. (50) and (51) are
identical to Eqs. (52) and (53) after the transformations (EM
duality)

E → B,

B → −E. (76)

This transformation is equivalent to the one that trans-
forms the tensorFµν into its dual tensorFµν defined in Eq.
(16). Therefore, the expression∫∫

Ω(2)

Fµνdσµν = 0, (77)

represents the homogeneous ECIME.
We can see now that the procedure to show the covariance

of the integral Maxwell equations is much more complicated
than the one to show the covariance of the differential equa-
tions.

To end this section, it is convenient to make the following
comments which, although trivial, complement the discus-
sion.

– In the previous developments we have started from a
certain form of the Maxwell’s equations and have ar-
rived at their covariant integral form. But one can also
do the inverse,i.e., to derive the other forms of the
Maxwell equations starting from the covariant integral
form.

– Since the covariant integral equations are expressed in
terms of tensors with respect to the Lorentz transfor-
mation, their form will be the same in any inertial ref-
erence frame. Therefore, since the set of covariant inte-
gral equations implies the other forms, it is concluded
that the integrals over the transformed regions will give
the transformed Maxwell equations in the new refer-
ence system.

– Two different inertial observers will assign different
values to the functionsFµν and jµ. But regardless
of the system of reference inertial used, the behavior
of these functions will be governed by the same equa-
tions.

3. Maxwell equations integrated over less
usual regions

3.1. Non covariant case

The region of integration used in the previous section, as
mentioned before, are not the only ones. Therefore, the inte-
gral Maxwell equations (44)-(47) are not the only ones. As
we will see below there is a more convenient way to express
them to make the transition to an explicitly covariant formu-
lation easier. To see this point we remember the usual way of
obtaining the Maxwell integral equations from the differen-
tial ones (8), (9), (11) and (12).

To transform (8) and (11) into (44) and (46), a volume in-
tegral is made, after which the divergence theorem is applied.
On the other hand, to pass from (9) and (12) to (45) and (47),
a surface integral is made and then Stokes theorem is applied.
The time derivatives are not touched at all. In other words,
there is no time integration. Therefore, it is clear that this
procedure is far from being symmetric in space and time, as
relativity theory demands. Thus, it is necessary to proceed in
another way, trying to put the time and space coordinates on
the same level. We proceed as follows.

We first make a volume integration of all the Eqs. (8), (9),
(11) and (12). In the equations that involve divergences we
use the divergence theorem to pass from a volume integral to
a surface integral, as usual. In equations involving the rota-
tional we use the following corollary of the Stokes theorem

∫∫∫

V

∇×GdV =
∫∫

∂V

dS×G. (78)

Thus, Eqs. (9) and (12) transform into

∫∫

∂V

dS× B− d

dt

∫∫∫

V

EdV =
∫∫∫

V

JdV, (79)

and
∫∫

∂V

dS× E +
d

dt

∫∫∫

V

BdV = 0. (80)

It is now clear that it is necessary to eliminate the time
derivatives by integration. The results are

∫

T

dt

∫∫

∂V

dS× B−
∫∫∫

V

EdV =
∫

T

dt

∫∫∫

V

jdV, (81)

and
∫

T

dt

∫∫

∂V

dS× E +
∫∫∫

V

BdV = 0. (82)

This pair of equations, together with the pair (44), (46) is
an equivalent form of writing the integral Maxwell equations.

Rev. Mex. F́ıs. E18 (1) 76–89



EXPLICITLY COVARIANT FORM OF THE INTEGRAL MAXWELL EQUATIONS 85

As we will see below, they have significant advantages that
let us to pass to the covariant formulation. This also shows
another perspective of electromagnetic theory. Because our
aim is to achieve complete symmetry in space-time, before
writing Eqs. (44), (46), (81) and (82) in terms of Cartesian
coordinates, it is worthwhile to remark that the LHS term of
(44) and (46) involve surface integrations. Thus, we have to
deal with two surfaces and three-dimensional hyper-surfaces.
In order to have more symmetry in Eqs. (44) and (46), we
integrate over time, obtaining

∫

T

∫∫

∂V

E dSdt =
∫

T

∫∫∫

V

ρdV dt, (83)

and

∫

T

∫∫

∂V

B dSdt = 0. (84)

Then, the Maxwell equations in other of their integral
forms are

∫

T

∫∫

∂V

E dSdt =
∫

T

∫∫∫

V

ρdV dt, (85)

∫

T

dt

∫∫

∂V

dS× B−
∫∫∫

V

EdV =
∫

T

dt

∫∫∫

V

jdV, (86)

∫

T

∫∫

∂V

B dSdt = 0, (87)

and

∫

T

dt

∫∫

∂V

dS× E +
∫∫∫

V

BdV = 0. (88)

Thus, having different forms of writing the integral
Maxwell equations raises the question of which of those
forms can suggest a better way to show the explicit covari-
ance.

3.2. Covariant integral case starting from the three-
dimensional differential expressions

We begin by writing the non-covariant integral Maxwell
equations (85)-(86) in Cartesian coordinates,∫

T

∫∫

∂V

(Exdydz + Eydzdx + Ezdxdy)dt

=
∫

T

∫∫∫

V

ρdxdydz dt, (89)

∫

T

∫∫

∂V

(Bzdzdx−Bydydx)dt−
∫∫∫

V

Exdxdydz

=
∫

T

∫∫∫

V

jxdxdydz dt, (90)

∫

T

∫∫

∂V

(Bxdydx−Bzdzdy)dt−
∫∫∫

V

Eydxdydz

=
∫

T

∫∫∫

V

jydxdydz dt, (91)

∫

T

∫∫

∂V

(Bydydz −Bxdxdz)dt−
∫∫∫

V

Ezdxdydz

=
∫

T

∫∫∫

V

jzdxdydz dt. (92)

It is evident from these equations that integration regions
in the LHS of all these equations are of the same type, which
makes easier to the passage to the covariant formulation.
Now, taking the space-time volume as usual,

d4x = dx dy dz dt. (93)

The RHS of Eqs. (89) and (90) can be written as∫∫ ∫∫
T×V

ρd4x

∫∫ ∫∫
T×V

jxd4x

∫∫ ∫∫
T×V

jyd4x

∫∫ ∫∫
T×V

jzd
4x





→
∫∫ ∫∫

V

jµd4x, (94)

where we have introduced a new symbolV to denote a
hyper-volume. As was the case in the last section again, the
key point is to recognize that both,(T×V ) and(V ), are parts
of V.

Using Eqs. (7) and (19) we can express the LHS of (89)
in the form∫

T

∫∫

∂V

(Exdydz + Eydzdx

+ Ezdxdy)dt →
∫∫∫

∂VVV

F 0ndVn, (95)
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86 J. L. JIMÉNEZ AND G. MONSIVAIS

while for the LHS of Eq. (90), using Eq. (19), we obtain∫

T

∫∫

∂V

(Bzdzdx−Bydydx)dt−
∫∫∫

V

Exdxdydz

=
∫∫∫

T×∂V

εlmndVmBn +
∫∫∫

V

F 10dV0

=
∫∫∫

T×∂V

εlmndVm

(
−1

2
εnijF

ij

)
+

∫∫∫

V

F 10dV0

=
∫∫∫

T×∂V

F lmdVm +
∫∫∫

V

F 10dV0. (96)

The left-hand side of Eqs. (91) and (92) can be written
similarly. Thus, the left hand side of Eqs. (90)-(92) can be
written generically as∫∫∫

T×∂V

F lmdVm +
∫∫∫

V

F 10dV0, (97)

which clearly is the componentµ = m of∫∫∫

(V )=∂VVV

FµνdVν , (98)

while Eq. (95) is theµ = 0 component. Then, expression
(98), with the result given in Eq. (94), permits us to write the
ECIME in the form∫∫∫

(V )=∂VVV

FµνdVν =
∫∫ ∫∫

VVV

jµd4x, (99)

According to usual conventions, we can write the three-
volume of space-time as the hyper-surface elementdσν

dVν = dσν . (100)

Then we have a hyper-surface integral of a second-rank
space-time tensor related to the hyper-volume integral of the
four-vector density current, that is,∫∫∫

(V )=∂VVV

Fµνdσν =
∫∫ ∫∫

VVV

jµd4x. (101)

The homogeneous ECIME can be obtained by means of
the dual field tensorFµν . So Eqs. (87) and (88) can be written
as ∫∫∫

∂VVV

Fµνdσν = 0. (102)

3.3. Covariant integral case starting from the four-
dimensional differential expressions

We first multiply Eq. (10) by the hyper volume elementd4x
and then integrate to obtain∫∫ ∫∫

VVV

∂µFµνd4x =
∫∫ ∫∫

VVV

jνd4x. (103)

We now transform the LHS of Eq. (91). Using the Stokes
theorem, one obtains

∫∫ ∫∫

VVV

∂µFµνd4x =
∫∫ ∫∫

VVV

jνd4x. (104)

Which corresponds to Eq. (87). The homogeneous
Eqs. (90) can be obtained in a similar way.

As we already mentioned, the form of writing the covari-
ant Maxwell equations in their integral form is not unique;
this is clearer when we depart from the explicitly covariant
formulation of the Maxwell differential equations.

4. Concluding remarks

We have discussed several ways to obtain ECIME. In the case
in which we started from the IME3 it was necessary to ex-
press the usual integral expressions without time derivatives
to obtain a true set of integral equations. Our analysis also
shows the difficulties that one faces in the process of choos-
ing the hyper-surfaces on which it is necessary to integrate.
This way is not as straightforward as the one in which one
directly integrates the explicitly covariant form of the differ-
ential equations. It must be remarked that we proposed an
alternative form of writing the integral Maxwell equations,
both non-covariantly and explicitly covariantly. Our treat-
ment also opens the perspective of seeing the integral equa-
tions of Maxwell in the structure of space-time, that is objec-
tive of relativity theory.

Appendix A.

Definition. Let us consider a hyper-surfaceHS ⊂ R4 gen-
erated by the parametric four-vector equation (for simplicity
we assume thatHS is generated by only one equation of this
type, but the generalization for whenHS is generated by two
o more equations of this type is obvious)

~x = ~X(u), (A.1)

where~x = (xµ) = (x0, x1x2, x3) is the four-vector defined
in Eq. (1),~X(u) = (X0(u), X1(u), X2(u), X3(u)) is a four-
component function depending on the three-dimensional
variableu = (u, v, w) ∈ Vu being Vu ⊂ R3 the three-
dimensional region where the parametersu, v, w take values.
Let us consider a functionφ defined inHS .

Thehyper-surfaceintegral
∫∫∫

HS
φdVδ of the functionφ

over the hyper-surfaceHS is defined as
∫∫∫

HS

φdVδ ≡
∫∫∫

Vu

φ(~X(u))

×
[
εαβγδ

∂Xα

∂u

∂Xβ

∂u

∂Xγ

∂w
dVu

]
, (A.2)
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where the symbolsφ(~X(u)) and

εαβγδ
∂Xα

∂u

∂Xβ

∂u

∂Xγ

∂w
dVu

are the values ofφ anddV on the hyper-surfaceHS respec-
tively. Explicitly

∫∫∫

HS

φdV0 ≡
∫∫∫

Vu

φ(~X(u))

×

∣∣∣∣∣∣∣∣∣∣∣∣

∂X1

∂u

∂X2

∂u

∂X3

∂u

∂X1

∂v

∂X2

∂v

∂X3

∂v

∂X1

∂w

∂X2

∂w

∂X3

∂w

∣∣∣∣∣∣∣∣∣∣∣∣

(A.3)

∫∫∫

HS

φdV1 ≡ −
∫∫∫

Vu

φ(~X(u))

×

∣∣∣∣∣∣∣∣∣∣∣∣

∂X2

∂u

∂X3

∂u

∂X0

∂u

∂X2

∂v

∂X3

∂v

∂X0

∂v

∂X2

∂w

∂X3

∂w

∂X0

∂w

∣∣∣∣∣∣∣∣∣∣∣∣

dVu, (A.4)

∫∫∫

HS

φdV2 ≡
∫∫∫

Vu

φ(~X(u))

×

∣∣∣∣∣∣∣∣∣∣∣∣

∂X3

∂u

∂X0

∂u

∂X1

∂u

∂X3

∂v

∂X0

∂v

∂X1

∂v

∂X3

∂w

∂X0

∂w

∂X1

∂w

∣∣∣∣∣∣∣∣∣∣∣∣

dVu (A.5)

∫∫∫

HS

φdV3 ≡ −
∫∫∫

Vu

φ(~X(u))

×

∣∣∣∣∣∣∣∣∣∣∣∣

∂X0

∂u

∂X1

∂u

∂X2

∂u

∂X0

∂v

∂X1

∂v

∂X2

∂v

∂X0

∂w

∂X1

∂w

∂X2

∂w

∣∣∣∣∣∣∣∣∣∣∣∣

dVu. (A.6)

For example, for the special case in which the parameters
arex = u, y = v, z = w Eq. (A3) becomes

∫∫∫

HS

φdV0 ≡
∫∫∫

V

φ(X0(x, y, z), x, y, z)dxdydz. (A.7)

Appendix B.

In this appendix we demonstrate that for certain hyper-
surfaces the RHS of Eq. (20) can be equal to zero even though
the sources are different from zero.

Let us consider the hyper-surface

HS = H(1)
S ∪ H(2)

S , (B.1)

where

H(1)
S = {(0, x, y, z)|(x, y, z) ∈ V } ⊂ R4, (B.2)

H(2)
S ={(t, x, y, z)|0≤t≤T ; (x, y, z) ∈ ∂V } ⊂ R4, (B.3)

hereV ⊂ R3 is a three-dimensional volume independent
from t and ∂V is the surface surroundingV . In abuse of
the notation the setH(1)

S will be denoted as(V ) ⊂ R4 and
H(2)

S as(T × ∂V ) ⊂ R4. So,HS = (V ) ∪ (T × ∂V ).
The hyper-surfaceH(2)

S is a hyper-cylinder andH(1)
S is

one of its caps (the one att = 0). For the case in which
the hyper-surfaceHS does not contain none of its caps the
expression forHS reduces toH(2)

S .
Let C an arbitrary set ofR4 we will use the symbol

(C)xyz to denote the region in the spaceXY Z that gener-
ates the projection ofC on this space. The symbol(C)xy has
an similar meaning.

So, since the setV generates the projection ofHS on the
spaceXY Z we have

(HS)xyz = V, (∂HS)xyz = ∂V,

and (∂HS)xy = ∂Vxy. (B.4)

Assigning a similar meaning for the symbols(HS)txy,
(HS)txz, (HS)tyz we have

(HS)txy = T × ∂Vxy, (B.5)

(HS)txz = T × ∂Vxz, (B.6)

(HS)tyz = T × ∂Vyz, (B.7)

where∂Vij is the projection of∂V on the planeIJ . Then,
the RHS of Eq. (20) becomes

∫∫∫

HS

jνdVν =
∫∫∫

HS

ρdxdydz +
∫∫∫

HS

jxdydzdt

+
∫∫∫

HS

jydxdzdt +
∫∫∫

HS

jzdxdydt. (B.8)

The first integral of this expression is equal to (notice that
this term does not appear whenHS does not include its cap)
∫∫∫

HS

ρdxdydz =
∫∫∫

(HS)xyz

ρdxdydz =
∫∫∫

V

ρdxdydz = Q,

(Q = charge insideV ), (B.9)
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while for the second integral of the RHS of Eq. (B.8) we have∫∫∫

HS

jxdydzdt =
∫∫∫

(HS)tyz

jxdydzdt =
∫∫∫

T×∂Vyz

jxdydzdt

=

T∫

0




∫∫

∂Vyz

jxdydz


 dt =

T∫

0




∫∫

∂V

jxdydz


 dt. (B.10)

We now use the formulation above Eq. (32). Thus,

∫∫∫

HS

jxdydzdt =

T∫

0




∫∫

∂V

jx cos αdS


 dt

=

T∫

0




∫∫

∂V

jxn1dS


 dt. (B.11)

The remaining terms of (B.8) give rise to a similar result.
So

∫∫∫

HS

jνdVν = Q +

T∫

0




∫∫

∂V

j · n̂dS


 dt

= Q +

T∫

0




∫∫∫

V

∇ · jdV


 dt

= Q−
T∫

0




∫∫∫

V

∂ρ

∂t
dV


 dt

= Q−
T∫

0

d

dt




∫∫∫

V

ρdV


 dt = 0, (B.12)

where we have used the fact thatV is independent fromt and
Q = Q(t). For the case when the hyper-surface does not in-
clude its cap, the first term of Eq. (B.12) not appear and the
result is

∫∫∫

HS

jνdVν = −Q. (B.13)

For more details see Ref. [20] where D. van Dantzig ana-
lyzed this problem in 1934 from a different perspective. From
the previous discussion is evident the essential role that an
adequate handling of hyper-surfaces plays.
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