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Simulation of charged particles in Earth’s magnetosphere:
an approach to the Van Allen belts
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e-mail: ahurtado@udistrital.edu.co

Received 10 October 2018; accepted 19 October 2018

Earth’s magnetosphere, beyond protecting the ozone layer, is a natural phenomena which allows to study the interaction between charged
particles from solar activity and electromagnetic fields. In this paper we studied trajectories of charged particles interacting with a constant
dipole magnetic field as first approach of the Earth’s magnetosphere using different initial conditions. As a result of this interaction there is a
formation of well defined radiation regions by a confinement of charged particles around the lines of the magnetic field. These regions, called
Van Allen radiation belts, are described by classical electrodynamics and appear naturally in the numerical modeling done in this work.
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1. Introduction

The interaction between charged particles and magnetic
fields is one of the most interesting topics studied at under-
graduate level in electromagnetism courses from a concep-
tual, experimental and computational point of view. This
phenomenon opened the way to the modern physics in the
understanding of the special theory of relativity and quan-
tum mechanics, it also supports a large number of experi-
mental results and applications that can be seen in accelera-
tors for high-energy physics experiments. Nevertheless the
description on trajectories of charged particles presented in
first courses of physics at university levels, is usually limited
to the case of a uniform magnetic field, despite the fact that
many textbooks described in previous sections systems with
magnetic fields not uniform such is the case of the magnetic
field produced by a current loop and even the dipole limit.

In this sense, Earth is a perfect scenario to illustrate the
trajectories of charged particles emitted by solar activity in
interaction with Earth’s magnetic field (called geomagnetic
field). The behavior of charged particles in presence of the
geomagnetic field has been widely studied [1], coming to be
a fundamental tool to understand the structure of the mag-
netosphere and the underlying phenomena to plasma physics
generated by these types of interactions [2,3]. The Earth’s
magnetic field can be understood properly from the magne-
tohydrodynamics, in particular from the geodynamo theory,
considering the Earth’s core as a conducting fluid in rotation
and with convective movements. This mechanism allows to
describe at first approximation the geomagnetic field as the
field produced by a magnetic dipole tilted 11.5◦ with respect

to the Earth rotation axis, and with a magnetic dipole moment
|~m| = 7.79×1022 Am2. Since this field changes slowly over
the years, it produces a secular drift of the magnetic poles
and there is consequently a decrease of the magnetic dipole
moment [4]. In this work these effects have been neglected
for pedagogical purposes to have a constant magnetic field.

The movement of charged particles trapped in the geo-
magnetic field has been a study interest for physics, Earth
sciences and engineering because of its relationship with the
phenomenon of auroras, cosmic rays and radiation belts. A
first mathematical formulation of this problem, considering
a dipole magnetic field, was established by Stöermer [5,6].
As is well known, in general the solution of the equations of
motion to describe the trajectory of a charged particle in a
magnetic field is not always easy to obtain and in many cases
you can only solve the problem using the numerical integra-
tion of these equations.

A particular example illustrated in introductory textbooks
is the interaction of a charged particle with a static and uni-
form magnetic field, in which case the trajectory can be ob-
tained analytically since the equations of motion can be eas-
ily uncoupled, such, for example, circular motion or helices
around the magnetic field lines. In a non-uniform magnetic
field the motion can be more complex to describe, even un-
der certain conditions the particles can be trapped around the
magnetic field lines forming stable confinement regions, this
is what happens for instance with part of the solar wind inter-
action with the Earth’s magnetic field and which originated
the so-called Van Allen belts. The Fig. 1 shows schemat-
ically different regions of the Earth’s magnetosphere, Van
Allen belts (in green) form toroidal rings mainly composed
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FIGURE 1. Earth’s magnetosphere. Interaction with solar wind and
Van Allen belts can be appreciated. Figure obtained from [7].

by protons, electrons andα particles. Two belts can be dis-
tinguished, an internal one that extends from 0.2 to 2 Earth
radii (RE), and an external one from 3 to 10 Earth radii.

In accordance with the above and with pedagogical pur-
poses, the motion of a charged particle interacting with a
magnetic dipole is an illustrative and conceptually rich ex-
ample that allows to take advantage of computational tools
to solve a problem with no analytical solution. Moreover it
provides several advantages to support lessons allowing the
manipulation of different parameters to define the physical
system and characterize the particle trajectories. In this pa-
per a non-relativistic version has been considered,i.e. radia-
tion emitted by accelerated particles is not taken into account
in order to simplify the model and make it suitable to courses
on electromagnetic theory. In the next sections the theoretical
model is developed introducing the concept of magnetic mo-
ment and a numerical implementation is carried out to finally
discuss the obtained results.

2. Theoretical description

In order to model the dipole magnetic field mentioned above,
a circular loop with arbitrary current is assumed in the Earth’s
core with a certain angle of inclination as Fig. 2 shows. In
this approach the geometry and topographic deformations of
the Earth do not affect the source of magnetic field, due to
this the particle trajectories is determined only by the inter-
action with the magnetic field neglecting any effect by grav-
itational interactions, self-interactions between particles or
external fields. The magnetic field produced by a magnetic
dipole is well known [8], in its coordinate-free form is given
by the Eq. (1).

~B =
µ0

4πr3
[3(~m · r̂)r̂ − ~m] (1)

whereµ0 is the permeability of free space,~m the magnetic
dipole moment,~r′ and~r vectors measured from the origin of
the reference system to an element of the current loop and to

FIGURE 2. Dipole model of the Earth’s magnetic field from a cur-
rent loop in approximation for far points (r′/r ¿ 1).

an arbitrary point in space respectively. The dipole limit is
obtained under the assumptionr′/r ¿ 1, as consequence~m
will be aligned along the the loop’s symmetry axis. From a
pedagogical point of view Eq. (1) can be a little confusing for
students. A key problem with it is that usually introductory
textbooks on electromagnetic theory only consider magnetic
fields at symmetry points of the systems, moreover many of
them introduce superficially the concept of magnetic dipole
moment as a result after calculating the torque of a current
loop in an uniform magnetic field. An even greater source of
concern is that this equation, which is fundamental in magne-
tostatics, does not even appear in many general physics text-
books.

The magnetic field due to dipole can be obtained by sev-
eral ways, all of these descriptions are equivalent between
them but with different level of complexity. Some of these
versions are:

1. Using the Biot-Savart law [Eq. (2)] to compute the
magnetic field in a point outside of the current loop axis
and then using the far-field approximation for points
located atr À r′ (dipole limit). In this case ellip-
tic integrals will appear naturally and even if they are
solved using approximations, the procedure in general
is extremely time-consuming given the math details.

2. It is possible to compute the vector potential~A for a
magnetic dipole moment~m and then to write the mag-
netic field induction as~B = ∇ × ~A. Although this
approach is interesting and mathematically simple, it
implies having previously introduced the concepts of
~A y ~m, it is rarely done in introductory textbooks.

3. Alternatively is possible to get~B from the magnetic
scalar potentialΦ considering that space has no free
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currents. Consequently the intensity of magnetic field
~H satisfies∇ · ~H = µ−1

0 ∇ · ~B = 0 and also Laplace
equation, so that~B = µ−1

0 ∇Φ. Although Φ can be
easily obtained by solving the Laplace’s equation with
appropriate boundary conditions and considering the
condition of continuity of the magnetic field, this de-
velopment is more suitable for later courses on electro-
magnetism and classical electrodynamics theory.

~B(~r) =
µ0I

4π

∮

C

d~l × (~r − ~r′)
|~r − ~r′|3 (2)

In order to obtain the expression (1) in a simple way,
without loss of generality, we have chosen to follow the main
idea expressed in the caseA) but adopting the approach pro-
posed by [9], this solution makes the mathematical procedure
shorter and it is focused on physical concepts. Considering
the Fig. 2 taking into account distant points from the current
ring r′/r ¿ 1, a Taylor expansion can be done directly in
the denominator of the Biot-Savart law (2). This leads to the
following results and finally to the Eq. (3) which matches the
desired result.

~B(~r) ' µ0I

4π

∮

C

d~l × (~r − ~r′)
|~r − ~r′|3

=
µ0I

4πr3

∮

C

d~l × (~r − ~r′)
(

1 + 3
r̂ · ~r′

r

)

=
µ0I

4πr3

[
−

∮

C

d~l × ~r′ + 3
(∮

C

d~l(r̂ · ~r′)
)
× r̂

]

=
µ0I

4πr3

{∮

C

~r′ × d~l + 3
[(

1
2

∮

C

~r′ × d~l

)
× r̂

]
× r̂

}

=
µ0

4πr3
[2~m + 3(~m× r̂)× r̂]

=
µ0

4πr3
[3(~m · r̂)r̂ − ~m] , (3)

where the magnetic moment has been naturally defined as
~m = (I/2)

∮
c
~r′ × d~l, turning out to be axial to the plane of

current loop since~r′ andd~l are always perpendicular, as can
be verified by applying the right-hand rule. In addition, the
double cross product was used(~m× r̂)× r̂ = (~m · r̂)r̂ − ~m
and the vector identity

∮

c

(r̂ · ~r′)d~l =
(

1
2

∮

c

~r′ × d~l

)
× r̂.

The Earth’s magnetic field lines in the dipole approxima-
tion (1) are shown in Fig. 3. As seen in it, the rotation axis is
inclinedθ = 23.5◦ with respect to the ecliptic plane (in yel-
low, this plane defines the orbit of the Earth around the Sun),
and at the same time the magnetic poles are shiftedφ = 11.5◦

from the geographical poles. The magnetic field intensity at

FIGURE 3. Geomagnetic field lines in the dipole approximation.

a point is given by (4). This expression can be easily obtained
from (1) considering the representation in spherical coordi-
nates [Eq. (6a)] or Cartesian coordinates [Eq. (5a)], this
last coordinate system was used to perform the simulation.
Figure 4 shows how the intensity of the Earth’s magnetic
field (normalized to the mean value of the equatorial mag-
netic field in the surfaceB0 = 3.12 × 10−5T ), is changing
in function of coordinatesr (measured in Earth radiusRT )
andθ (in degrees). In particular, from the set of Eqs. (6a) it
follows that the dipolar field is parallel to the radial direction
on the poles and perpendicular to the radial direction at the
equator, also, at a fixed distance the field is twice as intense
at the poles than in the equator and the field strength decay
with the radial distance as1/r3. In the Eq. (4) is explicit the

FIGURE 4. Magnetic field magnitude of a dipole as a function of
the radial distancer (in Earth radius) and polar angleθ, with B
measured in units of the equatorial fieldB0.
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TABLA I. Initial conditions, particle trajectory, phase-space for each coordinate and total energy diagram as function of time

dependence between field intensity, distance and angle mea-
sured from the pole (latitude), this behavior is also illustrated
in Fig. 4.

‖B‖ =
mµ0

4πr3
(1 + 3 cos2 θ)1/2 (4)

Bx =
3mµ0

4πr5
xz (5a)

By =
3mµ0

4πr5
yz (5b)

Bz =
mµ0

4πr5
(z2 − r2) (5c)

Rev. Mex. Fis.E 65 (2019) 64–70
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Br =
2mµ0

4πr3
cos θ (6a)

Bθ =
mµ0

4πr3
sin θ (6b)

Bφ = 0 (6c)

The dynamics of the charged particles interacting with
the magnetosphere is determined by the Lorentz force in the
absence of electric fields~F = q~v× ~B. Neglecting relativistic
effects, the equations of motion for a particle with chargeq
and massmp is (7).

d2~r

dt2
=

q

m

µ0

4πr3

d~r

dt
× [3(~m · r̂)r̂ − ~m]. (7)

To solve this differential equation one could think about
rewriting it appropriately in spherical or cylindrical coordi-
nates taking advantage of the angular symmetry of the dipole
in θ andφ, and the fact that~m is constant and oriented on
the magnetic axis. Even under this assumption, the Eq. (7)
represents a coupled system of non-linear first-order differ-
ential equations due to the shape of the magnetic field, which
makes it non-analytically integrable [10].

3. Simulation and numerical method

The trajectories of interacting particles with the Earth’s mag-
netosphere are given by the solution of equation (7) for a flow
of particles since solar wind is basically a plasma. The sim-
plest scheme to describe this plasma is to consider that it is
composed of independent particles neglecting any other in-
teraction and surrounding effects (“Single particle motion”).
This is a very simplified version of the real case but it has
the advantage of illustrating the types of trajectories formed
depending on the initial conditions and the formation of
confinement regions without entering into statistical descrip-
tions, therefore it is good enough for purposes of the present
work.

There is a vast amount of literature on integration
schemes to solve numerically the Eq. (7) [11-13]. Fur-
thermore recent research focuses on the optimization of sev-
eral methods for trajectories of charged particles in magnetic
fields [14,15]. As it is well-known, Runge-Kutta fourth-order
method (RK4) is one of the fixed-step integrators most used
in science and engineering to get accurate results in prob-
lems without too much complexity. This method has a sig-
nificantly higher convergence for orbital problems compared
with Euler method, its global error isdt4 and its truncation
error isO(dt5) beingdt the step-size of the iteration. RK4
is also easy to implement computationally in high or medium
level languages such as Java, Fortran, C/C++, Matlab, Mathe-
matica, Python among others. For the purposes of this paper
the RK4 method has been implemented in Python to deter-
mine the trajectories of interest, being necessary to rewrite (7)

L ISTING 1. RK4 Implementation in python to solve the equations
of motion for a charged particle in interaction with the Earth’s mag-
netosphere (dipole approximation).

as a system of two first order differential equations, as shown
in Eqs. (8a) and (8b).

d~v

dt
=

q

mp

µ0

4πr3

d~r

dt
× [3(~m · r̂)r̂ − ~m] (8a)

~v =
d~r

dt
(8b)

Following the RK4 scheme, an ordinary differential equa-
tion of first-orderdu/dt = f(t, u) with initial condition
u(t0) = u0 can be expressed as equation (9),

uk+1 = uk +
dt

6
(k1 + 2k2 + 2k3 + k4). (9)

In such a way that the valueuk+1 depends on the pre-
existing valueuk plus a slope with coefficientski given by
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(10). The slope can be understood as a weighted average of
slopes: at the beginning of the intervalk1, in the middle of
the interval (k2, k3) and at the end of the intervalk4.

k1 = f(tk, uk)

k2 = f

(
tk +

dt

2
, uk +

dt

2
k1

)

k3 = f

(
tk +

dt

2
, uk +

dt

2
k2

)

k4 = f(tk + dt, uk + dtk3)

(10)

An important detail about the simulation is the normaliza-
tion of constants and parameters. This procedure is usually
done in order to: use the characteristic scales of the physi-
cal phenomenon under study, reduce the numerical complex-
ity and to facilitate the visualization of results. In any case
the equations of motion will remain valid after normalization.
The Python code below shows how the RK4 method has been
implemented to solve the system of Eqs. (8) with original val-
ues of the physical situation, the axes of the graphs have been
normalized in terms of the Earth radius.

4. Discussion

Table I shows the simulated trajectories ofα particles and
electrons immersed in the Earth’s magnetosphere. A result of
the simulation is a radiation ring formed byα particles with
same orientation of the Earth’s equatorial plane and symme-
try axis along the vector magnetic moment as Fig. 5 shows.
Depending of the mass-to-charge ratio of charged particles,
the radius of the toroid is different, by instanceα particles
have orbits closer to the Earth thanβ particles as illustrated
in Fig. 6. To ensure the convergence of the numerical so-
lution of the equations of motion, the relative difference in
the total energy of the system has been plotted. This quantity
was computed using∆E = 100|Eteo − Enum|/Eteo and in
all cases it is within a uncertainty range around 1% for the
full time code execution.

Trajectories in configuration space give an idea about
confinement regions generated by trapped particles and also
about the possible radiation rings formed around the Earth.
However in some cases the behavior of physical systems can
be better understood by representing the phase space in each
coordinate (see Table I). In general these diagrams show in-
formation on the position and velocity of the particle allowing
characterize in a unique way all possible states of the system.
Each state is characterized by the position and velocity of
the particle, hence it can be visualized the forbidden and per-
mitted regions in which particles create a surrounding surface
around the Earth. In addition it is possible to detect if the sys-
tem dissipates energy if spiral curves appear in phase space,
this is not the case in this paper since the system is conser-
vative (there are no dissipative forces) and the magnetic field
does not work and only changes the trajectory of particles.

FIGURE 5. Trajectory of anα-particle forming a radiation belt
around the Earth.

FIGURE 6. 3D trajectories of charged particles (α in red andβ in
green) forming radiation belts around the Earth.

On the behavior of paths in the phase space, if the move-
ment of a point is periodic the system returns to its original
state after complete a cycle. It means the representation of
its trajectory in the phase space is a closed curve, moreover it
is observed that the trajectory in the phase space is symmet-
ric with respect to the vertical axis (velocity). This particular
symmetry refers that movement of the particle is the same
in clockwise direction as in the opposite direction, and three
cases may occur: oscillations, rotations or a combination of
both.

Considering the previous ideas, it can be expected that
given an initial condition there will be a single trajectory in
the phase space that guides the particle. In this sense many
concepts can be generalized taking into account the theory of

Rev. Mex. Fis.E 65 (2019) 64–70
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dynamical systems and a full description from the analytical
mechanics should be considered. In this case chaos may ap-
pear in some periodic trajectories, but a more elaborate math-
ematical tools are required to analyze these situations (such
as Lyapunov coefficients, Poincaré maps among other topo-
logical structures).

The execution times used in the simulation are enough
to describe stable trajectories with convergence rate higher
than 99%. From phase space diagrams it is very important to
highlight that if two or more paths are intersect then the total
energy at that particular point is not well defined (degenerate
system). In this situation the system would have more than
one energy value associated with a single state of the system,
implying singularities in the equations of motion). The re-
sults obtained in the Table I show a high confident level of the
numerical method used in the simulation and it is consistent
with the physical and phenomenological explanation given
in precedent sections. These results make evident that us-
ing simple approximations is possible to describe in a simple
way the Van Allen belt formation through a classical model
for charged particles interacting with a magnetic field.

5. Conclusions

The simulation of a particular electromagnetic phenomena,
such as the movement of charged particles in the Earth’s mag-

netosphere and its approach to the understanding of the for-
mation of Van Allen belts, is an illustrative exercise to show
how to solve a problem without analytical solution. From a
pedagogical perspective this study provides support for the
use of computer simulations as an educational resource im-
portant in the active/interactive learning processes, consider-
ing a qualitatively and quantitatively description of the real
phenomenon. All this becomes relevant from many points
of view since it allows a better understand of fundamental
concepts on electromagnetism like magnetic field, Lorentz
force law and the Biot-Savart law. Likewise simulations have
the computational-kindness to create more complex and re-
alistic models of physical situations still in research, helping
to structure students’ conceptions and encourage students in-
volved in courses of electricity and magnetism at undergrad-
uate level. Finally this approach can be considered as a part
of a strategy to teach and learn the electromagnetic theory in-
teractively using simulations as a pedagogical tool, focusing
in the relationship model-simulation.
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