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Faraday and Maxwell conceived the electrostatic and magnetostatic fields as lines of force filling the space around charges and currents, with
or without matter. They also established that there are tensions along the lines of force, and compressions around these lines. These ideas
are formalized with a stress tensor, whose divergence is a force density. We follow these ideas to show the origin of the electric forces that
arise in the case of a dielectric slab partially introduced into a parallel-plate capacitor, and the origin of the magnetic forces that arise in the
case of a magnetizable bar partially introduced into a solenoid. We find that these forces have their origin in the abrupt change in permittivity
and permeability which produce a difference of pressures at interfaces. This approach permits us to analyze the similarities and differences
between both cases. Advanced undergraduate and graduate students can get interesting insights into the electromagnetic forces exerted by
electrostatic and magnetostatic fields in vacuum and matter.
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Faraday y Maxwell concibieron los campos electrostáticos y magnetostáticos como ĺıneas de fuerza llenando el espacio alrededor de cargas y
corriente, con o sin materia. Ellos establecieron que hay tensiones a lo largo de las lı́neas de fuerza, y compresiones alrededor de estas lı́neas.
Estas ideas se formalizan con el tensor de esfuerzos, cuya divergencia es una densidad de fuerza. Aquı́ se siguen estas ideas para mostrar el
origen de las fuerzas eléctricas que surgen cuando una barra de dieléctrico se introduce parcialmente en un condensador de placas paralelas,
aśı como para exponer el origen de las fuerzas magnéticas que surgen en el caso de una barra magnetizable parcialmente introducida en
un solenoide. Se encontró que estas fuerzas tienen su origen en un cambio abrupto en la permitividad y permeabilidad que produce una
diferencia de presiones en la interface. Este enfoque permite analizar las similitudes y diferencias entre ambos casos. Los estudiantes no
graduados y graduados pueden adquirir una percepción interesante sobre las fuerzas electromagnéticas ejercidas por campos electrostáticos
y magnetost́aticos en el vaćıo y en la materia.
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1. Introduction

In elementary and intermediate textbooks on electromag-
netism it is usually affirmed that, in electrostatics, the intro-
duction of the concept of field is somewhat artificial: “When
dealing with static fields, the field concept is, in fact, superflu-
ous” [1]. The basic law of interaction between charged bod-
ies, Coulomb’s law, is a kind of action at a distance, and the
force between point charges acts in the direction of the line
joining these. The field is introduced, in electrostatics, prob-
ing it with a test chargeq, and defining it asE = F /q. It is
also said that the notion of a field is necessary only in treating

time-varying fields. Thus, the only force considered in elec-
trostatics is the electric part of Lorentz’s force law,F = qE,
therefore there is only a force tangent to the lines of force.
From this, it follows that a uniform electrostatic field can only
rotate a dipole and cannot exert a net force on it. In a vacuum,
only a non-uniform electrostatic field can exert a net force on
a dipole. This idea is extrapolated to the electrostatic force
on materials, and it is assumed that only a non-uniform field
can exert a net force on the polarizable matter. This is the
conception usually adduced to explain the force on a dielec-
tric slab partially introduced into a parallel-plate capacitor: it
arises from the action of the non-uniform fringing field out-
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side the capacitor on the electric dipoles of the medium [2-6].
This explanation is, however, incompatible with the accepted
calculation, which is done with the uniform field inside the
capacitor. Margulies [2] even asks how is it possible that a
uniform field can exert a force orthogonal to it. In contrast,
in the case of a magnetizable bar partially introduced into a
solenoid, there is no objection to the fact that a uniform mag-
netic field can only rotate a magnetic dipole, without exerting
a net force on it. Here it seems normal that a uniform field can
exert a net force on the magnetic dipoles of a magnetizable
material.

Faraday and Maxwell, however, conceived the electro-
static and magnetostatic fields as force lines filling the space
around charged bodies and currents, with tensions along the
lines of force and pressures around these lines, that is force is
transmitted through a surface by stress tensor. Thus, we have
the possibility of electrostatic forces orthogonal to the lines
of force, and not only forces tangential to these lines. These
ideas are exposed in well-known textbooks [7-9].

In the present paper, we analyze the forces that arise in
the interaction of electrostatic and magnetostatic fields with
the polarizable and magnetizable matter. We show that the
formalism of an electromagnetic momentum balance equa-
tion with a particular stress tensor provides interesting in-
sights into the origin of the forces that arise in the interaction
field-matter. We take as an example the interaction that arises
in the elementary problem of the force that pulls a dielectric
slab into a charged parallel-plate capacitor and compares it
with the pulling of a magnetizable bar into a solenoid. These
effects are usually considered analogous. However, our anal-
ysis shows that these electrostatic and magnetostatic effects
are not analogous. In the electrostatic case, the force arises
from the pressures orthogonal to the lines of force, while in
the magnetostatic case, the force arises from the tension along
the magnetostatic lines of force. Indeed, we have proposed
elsewhere [10] a magnetostatic device that we argue is really
analogous to the case of a dielectric slab inside a capacitor.
In this device, the force arises from the magnetostatics pres-
sures, as is the case with the dielectric slab inserted into a
capacitor.

Our analysis is based on the original ideas of Faraday
and Maxwell, elaborated formally in classical texts as those
by Becker [7], Stratton [8] and Panofsky, and Phillips [9].
We consider that the mentioned effects are better explained
with the introduction of an electromagnetic momentum bal-
ance equation, which relates the divergence of a stress tensor
with a force density. Indeed, we have that Noether’s theorem
establishes the equivalence of the equations of motion of the
fields and conservation laws or momentum balance equations
[11,12]. We have derived several momentum balance equa-
tions transforming the macroscopic Maxwell equations into
balanced equations using vector and dyad identities [13-14].
This approach permits a unified treatment of vacuum and me-
dia.

The results and interpretations obtained differ from the
usual explanation of the origin of these forces, exposed in

many textbooks and articles. Our method, however, is well-
founded and provides insights that, we think, deserves con-
sideration.

2. Force density in a vacuum as a divergence
of a stress tensor

According to the original ideas of Faraday and Maxwell [15],
the notion of field, even in static conditions, is more conve-
niently illustrated with a stress tensor, whose divergence is a
force density. They are related through a balance equation of
the form

fe = ∇ ·←→T e vacuum. (1)

For electrostatics the tensor that satisfies this balanced
equation is

←→
T e vacuum= ε0

(
EE − 1

2
E2←→I

)

=
(

D0E − 1
2
(D0 ·E)

←→
I

)
. (2)

Usually [9,16] Eq. (1) is derived starting with Lorentz’s
force density for electrostatics,

fe = ρE, (3)

in which the charge density is substituted from∇ · ε0E = ρ,
and with vector identities the tensor Eq. (2) is obtained.

The balance Eq. (1) allows to calculate the force either
as a volume integration of the force density or, using Gauss’s
theorem, as a surface integral of the stress tensor. This last
method indicates that the resulting force is not necessarily in
the direction of the field. We have then that the force is

F =
∫

fdV =
∮ ←→

T · dS. (4)

In some advanced texts of electromagnetism [7-9], the
symmetric stress tensor is reduced to three components by
transformation to principal axes, resulting in tension along
the lines of force of magnitude(1/2)ε0E2, and compression
of magnitude−(1/2)ε0E2 along two orthogonal axes around
the lines of force.

A simple example of the calculation of a force using this
approach is the derivation of Coulomb’s law in a vacuum.
This law is obtained [7,9] integrating the stress tensor over an
infinite surface orthogonal to the line joining the equal point
charges, at the middle point, closed at infinity, where the field
is zero. It is important to note that the field used to build
the stress tensor is the field of both charges, that is, the total
field. This may seem strange since, in Lorentz’s force den-
sity, the field is only the external field. Let us remember that
the electromagnetic field in any region is determined partially
by charges inside the region (inhomogeneous solutions), and
partially by charges outside the region (homogeneous solu-
tions). Therefore, when in the usual derivation of Eq. (1) the
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charge density appearing in Gauss’s law,ε0E = ρ, is substi-
tuted in the Lorentz force density,f = ρEext, the stress ten-
sor results with a mixture of external and total fields. There-
fore, the usual deduction [16] is inconsistent. However, Eq.
(1) can be deduced from Maxwell’s equations in a vacuum
without using Lorentz’s force density as a starting point [17].
In this way, the inconsistency is avoided because the total
field is always used. It is noteworthy that in these static con-
ditions either with the inconsistent deduction of the balance
equation, or with the balance equation with total fields, in the
resulting electrostatic force density appears only the external
field.

This is because the balance equation gives the force on
any region that encloses one of the charges. The region used
above to derive Coulomb’s law, the semi-space, is just con-
venient for the calculation because of the symmetry. How-
ever, a small spherical surface surrounding one of the charges
must also give the force density, though the lack of symmetry
impedes a calculation. In this small sphere, the self-field is
symmetrical and does not contribute to the force density, re-
maining only the external field. The same effect occurs when,
in a uniform electrostatic field, a point charge is introduced.
The stress tensor contains the total field, but in the net force
density, only the external field appears [18].

The formalism of a balance equation implies that the total
electromagnetic force on a given region is the force transmit-
ted through the surface that encloses the given region. The
force can also be calculated with a volume integration of the
force density over the volume of the region, involving the to-
tal fields. The result obtained before for Coulomb’s law leads
then to two different interpretations, either the force is trans-
mitted through stresses of the total field, or the force arises
from the action of an external field on charges. In the first
case, the infinite force that would arise from the interaction
of the self-field with a finite point charge does not arise, since
it is the total field that determines the force.

In the case of equal charges, the lines of force are paral-
lel to this surface, so that the force is orthogonal to the lines
of force, while for charges of different sign the force arises
from the tension, which is tangent to the lines of force and
therefore the force is orthogonal to this surface. This view,
therefore, implies that the force may be exerted not only in a
direction tangent to the lines of force, as usually assumed in
most texts, but also in a direction orthogonal to the lines of
force.

We have then a general method to calculate the force on
charges, which consists of integrating the stress tensor over a
closed surface surrounding the volume of interest.

3. Electrostatic forces on material media

The calculation of forces on media can also be carried out
by using a stress tensor. We have shown elsewhere [19] that
a particular form of the macroscopic Maxwell equations can
be transformed through vector and dyadic identities into a

momentum balance equation whose electrostatic part is

∇·{DE − 1
2
I(D ·E)} = ρE

+
1
2
[(∇E) ·D − (∇D) ·E] = fMax elec media. (5)

It is important to emphasize that being derived from the
macroscopic Maxwell equations, the fields appearing in this
equation are thetotal fields, avoiding the inconsistency dis-
cussed before. In this equation, we can identify the stress
tensor

←→
T e mat media= DE − 1

2
I(D ·E). (6)

Then we have, as in a vacuum,

←→
F e mat media=

∮

s=∂V

dS · ←→T e mat media. (7)

Thus, the balance equation permits us to calculate the
force either as a surface integration of the stress tensor or
as a volume integration of the force density.

Since we are interested in the electrostatic forces acting
on polarizable material media, we setρE = 0. There is yet
a force acting on matter. If we have a linear medium, the
constitutive relation is

D = ε0εrE. (8)

Then the tensor Eq. (6) is

←→
T e mat media= ε0εr

(
EE − 1

2
(E2)I

)
. (9)

Thus, if we consider a small element of areaσ repre-
sented by a unit vector̂n orthogonal to it, on this small area
the field can be considered constant, and then

F =
∫

σ

←→
T e mat media· n̂dA =

←→
T e mat media· n̂σ, (10)

is the force transmitted across this element of the area.
If the surface is orthogonal toE, n̂ is parallel toE and

←→
T e mat media· n̂σ = ε0εr

1
2
(E2)n̂σ, (11)

giving a force parallel toE.
If the surface is parallel toE, thenn̂ is orthogonal toE

and

←→
T e mat media· n̂σ = −ε0εr

1
2
(E2)n̂σ, (12)

giving now a force orthogonal toE. Then the force exerted
on charges, currents, or matter inside a closed surface is given
by the surface integral of the stress tensor, with the normaln̂
pointing outwards.

These ideas can be applied to the calculation of the force
exerted on a dielectric slab partially introduced into a charged
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parallel-plate capacitor. Our approach explains how a uni-
form electrostatic field can exert a force orthogonal to it,
eliminating in this way the usual inconsistency in arguing
that it is the non-uniform fringing field the origin of the force,
while the field used in the calculation is the uniform field in-
side the capacitor. We can see that Maxwell’s theory allows
forces orthogonal to the lines of force, though it may seem
strange, since we are usually familiar only with forces tan-
gent to the lines of force, due to the tension along these lines.
Our treatment of the force on a dielectric slab will make clear
this point.

Let us assume that the uniform field inside the capacitor
is ı̂, while the slab moves in thêk direction.

Then the constitutive relation is Eq. (8), and the stress
tensor results

←→
T = ε0εrE

2 [̂ı̂ı− 1
2
←→
I ], (13)

where
←→
I = ı̂̂ı + ̂̂̂̂̂̂ + k̂k̂. (14)

Now we choose a closed surface around the interface,
forming a parallelepiped with planes close and parallel to the
interface. These surfaces are represented by unit vectorsk̂
and−k̂.

The closed surface is completed with a “ribbon” joining
the parallel planes. Given this simple geometry, only the in-
tegral of the stress on the planesk̂ and−k̂ contribute. Then,
substituting Eq. (13) in Eq. (9) results in

F =
∫

σ medium

(−k̂)dS · ε0εrE
2 [̂ı̂ı− 1

2
←→
I ]

−
∫

σ medium

k̂dS · ε0E2 [̂ı̂ı− 1
2
←→
I ], (15)

and therefore, the force is

F =
1
2
ε0E

2(εr − 1)
∫

k̂dS. (16)

Since we have that∫
k̂dS = k̂Lh, (17)

whereLh is the cross area of the slab, and expressing the
relative permittivity in terms of the susceptibility, we finally
obtain

F =
1
2
ε0χeLhEk̂, (18)

which is the accepted result. Our treatment shows clearly that
the force is exerted at the interface, and the fringing field is
irrelevant.

In this case, the electrostatic field is considered uniform
inside the capacitor, facilitating the calculation. This ap-
proach contradicts the usual explanation that the force arises
from the action of the fringing field outside the capacitor. It
is noteworthy that, in the usual approach, the calculation is
done with the uniform field, and some authors [20,21] ex-
plicitly neglect the fringing field.

4. The force density

The force Eq. (18) that is exerted on a dielectric slab inside
a parallel plate capacitor can also be obtained by a volume
integration of a force density. Usually, this force density is
obtained as a gradient of an energy density. The change in
energy due to the introduction of the dielectric slab is

W = −
∫

V

dV P ·E = −
∫

V

dV u. (19)

The energy density u implies a force density (at a constant
charge)

f = −∇(P ·E). (20)

This force density leads to the accepted result Eq. (18),
and is taken as equivalent to a force density(P ·∇)E, which
applies in the case of a non-uniform field. However, if we
consider the identity

∇(a · b) = (a ·∇)b + (b ·∇)a

+ a× (∇× b) + b× (∇× a), (21)

takinga = P andb = E, we get

f = −1
2
{(p ·∇)E + (E ·∇)P

+ p× (∇×E) + E × (∇× P )}. (22)

Since we have a uniform electrostatic field inside the ca-
pacitor, the following conditions apply:

(P ·∇)E = 0, (23)

∇×E = 0. (24)

Now, for linear media, the polarization is proportional to
the electrostatic field and is discontinuous at the interface.
Then,

(E ·∇)P = (Ex∂x)̂ıP (Z) = 0, (25)

and Eq. (22) is in this way reduced to

f = −1
2
(E × (∇× P )). (26)

This force density may seem unfamiliar, but we have
shown above, and in [22] that it is equivalent to Eq. (20),
from which it is derived using vector identities and the condi-
tions of the problem. We have also shown elsewhere [22] that
this force density leads to the known expression for the force,
Eq. (18). With this approach, it can be seen that the force on
dielectrics is not only(P ·∇)E, which holds when the field
is non-uniform and therefore is zero in the present case. We
have also the force density Eq. (26), which applies even in
the case of a uniform field. Therefore, the non-uniform fring-
ing field is irrelevant, as some authors explicitly say [20,21].
This is an implication of Maxwell’s theory.

Rev. Mex. F́ıs. E 18 (1) 3–9
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5. Magnetostatic forces in the vacuum

The force and force density associated with magnetostatic
fields and its relation to a stress tensor present analogies and
differences to the electrostatic case. In a vacuum, the mag-
netic force density is given by

fm = J ×B, (27)

whereB is not produced byJ so that it is considered exter-
nal. Of course, the force is exerted onJ .

The usual way of deriving a stress tensor [16] is substitut-
ing the current density J from Ampére’s law (where the total
magnetic field must appear) and using some vector identities,
one gets

fm = ∇ ·←→T m vacuum, (28)

where

←→
T m vacuum=

1
µ0

(
BB − 1

2
B2←→I

)

=
(

BH0 − 1
2
(B ·H0)

←→
I

)
, (29)

since in vacuum

B = µ0H0. (30)

The volume integration of Eq. (28) results

Fm =
∮

S=∂V

dS · ←→T m vacuum, (31)

where Gauss’s theorem was used.
Again, as it happens in the electrostatic case, it must be

noted that when Eq. (27) and Eq. (29) are inserted in Eq.
(28) the magnetic field on the left side must be external, but
on the right side must be the total one.

This inconsistency can be avoided with a balanced equa-
tion, obtained transforming Maxwell’s equations with total
fields.

Again, the decomposition of the stress tensor into princi-
pal axes results, in a vacuum, in a tension(1/2)µ0H

2 along
the lines of force, and a compression−(1/2)µ0H

2 in two
orthogonal axes around the lines of force. The compression
may produce forces orthogonal to the lines of force, while the
tension produces forces along the lines of force.

6. Magnetostatic forces in material media

The magnetostatic forces that arise from the interaction of
magnetostatic fields and magnetizable matter present some
analogies with the electrostatic case, but there are also some
differences. In this case, the correspondenceE → B and
D → H usually suggested to obtain the analogy to the elec-
trostatic case [20,16] does not work. In the case, of the mag-
netic field, we are acquainted with the fact that the force on

currents is orthogonal to the field and current, that a uniform
magnetic field can only align magnetic dipoles. It cannot ex-
ert a net force on them. However, in the case of a magne-
tizable bar partially introduced into a solenoid, this is what
happens, and it is accepted as a fact, but it lacks an expla-
nation. We propose an explanation by means of a stress ten-
sor, which appears in an electromagnetic momentum balance
equation derived from the macroscopic Maxwell equations.
As in the electrostatic case, this tensor can be decomposed
in tensions along the lines of force, and compressions around
these lines.

This balance equation is obtained elsewhere [17,19] and
is analogous to the electrostatic case,

∇ ·
{

BH − 1
2
I(B ·H)

}
= j ×B +

1
2
[(∇H) ·B

− (∇B) ·H] = fMax mag media, (32)

where, for linear media with relative permeabilityµr we have
the constitutive relation

B = µ0µrH. (33)

As in the electrostatic case, we have that the force can be
calculated as a surface integral of the stress tensor,

F m mat media=
∮

S=∂V

dS · ←→T m mat media, (34)

where

←→
T m mat media= BH − 1

2
I(B ·H), (35)

or as a volume integration of the force density,

F m mat media=
∫

V

dV

{
j ×B

+
1
2
[(∇H) ·B − (∇B) ·H]

}
. (36)

In the present case, there are not free currents, soJ×B =
0, but the force on material media is not zero.

Since we are interested in the magnetostatic forces act-
ing on magnetizable material media, we setJ = 0. There is
yet a force acting on matter. If we have a linear medium, the
constitutive relation is

B = µ0µrH. (37)

Then the tensor Eq. (35) is

←→
T m mat media= µ0µr

(
HH − 1

2
(H2)I

)
. (38)

If we consider an element of areaA0 represented by a
unit vectorn̂ orthogonal to it, then

F =
←→
T m mat media·A0n̂, (39)

Rev. Mex. F́ıs. E 18 (1) 3–9
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is the force transmitted across this element of the area.
If the surface is orthogonal toH, n̂ is parallel toH and

←→
T m mat media·A0n̂ = −µ0µr

1
2
(H2)n̂A0, (40)

giving a force parallel toH.
If the surface is parallel toH, thenn̂ is orthogonal toH

and

←→
T m mat media·A0n̂ = −µ0µr

1
2
(H2)n̂A0, (41)

giving now a force orthogonal toH.
These ideas can be applied to the calculation of the force

exerted on a magnetizable rod partially introduced into a
solenoid.

What we need now is the equations; for a solenoid
with constant currentI, equivalent to the electrostatic case,
Eq. (18) derived from Eq. (34). When the solenoid is along
the z direction, the field is also in thez-direction, in the re-
gion where there is magnetizable material (z < 0) as well as
in vacuum (z > 0). If we choose a closed surface around
the interface, forming a thin pill-box around the interface, the
surfaces have directions given by unit vectorsk̂ and−k̂ and
a “ribbon” joining the planes. Then the force analogous to
force Eq. (18) results,

F =
1
2
µ0χmH2A0k̂. (42)

As mentioned before, here appears a force parallel to a
uniform magnetic field that has an explanation in terms of
the tension part of the stress tensor.

In comparing Eqs. (42) with the electrostatic case,
Eq. (18), we can see that the usual correspondence suggested
following the analogy with the electrostatic case,E → B
andD → H, does not lead to the correct result. This cor-
respondence also leads to the energy with the wrong sign
[16,20]

WMag = −1
2
µ0

∫

V

dV M ·H0 ¡wrong! . (43)

In comparing this expression with the equivalent electric
expression, some authors even call attention to the change
in sign [16,20], but insist in using this correspondence [24]
establish clearly, using thermodynamic arguments, that the
correct expression for the energy is

WMag = −1
2
µ0

∫

V

dV M ·H0 ¡correct! . (44)

Therefore, we conclude that in this case the correspon-
denceE → H andD → B is what leads to the accepted
result.

That the analogy between the dielectric slab inside a ca-
pacitor and a magnetizable bar inside a solenoid is not exact

can also be noted by the fact that the magnetic force density
analogous to the force density Eq. (26),

fnew mag= −1
2
µ0H × (∇×M), (45)

does not lead to the accepted result. We can show this point
starting with the force density that leads to the accepted force,

fm = −∇(M ·H) (46)

Using again the vector identity

∇(a · b) = (a ·∇)b + (b ·∇)a

+ a× (∇× b) + b× (∇× a) (47)

takinga = M andb = H, results in

f = −1
2
{(M ·∇)H + (H ·∇)M

+ M × (∇×H) + H × (∇×M)}. (48)

However, since there are only uniform static magnetic
fields and there are not free currents, we have

∇×H = 0, (49)

and

(M ·∇)H = 0. (50)

We can also see that

H × (∇×M) = 0, (51)

since the only component different from zero isMz(z), then
∇ ×M = 0. Therefore, the force density Eq. (48) reduces
to

fnewM = −1
2
µ0(H ·∇)M , (52)

which is not the same as

f ′ = (M ·∇)H, (53)

applicable in the case of a non-uniformH field.
It has been shown elsewhere [23] that the force density

Eq. (52) leads to the known result, Eq. (42). This result is a
consequence of the usual energy density and vector analysis,
and as said before, indicates that the problem of a magneti-
zable rod inside a solenoid is not equivalent to the problem
of a dielectric slab inside a capacitor. The electrostatic force
density, Eq. (28), is due to the compression around the elec-
trostatic lines of force, producing a force orthogonal to the
interface, while the magnetic force density, Eq. (52), is due
to the magnetic tension along the lines of force, and is in the
direction of the magnetic field. A magnetic effect truly anal-
ogous to the electrostatic case would be a force orthogonal
to the lines of magnetic force. We have proposed elsewhere
[10] a device that shows such a force.
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7. Conclusions

Though the interaction of polarizable and magnetizable mat-
ter with electrostatic and magnetostatic fields is the simplest
interaction field-matter, it presents conceptual problems that
exhibit some inconsistencies. Thus, the usual explanation of
the force that pulls a dielectric slab into a parallel-plate ca-
pacitor is that it arises from the action of the non-uniform
electrostatic field of the fringing field on the electric dipoles
of the dielectric. However, the accepted calculation of the
force is done with the uniform electrostatic field inside the
capacitor. An author [2] has asked how is possible that an
electrostatic field can exert a force orthogonal to it.

We offer an alternative explanation based on a momentum
balance equation derived from Maxwell’s equations. This
approach uses Maxwell’s stress tensor, which decomposed
into principal axes implies a tension along and compression
around the lines of force. We have here the original con-
ception of Faraday and Maxwell of the field as a stressed
medium. In this way, the possibility of a force orthogonal

to the lines of force arises. We argue that it is this type of
force acting at the interface that pulls the dielectric slab into
the capacitor.

We also argue that the force that pulls a magnetizable bar
into a solenoid is due to the tension along the magnetic lines
of force. This explains how a uniform magnetic field can ex-
ert a net force on magnetic dipoles. Thus, these effects are
not analogous, as usually assumed. We have proposed else-
where [10] a magnetic device in which the force arises from
the compression around the magnetic lines of force, being in
this way analogous to the electric case.

Thus, our approach, firmly founded on Maxwell’s theory
and vector calculus, provides interesting insights into the ori-
gin of these forces. As an example of these insights, we have
that the sucking of water by a laser bean arriving normally
to its surface may have a physical explanation in the forces
exerted orthogonally to the electric field, since in this case,
we have an average electric field parallel to the interface, as
in the cases discussed in this work.
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