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Faraday and Maxwell conceived the electrostatic and magnetostatic fields as lines of force filling the space around charges and currents, wit
or without matter. They also established that there are tensions along the lines of force, and compressions around these lines. These ide:
are formalized with a stress tensor, whose divergence is a force density. We follow these ideas to show the origin of the electric forces that
arise in the case of a dielectric slab partially introduced into a parallel-plate capacitor, and the origin of the magnetic forces that arise in the
case of a magnetizable bar partially introduced into a solenoid. We find that these forces have their origin in the abrupt change in permittivity
and permeability which produce a difference of pressures at interfaces. This approach permits us to analyze the similarities and difference:
between both cases. Advanced undergraduate and graduate students can get interesting insights into the electromagnetic forces exerted

electrostatic and magnetostatic fields in vacuum and matter.
Keywords: Maxwell equations; electromagnetic balance equations; Maxwell stresses; electromagnetic force densities.

Faraday y Maxwell concibieron los campos electatisbs y magnetoaticos comoiheas de fuerza llenando el espacio alrededor de cargas y
corriente, con o sin materia. Ellos establecieron que hay tensiones a lo largoidedasle fuerza, y compresiones alrededor de éatzesl
Estas ideas se formalizan con el tensor de esfuerzos, cuya divergencia es una densidad de fuseaighgn estas ideas para mostrar el
origen de las fuerzas@ttricas que surgen cuando una barra deedigto se introduce parcialmente en un condensador de placas paralelas,
ad como para exponer el origen de las fuerzas rdéigas que surgen en el caso de una barra magnetizable parcialmente introducida en

un solenoide. Se encontque estas fuerzas tienen su origen en un cambio abrupto en la permitividad y permeabilidad que produce una
diferencia de presiones en la interface. Este enfoque permite analizar las similitudes y diferencias entre ambos casos. Los estudiantes r

graduados y graduados pueden adquirir una pergejcieresante sobre las fuerzas electrorgtigas ejercidas por campos electadisbs
y magnetositicos en el vaio y en la materia.

Descriptores: Ecuaciones de Maxwell; ecuaciones de balance electrostiagn esfuerzos de Maxwell; densidades de fuerza electro-
magreticas.
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1. Introduction time-varying fields. Thus, the only force considered in elec-
trostatics is the electric part of Lorentz’s force lafr,= ¢ F,
therefore there is only a force tangent to the lines of force.

In elementary and intermediate textbooks on electromagryom this, it follows that a uniform electrostatic field can only
netism it is usually affirmed that, in electrostatics, the intro- qiqie 4 dipole and cannot exert a net force on it. In a vacuum

duction of the concept of field is somewhat artificial: “When o1y 4 non-uniform electrostatic field can exert a net force on
dealing with static fields, the field concept s, in fact, superflu-y gipole. This idea is extrapolated to the electrostatic force
ous” [1]. The,ba3|c law of interaction between charged bodn materials, and it is assumed that only a non-uniform field
ies, Coulomb’s law, is a kind of action at a distance, and the.ay exert a net force on the polarizable matter. This is the
force between point charges acts in the direction of the lingqnception usually adduced to explain the force on a dielec-
joining these. The field is introduced, in electrostatics, probyic gjap partially introduced into a parallel-plate capacitor: it

ing it with a test charge, and defining it as? = F/q. Itis  grises from the action of the non-uniform fringing field out-
also said that the notion of a field is necessary only in treating
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side the capacitor on the electric dipoles of the medium [2-6]many textbooks and articles. Our method, however, is well-
This explanation is, however, incompatible with the acceptedounded and provides insights that, we think, deserves con-
calculation, which is done with the uniform field inside the sideration.

capacitor. Margulies [2] even asks how is it possible that a

yniform field can exertgforce orthogo_nal tp it. In cont_rast,zl Force density in a vacuum as a divergence

in the case of a magnetizable bar partially introduced into a

solenoid, there is no objection to the fact that a uniform mag- of a stress tensor

netic field can only rotate a magnetic dipole, without exerti”gAccording to the original ideas of Faraday and Maxwell [15],
anet force on it. Here it seems normal that a uniform field CaNhe notion of field. even in static conditions. is more conve-

exert a net force on the magnetic dipoles of a rT‘agnGt'Z""blﬁiently illustrated with a stress tensor, whose divergence is a

material. , force density. They are related through a balance equation of
Faraday and Maxwell, however, conceived the electroyq torm

static and magnetostatic fields as force lines filling the space

around charged bodies and currents, with tensions along the fo=V- ?evacuum 1)

lines of force and pressures around these lines, that is force is

transmitted through a surface by stress tensor. Thus, we have For electrostatics the tensor that satisfies this balanced
the possibility of electrostatic forces orthogonal to the linesequation is

of force, and not only forces tangential to these lines. These - 1 o

ideas are exposed in well-known textbooks [7-9]. T ¢ vacuum= €0 <EE — §E2 I )

In the present paper, we analyze the forces that arise in
the interaction of electrostatic and magnetostatic fields with
the polarizable and magnetizable matter. We show that the
formalism of an electromagnetic momentum balance equa- i ) ) i ,
tion with a particular stress tensor provides interesting in- Usually_ [9.16] Eq. (1) IS derived starting with Lorentz’s
sights into the origin of the forces that arise in the interactionf©Ce density for electrostatics,
field-matter. We take as an example the interaction that arises f. = pE 3)
in the elementary problem of the force that pulls a dielectric N ’
slab into a charged parallel-plate capacitor and compares ji which the charge density is substituted fr&m ¢, E = p,
with the pulling of a magnetizable bar into a solenoid. Theseand with vector identities the tensor Eq. (2) is obtained.
effects are usually considered analogous. However, our anal- The balance Eq. (1) allows to calculate the force either
ysis shows that these electrostatic and magnetostatic effecig a volume integration of the force density or, using Gauss’s
are not analogous. In the electrostatic case, the force aris@igeorem, as a surface integral of the stress tensor. This last
from the pressures orthogonal to the lines of force, while inmethod indicates that the resulting force is not necessarily in
the magnetostatic case, the force arises from the tension alofige direction of the field. We have then that the force is
the magnetostatic lines of force. Indeed, we have proposed R
elsewhere [10] a magnetostatic device that we argue is really F = / fdvV = fé T -dS. (4)
analogous to the case of a dielectric slab inside a capacitor.

In this device, the force arises from the magnetostatics pres- In some advanced texts of electromagnetism [7-9], the
sures, as is the case with the dielectric slab inserted into gymmetric stress tensor is reduced to three components by
capacitor. transformation to principal axes, resulting in tension along

Our analysis is based on the original ideas of Faradayhe lines of force of magnitud@ /2)e, E?, and compression
and Maxwell, elaborated formally in classical texts as thosef magnitude-(1/2)e, E* along two orthogonal axes around
by Becker [7], Stratton [8] and Panofsky, and Phillips [9]. the lines of force.

We consider that the mentioned effects are better explained A simple example of the calculation of a force using this
with the introduction of an electromagnetic momentum bal-approach is the derivation of Coulomb’s law in a vacuum.
ance equation, which relates the divergence of a stress tensbhis law is obtained [7,9] integrating the stress tensor over an
with a force density. Indeed, we have that Noether's theorennfinite surface orthogonal to the line joining the equal point
establishes the equivalence of the equations of mation of theharges, at the middle point, closed at infinity, where the field
fields and conservation laws or momentum balance equations zero. It is important to note that the field used to build
[11,12]. We have derived several momentum balance equahe stress tensor is the field of both charges, that is, the total
tions transforming the macroscopic Maxwell equations intofield. This may seem strange since, in Lorentz’s force den-
balanced equations using vector and dyad identities [13-14kity, the field is only the external field. Let us remember that
This approach permits a unified treatment of vacuum and methe electromagnetic field in any region is determined partially
dia. by charges inside the region (inhomogeneous solutions), and

The results and interpretations obtained differ from thepartially by charges outside the region (homogeneous solu-

usual explanation of the origin of these forces, exposed itions). Therefore, when in the usual derivation of Eq. (1) the

- <DOE;(DO-E)(T>. 2
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charge density appearing in Gauss’s lagll = p, is substi- momentum balance equation whose electrostatic part is
tuted in the Lorentz force density, = pFE ey, the stress ten- 1
sor results with a mixture of external and total fields. There- V.{DE - —I(D - E)} = pE
fore, the usual deduction [16] is inconsistent. However, Eq. 2
(1) can be deduced from Maxwell's equations in a vacuum 1 _

. . . . . +=-[(VE)-D—- (VD) -E]= i 5
without using Lorentz’s force density as a starting point [17]. 2 (VE) (VD) E] = fuax etec media  (5)

In this way, the inconsistency is avoided because the total ;g important to emphasize that being derived from the

field is always used. It is noteworthy that in these static CONmacroscopic Maxwell equations, the fields appearing in this
ditions either with the inconsistent deduction of the balanceequation are theotal fields, avoiding the inconsistency dis-
equation, or with the balance equation with total fields, in the, ,ssed before. In this equation, we can identify the stress
resulting electrostatic force density appears only the externghgor

field.

This is because the balance equation gives the force on ‘?emat media= DE — EI(D -E). (6)
any region that encloses one of the charges. The region used
above to derive Coulomb’s law, the semi-space, is just con- Then we have, as in a vacuum,
venient for the calculation because of the symmetry. How-
ever, a small spherical surface surrounding one of the charges ‘Femat media= j{ ds - ?e mat media (7)
must also give the force density, though the lack of symmetry s=0V

impedes a calculation. In this small sphere, the self-field is 1,5 the balance equation permits us to calculate the

symmetrical and does not contribute to the force density, régyce either as a surface integration of the stress tensor or

maining only the external field. The same effect occurs whengg 4 olume integration of the force density.
in a uniform electrostatic field, a point charge is introduced.  gjnce we are interested in the electrostatic forces acting
The stress tensor contains the total field, but in the net forcg, polarizable material media, we sef — 0. There is yet

density, only the external field appears [18]. a force acting on matter. If we have a linear medium, the
The formalism of a balance equation implies that the totalgnstitutive relation is
electromagnetic force on a given region is the force transmit-
ted through the surface that encloses the given region. The D = ¢pe, E. (8)
force can also be calculated with a volume integration of the
force density over the volume of the region, involving the to- ~ Then the tensor Eq. (6) is
tal fields. The result obtained before for Coulomb’s law leads
then to two different interpretations, either the force is trans- ?e mat media= €0€r (EE - 1(E2)I> ) 9)
mitted through stresses of the total field, or the force arises 2
from the action of an external field on charges. In the first 14,5 if we consider a small element of areaepre-
case, the infinite force that would arise from the interactionsented by a unit vectai orthogonal to it, on this small area
of the self-field with a finite point charge does not arise, sincgpe field can be considered constant, and then
it is the total field that determines the force.
In the case of equal charges, the lines of force are paral- g _ /?e ot media- RAA = T o mat media: fo,  (10)
lel to this surface, so that the force is orthogonal to the lines
of force, while for charges of different sign the force arises 7
from the tension, which is tangent to the lines of force ands the force transmitted across this element of the area.
therefore the force is orthogonal to this surface. This view, If the surface is orthogonal t&, n is parallel toE and
therefore, implies that the force may be exerted not only in a

direction tangent to the lines of force, as usually assumed in ?emat media: RO = GOETE(E%ﬁg, (11)
most texts, but also in a direction orthogonal to the lines of 2
force. giving a force parallel td&&.

We have then a general method to calculate the force on If the surface is parallel t&, thenn is orthogonal taE
charges, which consists of integrating the stress tensor overand
closed surface surrounding the volume of interest.

— R 1 o n
T cmat media- Mo = _€0€r§(E )nm (12)
3. Electrostatic forces on material media giving now a force orthogonal t&. Then the force exerted

on charges, currents, or matter inside a closed surface is given
The calculation of forces on media can also be carried ouby the surface integral of the stress tensor, with the nofinal
by using a stress tensor. We have shown elsewhere [19] thabinting outwards.
a particular form of the macroscopic Maxwell equations can  These ideas can be applied to the calculation of the force
be transformed through vector and dyadic identities into axerted on a dielectric slab partially introduced into a charged
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parallel-plate capacitor. Our approach explains how a uni4. The force density
form electrostatic field can exert a force orthogonal to it,
eliminating in this way the usual inconsistency in arguingThe force Eqg. (18) that is exerted on a dielectric slab inside
that it is the non-uniform fringing field the origin of the force, & Parallel plate capacitor can also be obtained by a volume
while the field used in the calculation is the uniform field in- integration of a force density. Usually, this force density is
side the capacitor. We can see that Maxwell's theory allow$btained as a gradient of an energy density. The change in
forces orthogonal to the lines of force, though it may seennergy due to the introduction of the dielectric slab is
strange, since we are usually familiar only with forces tan-
gent to the lines of force, due to the tension along these lines. W = —/dVP -E = —/qu. (19)
Our treatment of the force on a dielectric slab will make clear %4 %
this point. L .
Let us assume that the uniform field inside the capacitthaIg:)energy density uimplies a force density (ata constant
is 1, while the slab moves in thie direction.
Then the constitutive relation is Eg. (8), and the stress f=-V(P-E). (20)
tensor results
— PV R This force density leads to the accepted result Eq. (18),
T = eoe, B - 5 I, (13)  andis taken as equivalent to a force den&®y: V) , which
where applies in the case of a non-uniform field. However, if we
consider the identity

T =1i+5j + kk. (14)
Now we choose a closed surface around the interface, V(a-b)=(a-V)b+(b-V)a
forming a parallelepiped with planes close and pargllel}o the +ax(Vxb+bx(Vxa), (21)
interface. These surfaces are represented by unit vektors
and—k. takinga = P andb = E, we get
The closed surface is completed with a “ribbon” joining 1
the parallel planes. Given this simple geometry, only the in- f=—={p-VYE+(E-V)P
tegral of the stress on the plankesnd—k contribute. Then, 2
substituting Eq. (13) in Eq. (9) results in +px (VX E)+Ex(VxP)} (22)
F = / (_;;,)dg - eoer B2 [il — ;T} Since we have a uniform electrostatic field inside the ca-
& madium pacitor, the following conditions apply:
- / fdS - o E2[ii — %‘T], (15) (P-V)E =0, (23)
o medium V xE=0. (24)

and therefore, the force is Now, for linear media, the polarization is proportional to

F= leoEQ(e, _ 1)/;““15, (16) the electrostatic field and is discontinuous at the interface.
2 Then,
Since we have that

V)P = (E,;0,)1 =0, 25
/I%dS:l%Lh, 17) (E-V)P = (E,0,)iP(Z) = 0 (25)

] ) and Eqg. (22) is in this way reduced to
where Lh is the cross area of the slab, and expressing the

relative permittivity in terms of the susceptibility, we finally f= _E(E x (V x P)). (26)
obtain 2
1 > This force density may seem unfamiliar, but we have
F = —eox.LhEk, 18 . o . '
90X (18) shown above, and in [22] that it is equivalent to Eq. (20),

which is the accepted result. Our treatment shows clearly thdtom which it is derived using vector identities and the condi-
the force is exerted at the interface, and the fringing field igions of the problem. We have also shown elsewhere [22] that
irrelevant. this force density leads to the known expression for the force,

In this case, the electrostatic field is considered uniformEq. (18). With this approach, it can be seen that the force on
inside the capacitor, facilitating the calculation. This ap-dielectrics is not only P - V) E, which holds when the field
proach contradicts the usual explanation that the force arisés non-uniform and therefore is zero in the present case. We
from the action of the fringing field outside the capacitor. It have also the force density Eq. (26), which applies even in
is noteworthy that, in the usual approach, the calculation ishe case of a uniform field. Therefore, the non-uniform fring-
done with the uniform field, and some authors [20,21] ex-ing field is irrelevant, as some authors explicitly say [20,21].
plicitly neglect the fringing field. This is an implication of Maxwell’s theory.

Rev. Mex. 5. E 18(1) 3-9



MAXWELLIAN STRESSES AND ELECTROMAGNETIC FORCES THAT ARISE FROM THEM IN VACUUM AND MEDIA 7

5. Magnetostatic forces in the vacuum currents is orthogonal to the field and current, that a uniform

) ) ) ‘magnetic field can only align magnetic dipoles. It cannot ex-
The force and force density associated with magnetostatigt 4 net force on them. However, in the case of a magne-

fields and its relation to a stress tensor present analogies afgaple bar partially introduced into a solenoid, this is what
differences to the electrostatic case. In a vacuum, the magrappens, and it is accepted as a fact, but it lacks an expla-

netic force density is given by

fm=JxB, 27)
where B is not produced by so that it is considered exter-
nal. Of course, the force is exerted dn

The usual way of deriving a stress tensor [16] is substitut
ing the current density J from Anape’s law (where the total
magnetic field must appear) and using some vector identitie
one gets

—
.fm =V.-T m vacuum (28)
where
— 1 1 P
T 1 vacuum= — <BB - 532 I >
1 >
- (BHO (B H)T ) . (@9)
since in vacuum
The volume integration of Eq. (28) results
>
Fm = % as - vaacuum (31)
S=8V

where Gauss'’s theorem was used.
Again, as it happens in the electrostatic case, it must b

noted that when Eq. (27) and Eq. (29) are inserted in Eq.

(28) the magnetic field on the left side must be external, bu
on the right side must be the total one.

This inconsistency can be avoided with a balanced equa-

tion, obtained transforming Maxwell’s equations with total
fields.

Again, the decomposition of the stress tensor into princi-

pal axes results, in a vacuum, in a tensfop2) .o H? along
the lines of force, and a compressien{1/2)uoH? in two
orthogonal axes around the lines of force. The compressio

may produce forces orthogonal to the lines of force, while the/

tension produces forces along the lines of force.

6. Magnetostatic forces in material media

The magnetostatic forces that arise from the interaction o

magnetostatic fields and magnetizable matter present some
analogies with the electrostatic case, but there are also some

differences. In this case, the correspondefte~ B and
D — H usually suggested to obtain the analogy to the elec

trostatic case [20,16] does not work. In the case, of the mag-
netic field, we are acquainted with the fact that the force on

nation. We propose an explanation by means of a stress ten-
sor, which appears in an electromagnetic momentum balance
equation derived from the macroscopic Maxwell equations.
As in the electrostatic case, this tensor can be decomposed
in tensions along the lines of force, and compressions around
these lines.

This balance equation is obtained elsewhere [17,19] and
és analogous to the electrostatic case,

V~{BH;I(B~H)}j><B+;[(VH)~B

- (VB) : H] = .fMax mag media

where, for linear media with relative permeability we have
the constitutive relation

(32)

As in the electrostatic case, we have that the force can be
calculated as a surface integral of the stress tensor,

P
as.- T m mat media

S=0V

(34)

Fm mat media=—

where

— 1
Tmmat media=— BH — §I(B : H)a (35)

or as a volume integration of the force density,

e
meat media= /dV{j x B

t v

N

+ [(VH)~B(VB)-H]}. (36)
Inthe present case, there are not free current$ ;s =
0, but the force on material media is not zero.

Since we are interested in the magnetostatic forces act-
[ng on magnetizable material media, we det= 0. There is
et a force acting on matter. If we have a linear medium, the
constitutive relation is

B = pop H. (37)
Then the tensor Eq. (35) is
f — 1, 5,
T rmat media= poptr | HH — i(H )I . (38)

If we consider an element of are&, represented by a
unit vectorn orthogonal to it, then

> A
F =T ,,mat media- Ao, (39)

Rev. Mex. 5. E 18(1) 3-9
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is the force transmitted across this element of the area. can also be noted by the fact that the magnetic force density
If the surface is orthogonal tBl, 71 is parallel toH and analogous to the force density Eq. (26),

1 1
?m mat media AoTt = —,uouri(HQ)'ﬁ,Ao, (40) Few mag = 7§U0H x (V x M), (45)

does not lead to the accepted result. We can show this point

iving a force parallel tdd .
ghving P starting with the force density that leads to the accepted force,

If the surface is parallel téd, thens is orthogonal taid

and f=-V(M-H) (46)
T yumat mediar Aot = _/J(]/Jr%(HQ)ﬁ'AO; (41) Using again the vector identity
giving now a force orthogonal téf . V(a-b)=(a-V)b+(b-V)a
These ideas can be applied to the calculation of the force tax(Vxb)+bx(Vxa) (47)
exerted on a magnetizable rod partially introduced into a
solenoid. takinga = M andb = H, results in
What we need now is the equations; for a solenoid 1
with constant currenf, equivalent to the electrostatic case, f=—{(M-V)H+ (H-V)M
Eq. (18) derived from Eg. (34). When the solenoid is along 2
the z direction, the field is also in the-direction, in the re- +Mx(VxH)+Hx(VxM)}. (48)

gion where there is magnetizable materiak{ 0) as well as ) i ) i
in vacuum ¢ > 0). If we choose a closed surface around However, since there are only uniform static magnetic
the interface, forming a thin pill-box around the interface, thefi€lds and there are not free currents, we have

surfaces have directions given by unit vectbrand —k and

a “ribbon” joining the planes. Then the force analogous to VxH=0, (49)
force Eq. (18) results, and
P %uoXmHzAOI%. 42) (M- V)H =0. (50)

. We can also see that
As mentioned before, here appears a force parallel to a

uniform magnetic field that has an explanation in terms of H x (V x M) =0, (51)
the tension part of the stress tensor.

In comparing Egs. (42) with the electrostatic case,since the only component different from zeralis (z), then
Eq. (18), we can see that the usual correspondence suggest®dx M = 0. Therefore, the force density Eq. (48) reduces
following the analogy with the electrostatic cadé, - B 10

andD — H, does not lead to the correct result. This cor- 1
respondence also leads to the energy with the wrong sign Frewns = —5Ho(H - V)M, (52)
[16,20] I
which is not the same as
1
WMag = *iluo / dVM - Hy inOﬂg . (43) f/ —_ (M . V)H, (53)
\4

applicable in the case of a non-unifotHh field.

In comparing this expression with the equivalent electric |t has been shown elsewhere [23] that the force density
expression, some authors even call attention to the changey. (52) leads to the known result, Eq. (42). This result is a
in sign [16,20], but insist in using this correspondence [24]consequence of the usual energy density and vector analysis,
establish clearly, using thermodynamic arguments, that thand as said before, indicates that the problem of a magneti-

correct expression for the energy is zable rod inside a solenoid is not equivalent to the problem
1 of a dielectric slab inside a capacitor. The electrostatic force
Whiag = —5/40/dVM - Hy jcorrect. (44)  density, Eq. (28), is due to the compression around the elec-

4 trostatic lines of force, producing a force orthogonal to the

interface, while the magnetic force density, Eq. (52), is due
Therefore, we conclude that in this case the corresponto the magnetic tension along the lines of force, and is in the
denceE — H andD — B is what leads to the accepted direction of the magnetic field. A magnetic effect truly anal-
result. ogous to the electrostatic case would be a force orthogonal
That the analogy between the dielectric slab inside a cato the lines of magnetic force. We have proposed elsewhere
pacitor and a magnetizable bar inside a solenoid is not exa§10] a device that shows such a force.

Rev. Mex. 5. E 18(1) 3-9
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7. Conclusions to the lines of force arises. We argue that it is this type of

. . ] ) force acting at the interface that pulls the dielectric slab into
Though the interaction of polarizable and magnetizable mate capacitor.

ter with electrostatic and magnetostatic fields is the simplest We al " that the force that pulls a maanetizable bar
interaction field-matter, it presents conceptual problems thalt to aesilz(;; dg;Jse du: to %eotgﬁsioi §|l:)ns athear?]ae ne?ic?ineas
exhibit some inconsistencies. Thus, the usual explanation of 9 9

the force that pulls a dielectric slab into a parallel-plate ca—Of force. This explains how a uniform magnetic field can ex-

pacitor is that it arises from the action of the non-uniform ert a net force on magnetic dipoles. Thus, these effects are

electrostatic field of the fringing field on the electric dipoles not analogous, as usually assumed. We have proposed else-

of the dielectric. However, the accepted calculation of theWhere [10] a magnetic device in which the force arises from

force is done with the uniform electrostatic field inside theth.e compression around the ma_gnet|c lines of force, being in
capacitor. An author [2] has asked how is possible that aﬁh's way analogous fo the electric case.
electrostatic field can exert a force orthogonal to it. Thus, our approach, firmly founded on Maxwell's theory
We offer an alternative explanation based on a momentur@nd vector calculus, provides interesting insights into the ori-
balance equation derived from Maxwell's equations. Thisdin of these forces. As an example of these insights, we have
approach uses Maxwell's stress tensor, which decomposéfat the sucking of water by a laser bean arriving normally
into principal axes implies a tension along and compressioft© its surface may have a physical explanation in the forces
around the lines of force. We have here the original con€xerted orthogonally to the electric field, since in this case,
ception of Faraday and Maxwell of the field as a stressedve have an average electric field parallel to the interface, as

medium. In this way, the possibility of a force orthogonal in the cases discussed in this work.
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