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This article shows that in the period January 22-June 28, 2020, the combined data set of cumulative recoveries and deaths from the currer
coronavirus COVID-19 pandemic falls on the Kermack and McKendrick approximated solution of the epidemioBifcaintagious

disease model. Then, as an original contribution of this work, based on the knowledge of the infectious period of any epidemic, a methodology
is presented in order to find numerical solutions of the 8iRmodel that reproduce the observed data of the epidemic in case it could be
described by th&IRmodel. The methodology is first illustrated by finding a solution of il model that describes the epidemic data of

the Bombay plague of 1905-06 analyzed by Kermack and McKendrick. After that, the methodology is applied to numerically solve the full
set of differential equations of tH&/Rcontagious model on the above mentioned coronavirus COVID-19 pandemic data set. We also show
that the Kermack and McKendrick approximation is observed on the counted combined aggregated recovered and deaths cases from son
individual countries and also in some of the cumulative confirmed COVID-19 cases of individual countries.

Keywords: Epidemiological SIR model; computational physics; physics problem solving; computational modeling; Riccati differential
eqguation.

Este artculo muestra que para el pedo 22 de enero-28 de junio, 2020, los datos acumulados del conjunto combinado de recuperaciones
y muertes producto de la actual pandemia del coronavirus COVID-19 se ajustan a larsajutiximada encontrada por Kermack y McK-
endrick del modelo epidemiogico para enfermedades contagioS#R Luego, como contribudin original del presente trabajo, basada en
conocimiento del péodo de infecdn de alguna epidemia, se presenta una metotolpge facilita el obtener soluciones nericas del

modelo completd&IR que se ajustan a los datos observados de la epidemia en caso que la misma se pueda describir por tal modelo. Le
metodoloda primero se ilustra encontrando una sadnailel modeldSIRque se ajusta a los datos de la plaga de 1905-06 en Bombay estudi-

ada por Kermack y McKendrick. Seguidamente, la metodalsg aplica para encontrar soluciones arioas del modelo comple®IRque

se ajustan al conjunto de datos de la pandemia coronavirus COVID-19 arriba mencionados. Adicionalmente, se muestra que l@aproximaci
de Kermack y McKendrick se observa en la contabilidad combinada de recuperaciones y muertes agregadas deisdéguntsgin en

la data de casos confirmados contagiados de COVID-19 de alguisespa

Descriptores: Modelo epidemiddgico SIR; fsica computacional; resolusi de problemas eridica; modelaje computacional; ecuati
diferencial de Ricatti.

PACS: 05.45.Pq; 02.70.Hm; 01.40.gb; 01.40.Ha

DOI: https://doi.org/10.31349/RevMexFisE.18.35

1. Introduction model proposed by Capasso and Paveri-Fontana [6] for the
1973 cholera epidemic in the port city of Bari, in southern
The current, social global context dominated by the coronitaly.
avirus COVID-19 pandemic [1] brings a direct opportunity
to consider within Physics the quantitative modeling of in-  Following the organization of this work, in the next
fectious diseases like tf&IRepidemic model which, in spite  Sec. 2, we will give a brief description of tf&iR epidemi-
of its simplicity, has been successfully used in modeling his-ological model (referenced from now on as tBER model)
torical data of some epidemics [2-5]. and its relevance on the analysis of data from the current
In epidemiology, models can be used to control (and pereoronavirus COVID-19 pandemic. Next, in Sec. 3, the ap-
haps to eradicate) the infectious disease under consideratigmoximated solution of th&IRmodel proposed by Kermack
by the model. That is, epidemiological models can be use@nd McKendrick is presented. Then, in Sec. 4, it will be dis-
to take action on how to approach an epidemic from the medeussed the applicability of the solution found on analyzing
ical point of view. They can, for instance, provide reasonecbserved epidemic data by first presenting a well know epi-
estimates for the level of vaccination necessary for the condemic example, namely the Bombay plague (occurred from
trol of an infectious disease (for examples see [3] and referbecember 1905 to July 1906). We will provide numerical so-
ences therein). Certainly, great care must be exercised befohations to the fullSIRmodel of differential equations for the
practical use can be made of any epidemic model. Generalljdombay case, which has not been found in the consulted lit-
models go through several revisions before they can be exerature. Then, following this discussion, data observed from
ploited with some degree of confidence in the control of arthe coronavirus COVID-19 pandemic will be analyzed in the
contagious infection. To be illustrative, as referenced in [3],context of theSIRmodel. Finally, conclusions and extension
several hypothetical revision scenarios were applied to thef this work will be presented in Sec. 6.
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2. TheSIR model expected that thEIRmodel could be observed at the start of
an infectious disease, time at which no action has been taken
The SIRmodel considers a population of sizeon which, at  to control the disease and individuals have no restriction to
time ¢, S(¢) individuals are susceptible of being infected ascome into contact with one another locally. This assumption
a consequence tha{t) individuals are already infected and s also partially true at the start of the coronavirus COVID-19
can transmit or spread the disease to the susceptible populgandemic infectious disease in a global context, before each
tion. The number of individualg(t) represents those who country has blocked their borders. However, it is not easy to
have recovered from the disease (which, if lethal, also inhave an observed estimated fr, 70, and S0 to compare
cludes deceased individuals) and can not be reinfected. Thugiem with the values computed via tBéRmodel. TheSIR
the dynamics of the disease, introduced in 1927 by Kermacknodel also assumes that as soon as a susceptible individual
and McKendrick [2], is modeled by the set of differential catches the disease, they become infected right away It has

equations: been also reported by the World Health Organization [7] that
this is the case with the coronavirus COVID-19 pandemic in-
ﬁ = —BIS, (1) fectious disease: infected individuals start infecting others as
dt soon as they catch the virus and even before presenting any
dl — BIS — AT ) symptoms. Moreover, a study has shows how undocumented
dt ’ infection facilitates the rapid dissemination of the illness [8].
dR The fact that the assumptions on which R model was
ar 1, ) formulated are partially true in what we are experiencing with
d the current coronavirus COVID-19 pandemic infectious dis-
a(s +I+R)=0—-S+I+R=N. (4) ease, makes it feasible to observ8I& model behavior on

the reported data of the coronavirus COVID-19 pandemic.
In these equations, the parametgréhe infection rate) and We will show that this is the case in the studied cases in this
~ (the recovery or removal rate of infectives) are constamts: Work.

controls the transition betweehand/, Eq. (1), while~ con- Two important aspects need to be mentioned at this point.
trols the transition betweehandR, Eq. 3). From a dimen-  Equation2) can be written in the form:

sional point of view, one does not assign units to the variables dl S

S, I, R, and N whilst the parameter§ and~ have units of 7= (p — 1> 1, (5)

inverse time (measured typically in days, weeks or months
in epidemiological records). Notice that Edl) expresses wherep = /3 is sometimes called threlative removal rate
the interaction betweefi and/ (at timet) as the producs/  (which might be called differently by other authors because,
and that a fraction of this product are the individuals that atunfortunately, the notation and terminology in epidemiologi-
timet become infected and removed frar(which, because cal literature is not uniform).
of the negative sign in Eq/1}, decreases as time increases). ~ Now, for an epidemic to occur, the number of infected
This interaction in the form of the produstf makes difficult  individuals needs to increase from the initial number of in-
to determine the parametgrfrom observed epidemiological fected individuals/0. This condition will happen if at time
data. On the other hand, from E@®)(the inverse of the pa- zero,S0 > Sc = p. That is,p represents a critical value for
rametery gives a measure of the time spent by individualsan epidemic to occur and tf®iIRmodel reveals ghreshold
in the infectious stage. Consequently, by carefully observphenomenofg].
ing the development of an infectious disease, the parameter  Another important epidemiological parameter which de-
can be estimated relatively precisely by epidemiologists fronfines how quickly the infectious disease spreads isotmc
epidemiological records (as the inverse of the recovered or inreproduction ratg(Ro) of the infection, defined as
fectious period). For the initial conditions, at time= 0, we 3 S0
haveS0 = S(t = 0) > 0,10 = I(t = 0) > 0,andR0 = Ro==50=—. (6)
R(t = 0) = 0 From Eq. @), this yieldsS0 + 10 = N. v p

It is important to keep in mind the basic assumptionsThis parameter (not to be confused with the initial vaR@
of the model. An important assumption in idealizing the measures the number of secondary infections produced by
model is that, once recovered, individuals become immuene primary infection in a wholly susceptible population. For
nized and can not be reinfected. Thus, the transition goes asstance, ifRo = k, then, before recovering, one infected in-
S — I — R. As reported by the world Health Organization dividual will likely infect £ more individuals, each one of
(WHO) [7], this assumption is being observed in the evolu-which will, in turn, infectt more individuals and so on. If
tion of the coronavirus COVID-19 pandemic infectious ill- more than one secondary infections is produced from the pri-
ness. That is, massive reinfection by the coronavirus has nebary infection, therRo > 1 which givesS0 > p and, obvi-
been reported yet. Also, it is assumed in Eq. (4), that duringusly, an epidemic ensues. One should be aware that neither
the disease no people enter or leave the population (includf the parameterg or v remains constant as the infection
ing birds and deaths by other reasons). Consequently, it isvolves. Moreover, the assumptions on which the model are
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built are no longer valid as soon as sanitary interventions areshich, under a few basic conditions, describes the normal
applied to control the infection. time spread in a population of an infectious disease without

Further discussion of thBIRmodel is beyond the scope medical intervention. This set of equations needs to be solved
of this article, and the reader is referred to references [3,4humerically and, in order to do that, in addition to the initial
for a far reaching and enriching discussion of the model.  conditions, two parameterg @nd~) are required.

The solution of the system of equations formed by Egs. The initial conditions for the quantitieS and I are not
(1)-(3) can be found numerically for given valuesihfy, S0,  easy to determine and, according to the consulted literature
and N. In general, the parameters are unknown and, consgs,4], while the parametey can be estimated from observing
guently, a best fit procedure is carried out in order to find ahe evolution of the considered epidemic, that is not the case
solution, assuming that tt®iRmodel is a plausible model for with the parametes.
the epidemic. In the reported literature, only a few epidemics  The landmark study of Kermack and McKendrick [2] pro-
have been solved numerically. In this work we provide evi-vides an analytical approximated solution (called from now
dences that the COVID-19 pandemic can be described by thisn the KM approximation) of th&IRmodel of Eqg. (7) and
model. is supposed to be valid at the start of an epidemic, or in
the cases in which the epidemic is not severe. To support
his work, Kermack and McKendrick were able to show how
nicely the approximated solution of tt®#Rmodel was able
As discussed in the epidemiological literature [2-4], a straight© describe data from a 1905-1906 plague in Bombay, where
forward combination of th&IRmodel Eqs.1)—(3) leadstoa 8010 90 percent of the cases reported terminate fatally. As-
non-linear differential equation fatR/dt, interpreted as the
properly counted individuals removed (either because they

3. Approximated solution of the SIR model

9 = 897.81sech?(0.19t — 3.26)
KM rmse = 66.26; KM rmseRel = 7.03%

have recovered or death) from medical units. SIR rmse = 70.80: SIR rmseRel = 7.52%
For not severe epidemid®(t)/p < 1, the landmark work e o Bombay plague(1905-06)
[2] of Kermack and McKendrick (1927) proposes tH#t/ dt == KM fit
could be approximated by [2,4] b — 8RIA
dR v rap\? B (&
- _ (= At — 7
dt 2(50) Sosec (27’f ¢>’ 0

where sectr) is the hyperbolic secant afand —

GG @ .

-1 Spo -1
¢ —tanh~! [ 22— . 9)
o 200

Here tanh(z) is the hyperbolic tangent ofr, while
tanh ™' (z) is the inverse of the hyperbolic tangentof
An important point to keep in mind is that contrary to
Physics, where experiments could be designed to obtain data 0 10 20 30 40 50
. . . . . Time (weeks)
to test models, in epidemiology data might be available from )
naturally occurring epidemics (in the Kermack and McK- FIGURE 1. This plot shows that the Bombay plague of 1905-06
endrick work only one example was presented) and the colf@!!S under the KM approximation [2]. The graph also shows one
. . . ossibility of the(¢) function obtained by integration (accord-
lected data might be incomplete due to underreporting (ag ) :
is ob d with th ) COVID-19 demic [10 ing to the proposed method described in Sec. 5) of theSLiR
'59 serve W'_ € coronavirus - _pan emic [ ])'model (Egs. 1)-(3)), using the initial conditions and parameters
This lack of reliable data makes the estimation of parameters; _ 750030 S0 = 780025. 10 = N — SO — 5. RO — 0
very imprecise. Nevertheless, models can guide the epidemi; — 7 469 (given by hand), and3 = ~/p = 1.0056e — 05
ologists to fine tune (perhaps by trial and error testing) theirg, = 742709.03). Since we were unable to find the actual data
point of view on the quantitative development of an infectiousused by Kermack and McKendrick [2], the data were approximated
disease. (using the GNU Image Manipulation Progr&mp[11]) from the
Fig. 2.3, shown in page 23 of Ref. 4. The valueyofias chosen to
. . .. have N (from Eqg. 21)) close to the Bombay population near the
4, Obs_ervmg the SIR model on epidemic (in- year of the epidemic (obtained from a Wikipedia page [12], where
cluding COVID-19) data it is mentioned that “in the census of 1901, the population had ac-
o o ) . tually fallen to 780,000.”) This figure can easily be updated with
Summarizing the conceptualizations of previous sections, théhore appropriated epidemiological information from the Bombay
set of Egs. [1)-(4) represents the epidemiologicdlRmodel  plague (including a reasoned valueyf
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suming the fatalities represent the left hand side of I}, ( the source listed in [14]. According to the provided descrip-
they concluded that the data falls under the cuti®/dt =  tion in the website, data is updated daily, starting January 22,
8903ecﬁ(0.2t — 3.4). Since then, only a very few infectious 2020. It contains files listing cumulative confirmed cases, cu-
diseases have been reported to follow the KM approximamulative reported deaths and cumulative reported recoveries,
tion [3]. disaggregated by country (and sometimes subregions) taken
As a bonus of this work, via the methodology presentedrom sources like théVorld Health Organization(WHO)
in Sec. 5 we can obtain Fig. 1, which shows a numerica[15] and theJohns Hopkins University Center for Systems
solution of theSIRmodel adjusting itself to the data of the Science and Engineerinfd 6], among others. The period
Bombay plague studied by Kermack and McKendrick. It iscovered at the moment of writing this works was January
interesting to mention that until now we have been unable€2-June 28, 2020. Other studies [10] have also considered
to find (other than the KM approximation) a full solution of cumulative data on modeling the progression of the coron-
the SIRmodel adjusted to the Bombay plague. This is in-avirus COVID-19 infectious disease.
dicative of how difficult is to guess appropriate values for the
initial conditions and the parameters necessary to perform 4.2. Analysis of the worldwide aggregated COVID-19
successfully integration of thi@IRmodel falling on the data. data

The methodology given in Sec. 5 helps to fill this gap. ) o )
We start our study by first considering worldwide aggregated

4.1. About the coronavirus COVID-19 pandemic data ~ COVID-19 data [17]. The top left plot on Fig. 2 shows the
cumulative reported cases (confirmed, deaths, and recovery)
All coronavirus COVID-19 pandemic data used for analy-as of June 28, 2020. In the top middle and top right plots on
sis in this work are publicly available under tlpen Data  Fig. 2 it is observed how well the data (cumulative combined
Commons Public Domain and Dedication Licefit&], from  deaths and recoveries sets, as required b$tRenodel) falls

KM approximation

COVID-19 worldwide aggregated 9% = 6104586.02sech?(0.02t - 3.46)
le7 data as of 2020-06-28 rmse = 84503.83; rmseRel = 1.50% KM approximation
1.0 Z
----- Confirmed(C) 5000000 R 4D 6104539 . R+D
o8 Recovered(R) 4000000 —— KM fit — KMfit
06] - Deaths(D)

3000000
—  R+D 3064668
0:4 2000000
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y=0.07143 y=0.1 y=0.1429
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FIGURE 2. The top left plot shows the reported world wide cumulative aggregated COVID-19 data for the period January 22 - June 28, 2020,
available in [17]. The top middle and top right plots show that the data points fall under the KM approximation, givenEBy(&e iGverse

time unit was omitted deliberately from the function). The plots on the middle and bottom rows are examples of different scenarios adjusted
to the data by solving the fuBIRmodel of Egs./1)-(3) via the methodology presented in Sec. 5 which allows the finding of initial conditions

and the parametgt if the parametety is given (perhaps from observing the evolution of an epidemic that falls under the KM approximation).
Solving theSIRmodel could be used to anticipate hypothetical scenarios (as the ones shown here) on how the epidemic would evolve. Notice
that theSIRsolution approaches the KM approximatiomacreases, but the other parameters also change (see Table | for details).
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under the KM approximation, defined by the E@) (which  compare how well different sets of data fall under BI&R
is shown in the title of the top middle plot on Fig. 2 where model. As the uncertainty in the observed valagss un-
the inverse time unit was omitted deliberately). known [10], it is unrealistic to emphasize any further statisti-
At this point, it is important to internalize that the shape cal measure characterizing any estimated parameters via the
of the KM approximation (the hyperbolic secant squared)XM approximation for the COVID-19 pandemic data set.
was provided by th&IRmodel. Accordingly, instead of just Let's mention that every numerical computational work
guessing a best fitting function to a data set, we are findingn this article was carried out via tHeython scripting pro-
that the considered coronavirus COVID-19 data falls on agramming language and tidumpy/SciPy /Matplotlib
functional shape obtained via the theoretical framework delibraries described elsewhere [18,19]. In addition, all of the
fined by theSIRmodel. That is, we have shown that the con-available data from January 22, 2020 until June 28, 2020
sidered data set is well described by the prop@&i&model.  were used in the computations. Further information from the
Continuing the analysis, let's mention that in the title of epidemiology community is necessary in order to see if any
the top middle plot on Fig. 2 it is also shown values for theprediction can be achieved by this model in the future. Never-

Root Mean Square Errafrmse) and th&elative Root Mean
Square Error(rmseRel), defined as follows:

n

theless, some insight could be gained by trying to get a well
reasoned understanding on why the coronavirus COVID-19
data still (after 6 months) falls under the functional shape an-

rmse— 1 Z (0; — KMZ-)Q, (10) ticipated by th_eSIR_modeI. _
n Now, considering the fact that contrary to Physics, where
experiments could be designed to obtain data to test models,
rmseRel = ﬁ_ (11)  in epidemiology data might be only available from naturally
max(0) occurring epidemics and the collected data might be incom-

Here O; is theit™ observation in the considered data  plete due, for example, to underreporting or any other reason
set, K M is the corresponding value obtained by the KM ap-as discussed in [10]. Under such circumstances, it is strik-
proximation, andnax(O) is the maximum value in the con- ing to find out that the KM approximation is observed to be
sideredO data set. These measures are used as a way followed by the world wide aggregated data and by data com-

9 =2203.735ech?(0.03t - 3.74)

rmse = 158.15; rmseRel = 6.92%

‘ZT': =132612336.54 sech?(0.02 t — 10.25)
rmse = 81.90; rmseRel = 4.84%

%’: =1531826927.04sech?(0.02t —9.96)
rmse = 388.94; rmseRel = 1.82%
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FIGURE 3. The KM approximation is observed in the reported cumulative recoveries and deaths cases of Argentina, Peru, United States of
America, and Mexico. Reported data from Cuba (which seems to have started a new wave of contagions), Spain, Italy, and Germany do no
fall under the KM approximation. Data source (available in [22]) covers the range January 22 - June 28, 2020. Notice that not every country
has reported cases starting from January 22. The inverse time unit was omitted deliberately from the function.

Rev. Mex. i5.E18(1) 3543



40 S. ROJAS

ing from individual countries, as shown in Fig. 3 and 4. Fromquantity(1/~)(dR/dt). Consequently, considering that such
an speculative point of view, this might be a consequence thas the case, Eql7] is better written in the form:

each cumulative reported data set is a kind of mean value, av- )
eraging details of the pandemic evolution at the atomic (city il z 7) S0 sech (9775 _ ¢) ] (12)
or town) level. In this respect, by knowing how to inter- vdt 2350 2

pret the reported results, epidemiologists can use them asRecalling that the inverse of time is the unit of the parameter
way to fine tune (perhaps by trial and error testing) theirs,, this Eq. ([2) is dimensionless and represeiits) (from
point of view on the quantitative evolution of the coronavirusgq. (3)). Using this representation, the constants obtained

COVID-19 infectious disease and offer sound guidance refrom an epidemic data set under the KM approximation can
garding what to expect in terms of infections and deaths fope represented in the form:

decision making by governors, legislators, mayors, and city

1d£:1(ap

council members. Again if the parameteris known, the LRk _ Cisecht (Cot — ¢), (13)
methodology presented in Sec. 5 will help to find many sce- v di
narios of the fullSIRmodel falling on the data. 1 2
2 507
5. A methodology for solving the full SIR oL 15
model on data falling under the KM ap- 270 (15)
roximation
P C3 =tanh¢) = é (5;0 - 1) . (16)

Now, as an original contribution of this work, we will next
describe a procedure that can be applied to find numericatquationL6) comes from Eq.9). From Egs. 14)-(16) and
solution of the fullSIRmodel (Egs. [1)-(3)) by obtaining,  (8) one can obtain the initial conditions and the paramgter
via the KM approximation and knowledge of the parametelin terms of the parameter, all of them necessary to solve
~, necessary information (namely, initial conditions and thenumerically theSIRmodel:

parametef3) to perform the numerical integration of tis¢R

model that adjust itself to the observed data. a= 2C217 (17)
As previously mentioned, finding numerical solutions of v
the SIRmodel, Egs. 1)-(4), requires, in addition to the ini- Cy 1
tial conditions 60 and 70, with R0 = 0), knowledge of the P=c, (03 + ) 7 (18)
parameters’ and~y. While 3 is not easy to determine from
epidemiological data [3,4], the removal or recovery rate pa- B = l, (19)
rametery, whose reciprocall(/~) determines the average in- P
fectious period of the disease, can be estimated from the ob- o ap (CB n ) 7 (20)
served evolution of an epidemic [4]. o
In fact, according to thé&european Centre for Disease 5
Prevention and Contrakegarding the coronavirus COVID-19 N—so4+20 (L)Q [az B (SO B 1> ] L@
pandemic [21] the infectious period is-* estimated to last 2 \S0 p

for 7-12 days in moderate cases and up to two weeks on aver- o _
age in severe cases.” Consequently, in this study one can try NEXt, We set our rationality in action. We have already
the set of infectious period () of 7, 10, and 14 days, giv- shown in F|g. 1 that our methodology Work_s on the Bomb_ay
ing, respectively, in turny = 0.1429/day, = 0.1/day, and plague st_udled by Kermack an_d McKendrick [2]. We W|_II
~ = 0.07143/day. However, we will consider other values NOW continue by showing that it also works on the consid-
of ~ to further explore its effect on the other quantities allow-réd coronavirus COVID-19 pandemic data by setting a set
ing the integration of the model. This uncertainty in the pa-Of 7 values (including the ones mentioned above, inferred
rametery can be rationalized by the variability in responses/T0m the infectious period reported by tfiguropean Cen-
between different individuals over the infectious period, thatif® for Disease Prevention and Contmegarding the coro-
in addition that the COVID-19 data by itself contains a highnavirus COVID-19 pandemic [21]) to obtain the set of val-
level of uncertainty [10]. ues compllgd on the Table I, which were obtained from Egs.
The method is as follows. When reporting the observancél?)-(21) using the values of’y = 6104586.02, C> = 0.02,
of the KM approximation in data [2-4], Kermack and McK- ¢ = 3-46, andC = 1.00 corresponding to the KM approx-
endrick considered that what is observed in the vertical axidmation shown in the top middle plot of Fig. 2. The values

of their graph containing the data from the Bombay IO|agu(:‘pompiled in Table_ | were used to find ngmerical solutions of
is the quantitydR/dt (or vI(t) on the left hand side of Eq. the SIRmodel adjusted to the coronavirus COVID-19 data.

(7). However, by studying the case of the influenza on al N€ results are shown in the plots on the rows at the middle
boarding school presented with some detail in [3], it seems t@"d at the bottom of the Fig. 2 (where for completeness the
the author of this work that what is actually observed is theM approximation is also included).
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FIGURE 4. The KM approximation is observed in the reported cumulative confirmed cases of Argentina, Venezuela, Peru, and Mexico.
Reported data from Cuba (which seems to have started a new wave of contagions), United States of America, Spain, Italy, and Germany dx
not fall under the KM approximation. Data source (available in [23]) covers the range January 22 - June 28, 2020. Notice that not every
country has reported cases starting from January 22. The inverse time unit was omitted deliberately from the function.

Let’s note from the values on the Table | tHat= N —S50 proximation. Let’s mention that the compiled scenarios in Ta-
is the same on each considered scenario and that the the bable | are not fixed, immutable quantities. From there one can
reproductive ratidRo approaches to one as the numerical so-start building new ones by trial an error, adjusting the values
lution of the SIRmodel approaches the KM approximation. of ~, 3, 10, andS0 (with the restriction thatv = S0 + 10).

The values ofRo might be indicative that the epidemic is In other words, scenarios from tl8#Rmodel can easily be
not severe (relative to the world population, an scenario corimproved as information about the coronavirus COVID-19
responding toy = 0.95633), as is implied from the KM ap- pandemic from epidemiologists is updated.

TABLE |. The values above are used to solve numerically the epidemioldgiRahodel defined via the Eqs1)(3). The results are shown

in the plots in the rows at the middle and at the bottom of the Fig. 2. Given the paraméterother quantities were computed using the

Egs. L7)-(21) and the constantS; = 6104586.02, C2 = 0.02, ¢ = 3.46, andC3 = 1.00, obtained from the coronavirus (COVID-19)
worldwide aggregated data shown in the top middle plot of the Fig. 2, satisfying the KM approximatioi¥) Bq.EQ. (13). Notice that

as+~y increasesN approaches the world population (which by the end of January, 2020, was7@afiedt 798, 739 individuals [20]) and the
value Ro decreases to one. The rangdf values in this table are indicative that the infectious disease is not severe. The scenarios obtained
from this values are shown in Fig. 2. They could be improved with better information from epidemiological centers about the coronavirus
(COVID-19) pandemic.

~[1/days] N SO I0=N - 50 p B =v/p[1l/days] Ro=S0/p
0.07143 96480663 96456822 23841 62206877.11 1.148e-09 1.551
0.10000 152660730 152636890 23840 109552180.95 9.128e-10 1.393
0.14290 261127454 261103614 23840 204752844.72 6.979e-10 1.275
0.30300 921464679 921440838 23841 815581997.17 3.715e-10 1.130
0.50000 2287141587 2287117746 23841 2120340165.98 2.358e-10 1.079
0.95633 7794787378 7794763538 23840 7486874037.44 1.277e-10 1.041
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5.1. Observing the KM approximation in data by coun-  epidemic) from which other necessary quantities to success-

try fully integrate the system of Eqs1)¢(3) could be obtained

. o _via Egs. [L7)-(21). Many other scenarios following the ob-

To end this section, in Fig. 3 we show that the KM approxi-served data can be constructed as information about the epi-
mation can be observed on the combined aggregated data gamic under consideration from epidemiologists is updated.
deaths and recgvered reported by individual countries. T_he Moreover, in case the parametgrand~y are known, the
data for analysis comes from [22]. Clearly, Cuba, Spainmethodology presented in Sec. 5 provides a starting point
Italy, and Germany (Fig. 3) do not follow the KM approxima- (4 jnitiate an educated trial and error guess work that helps
tion. We can perform on each data set that follows the KM apsine tune the usually unknown initial condition§({and0),
proximation (Argentina, Peru, US, Mexico, and Venezuela),gcessary to find numerical solutions of the full system of
the proposed method to find parameters and initial conditiongirerential Egs. ()-(3)) (defining theSIRmodel) such that

that helps to find numerical solutions of the f@IRmodel  {he gptained numerical solution falls under the observed data
that falls on the data of each one of them. That is left a%as in Figs. 1 and 3).

an exercise. Additionally, in Fig. 4 we show that the KM~ A¢ this point it is hard to establish for sure which model
approximation can also be observed on the aggregated COBayer decribes the evolution of the coronavirus pandemic

firmed cases of Arge_ntina, Peru, US, Mexico, and Venezuel 10]. Consequently, given that tt&Rmodel captures some
We can guess that since recovered and deaths come from tgeyne coviD-19 data behavior, it could provide guidance to
population of confirmed cases, then the KM approximationye; petter insight on the evolution of the pandemic as the only
should also work in that data set (confirmed cases) WheﬂN0 parameters{ and~) entering in the model are more or

it does in the former (combined aggregated data on deathsss \e|l understood by epidemiologists and can be inferred
and recovered). The case of the Bombay plague studied By, the data.

Kermack and McKendrick [2] only includes deceases as the Consequently
plague was completely lethal. '
Let's mention that some authors [24,25] have been abl

to fit cumulative confirmed cases data from Spain, ltaly, Ger'andy in addition to the initial conditiorf 0, SO (restricted to

many (or the alike China) using a logistic function, which isN — 10 + 50) is necessary to give an appropriated quanti-

'nCO?p?t'ple.W']fh the naFuraIblnl_tlaI(;:ofndltloa:(t; 0) = ﬁ dtative account of an epidemic. The fact that the notation and
as the logistic function Is obtained from the Kermack an meaning of the terms in epidemiological literature (even in

I\;IcKendrick approximation taking(t = 0) ~ N, leaving the case of th&IRmodel) is not uniform means that such a
(from Eq. @) I(t = 0) + R(t = 0) = 0. task might be elusive for awhile. Nevertheless, that the KM
approximation is still being observed for so many days on the

before considering more complex models
requiring much more parameters than 8i& model), it is
lear that a qualitatively understanding of the parameters

6. Concluding remarks and Future work coronavirus COVID-19 data is an indication that countries
. _ . are not taking enough effective epidemiological measures to
The following conclusions can be drawn from this work.  control it, and this might be the case meanwhile a treatment

Cumulative deaths and recoveries from the coronavirugs ayailable; recoveries and deaths are basically driven by hu-
COVID-19 data [17] reported by countries aggregated worldgn body individual responses.
wide as a whole (Fig. 2) or (in some cases) individual data  Thjs study provides an opportunity to present in the class-
[22] (Fig. 3) (including cumulative data [23] of confirmed yoom an alternative example of real world data on which
cases as shown in Fig. 4) fall under the Kermack and McKppysical modeling of complex systems helps to comprehend
endrick approximation [2] of th&IRmodel, indicative that  how nature works outside physical controlled experiments.
the coronavirus COVID-19 pandemic is still growing and that s is certainly a good example to further motivate Biology,

itis not severe relative to the population size. Exceptions ar¢ife sciences and Medical students in their physics studies
countries like Spain, Italy or Germany where the Cummativeguantitatively [26,27].

data seems to have reached a kind of steady state stage. AS a patyral extension to this work is to consider extensions

shown in Figs. 3 and 4, data from the mentioned countries dﬂ) the SIRmodel (like SEIR or SIRD) [3,4] to track the pro-

not fall under the KM approximation. gression of the coronavirus COVID-19 infectious disease.
An important result is that with knowledge of the con-

stants defining the KM approximation (Eqsl4j-(16)), so-

lution of the full SIRmodel (Egs.[1)-(3)) which falls on the ~ Acknowledgments

observed data.e. Fig. 1 and 2) can easily be obtained fol-
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