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Observing the epidemiologicalSIR model on the COVID-19 data

S. Rojas
Departamento de F́ısica, Universidad Siḿon Boĺıvar, Venezuela.

e-mai: srojas@usb.ve

Received 16 June 2020; accepted 10 July 2020

This article shows that in the period January 22-June 28, 2020, the combined data set of cumulative recoveries and deaths from the current
coronavirus COVID-19 pandemic falls on the Kermack and McKendrick approximated solution of the epidemiologicalSIR contagious
disease model. Then, as an original contribution of this work, based on the knowledge of the infectious period of any epidemic, a methodology
is presented in order to find numerical solutions of the fullSIRmodel that reproduce the observed data of the epidemic in case it could be
described by theSIRmodel. The methodology is first illustrated by finding a solution of theSIRmodel that describes the epidemic data of
the Bombay plague of 1905-06 analyzed by Kermack and McKendrick. After that, the methodology is applied to numerically solve the full
set of differential equations of theSIRcontagious model on the above mentioned coronavirus COVID-19 pandemic data set. We also show
that the Kermack and McKendrick approximation is observed on the counted combined aggregated recovered and deaths cases from some
individual countries and also in some of the cumulative confirmed COVID-19 cases of individual countries.

Keywords: Epidemiological SIR model; computational physics; physics problem solving; computational modeling; Riccati differential
equation.

Este art́ıculo muestra que para el perı́odo 22 de enero-28 de junio, 2020, los datos acumulados del conjunto combinado de recuperaciones
y muertes producto de la actual pandemia del coronavirus COVID-19 se ajustan a la solución aproximada encontrada por Kermack y McK-
endrick del modelo epidemiológico para enfermedades contagiosasSIR. Luego, como contribución original del presente trabajo, basada en
conocimiento del perı́odo de infeccíon de alguna epidemia, se presenta una metodologı́a que facilita el obtener soluciones numéricas del
modelo completoSIRque se ajustan a los datos observados de la epidemia en caso que la misma se pueda describir por tal modelo. La
metodoloǵıa primero se ilustra encontrando una solución del modeloSIRque se ajusta a los datos de la plaga de 1905-06 en Bombay estudi-
ada por Kermack y McKendrick. Seguidamente, la metodologı́a se aplica para encontrar soluciones numéricas del modelo completoSIRque
se ajustan al conjunto de datos de la pandemia coronavirus COVID-19 arriba mencionados. Adicionalmente, se muestra que la aproximación
de Kermack y McKendrick se observa en la contabilidad combinada de recuperaciones y muertes agregadas de algunos paı́ses y tambíen en
la data de casos confirmados contagiados de COVID-19 de algunos paı́ses.
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1. Introduction

The current, social global context dominated by the coron-
avirus COVID-19 pandemic [1] brings a direct opportunity
to consider within Physics the quantitative modeling of in-
fectious diseases like theSIRepidemic model which, in spite
of its simplicity, has been successfully used in modeling his-
torical data of some epidemics [2-5].

In epidemiology, models can be used to control (and per-
haps to eradicate) the infectious disease under consideration
by the model. That is, epidemiological models can be used
to take action on how to approach an epidemic from the med-
ical point of view. They can, for instance, provide reasoned
estimates for the level of vaccination necessary for the con-
trol of an infectious disease (for examples see [3] and refer-
ences therein). Certainly, great care must be exercised before
practical use can be made of any epidemic model. Generally,
models go through several revisions before they can be ex-
ploited with some degree of confidence in the control of an
contagious infection. To be illustrative, as referenced in [3],
several hypothetical revision scenarios were applied to the

model proposed by Capasso and Paveri-Fontana [6] for the
1973 cholera epidemic in the port city of Bari, in southern
Italy.

Following the organization of this work, in the next
Sec. 2, we will give a brief description of theSIRepidemi-
ological model (referenced from now on as theSIRmodel)
and its relevance on the analysis of data from the current
coronavirus COVID-19 pandemic. Next, in Sec. 3, the ap-
proximated solution of theSIRmodel proposed by Kermack
and McKendrick is presented. Then, in Sec. 4, it will be dis-
cussed the applicability of the solution found on analyzing
observed epidemic data by first presenting a well know epi-
demic example, namely the Bombay plague (occurred from
December 1905 to July 1906). We will provide numerical so-
lutions to the fullSIRmodel of differential equations for the
Bombay case, which has not been found in the consulted lit-
erature. Then, following this discussion, data observed from
the coronavirus COVID-19 pandemic will be analyzed in the
context of theSIRmodel. Finally, conclusions and extension
of this work will be presented in Sec. 6.
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2. TheSIR model

TheSIRmodel considers a population of sizeN on which, at
time t, S(t) individuals are susceptible of being infected as
a consequence thatI(t) individuals are already infected and
can transmit or spread the disease to the susceptible popula-
tion. The number of individualsR(t) represents those who
have recovered from the disease (which, if lethal, also in-
cludes deceased individuals) and can not be reinfected. Thus,
the dynamics of the disease, introduced in 1927 by Kermack
and McKendrick [2], is modeled by the set of differential
equations:

dS

dt
= −βIS, (1)

dI

dt
= βIS − γI, (2)

dR

dt
= γI, (3)

d

dt
(S + I + R) = 0 → S + I + R = N. (4)

In these equations, the parametersβ (the infection rate) and
γ (the recovery or removal rate of infectives) are constants:β
controls the transition betweenS andI, Eq. (1), whileγ con-
trols the transition betweenI andR, Eq. (3). From a dimen-
sional point of view, one does not assign units to the variables
S, I, R, andN whilst the parametersβ andγ have units of
inverse time (measured typically in days, weeks or months
in epidemiological records). Notice that Eq. (1) expresses
the interaction betweenS andI (at timet) as the productSI
and that a fraction of this product are the individuals that at
time t become infected and removed fromS (which, because
of the negative sign in Eq. (1), decreases as time increases).
This interaction in the form of the productSI makes difficult
to determine the parameterβ from observed epidemiological
data. On the other hand, from Eq. (3), the inverse of the pa-
rameterγ gives a measure of the time spent by individuals
in the infectious stage. Consequently, by carefully observ-
ing the development of an infectious disease, the parameterγ
can be estimated relatively precisely by epidemiologists from
epidemiological records (as the inverse of the recovered or in-
fectious period). For the initial conditions, at timet = 0, we
haveS0 ≡ S(t = 0) > 0, I0 ≡ I(t = 0) > 0, andR0 ≡
R(t = 0) = 0 From Eq. (4), this yieldsS0 + I0 = N .

It is important to keep in mind the basic assumptions
of the model. An important assumption in idealizing the
model is that, once recovered, individuals become immu-
nized and can not be reinfected. Thus, the transition goes as
S → I → R. As reported by the world Health Organization
(WHO) [7], this assumption is being observed in the evolu-
tion of the coronavirus COVID-19 pandemic infectious ill-
ness. That is, massive reinfection by the coronavirus has not
been reported yet. Also, it is assumed in Eq. (4), that during
the disease no people enter or leave the population (includ-
ing birds and deaths by other reasons). Consequently, it is

expected that theSIRmodel could be observed at the start of
an infectious disease, time at which no action has been taken
to control the disease and individuals have no restriction to
come into contact with one another locally. This assumption
is also partially true at the start of the coronavirus COVID-19
pandemic infectious disease in a global context, before each
country has blocked their borders. However, it is not easy to
have an observed estimated forN , I0, andS0 to compare
them with the values computed via theSIRmodel. TheSIR
model also assumes that as soon as a susceptible individual
catches the disease, they become infected right away It has
been also reported by the World Health Organization [7] that
this is the case with the coronavirus COVID-19 pandemic in-
fectious disease: infected individuals start infecting others as
soon as they catch the virus and even before presenting any
symptoms. Moreover, a study has shows how undocumented
infection facilitates the rapid dissemination of the illness [8].
The fact that the assumptions on which theSIRmodel was
formulated are partially true in what we are experiencing with
the current coronavirus COVID-19 pandemic infectious dis-
ease, makes it feasible to observe aSIRmodel behavior on
the reported data of the coronavirus COVID-19 pandemic.
We will show that this is the case in the studied cases in this
work.

Two important aspects need to be mentioned at this point.
Equation (2) can be written in the form:

dI

dt
= γ

(
S

ρ
− 1

)
I, (5)

whereρ = γ/β is sometimes called therelative removal rate
(which might be called differently by other authors because,
unfortunately, the notation and terminology in epidemiologi-
cal literature is not uniform).

Now, for an epidemic to occur, the number of infected
individuals needs to increase from the initial number of in-
fected individualsI0. This condition will happen if at time
zero,S0 > Sc = ρ. That is,ρ represents a critical value for
an epidemic to occur and theSIRmodel reveals athreshold
phenomenon[9].

Another important epidemiological parameter which de-
fines how quickly the infectious disease spreads is thebasic
reproduction rate(Ro) of the infection, defined as

Ro =
β

γ
S0 =

S0
ρ

. (6)

This parameter (not to be confused with the initial valueR0)
measures the number of secondary infections produced by
one primary infection in a wholly susceptible population. For
instance, ifRo = k, then, before recovering, one infected in-
dividual will likely infect k more individuals, each one of
which will, in turn, infectk more individuals and so on. If
more than one secondary infections is produced from the pri-
mary infection, thenRo > 1 which givesS0 > ρ and, obvi-
ously, an epidemic ensues. One should be aware that neither
of the parametersβ or γ remains constant as the infection
evolves. Moreover, the assumptions on which the model are
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built are no longer valid as soon as sanitary interventions are
applied to control the infection.

Further discussion of theSIRmodel is beyond the scope
of this article, and the reader is referred to references [3,4]
for a far reaching and enriching discussion of the model.

The solution of the system of equations formed by Eqs.
(1)-(3) can be found numerically for given values ofβ, γ, S0,
andN . In general, the parameters are unknown and, conse-
quently, a best fit procedure is carried out in order to find a
solution, assuming that theSIRmodel is a plausible model for
the epidemic. In the reported literature, only a few epidemics
have been solved numerically. In this work we provide evi-
dences that the COVID-19 pandemic can be described by this
model.

3. Approximated solution of theSIR model

As discussed in the epidemiological literature [2-4], a straight
forward combination of theSIRmodel Eqs. (1)–(3) leads to a
non-linear differential equation fordR/dt, interpreted as the
properly counted individuals removed (either because they
have recovered or death) from medical units.

For not severe epidemicsR(t)/ρ < 1, the landmark work
[2] of Kermack and McKendrick (1927) proposes thatdR/dt
could be approximated by [2,4]

dR

dt
=

γ

2

(αρ

S0

)2

S0 sech2
(α

2
γt− φ

)
, (7)

where sech(x) is the hyperbolic secant ofx and

α =

√(
S0
ρ
− 1

)2

+ 2
(

S0
ρ

)2 (
N

S0
− 1

)
, (8)

φ = tanh−1

(
S0
ρ − 1

α

)
. (9)

Here tanh(x) is the hyperbolic tangent ofx, while
tanh−1(x) is the inverse of the hyperbolic tangent ofx.

An important point to keep in mind is that contrary to
Physics, where experiments could be designed to obtain data
to test models, in epidemiology data might be available from
naturally occurring epidemics (in the Kermack and McK-
endrick work only one example was presented) and the col-
lected data might be incomplete due to underreporting (as
is observed with the coronavirus COVID-19 pandemic [10]).
This lack of reliable data makes the estimation of parameters
very imprecise. Nevertheless, models can guide the epidemi-
ologists to fine tune (perhaps by trial and error testing) theirs
point of view on the quantitative development of an infectious
disease.

4. Observing theSIR model on epidemic (in-
cluding COVID-19) data

Summarizing the conceptualizations of previous sections, the
set of Eqs. (1)-(4) represents the epidemiologicalSIRmodel

which, under a few basic conditions, describes the normal
time spread in a population of an infectious disease without
medical intervention. This set of equations needs to be solved
numerically and, in order to do that, in addition to the initial
conditions, two parameters (β andγ) are required.

The initial conditions for the quantitiesS andI are not
easy to determine and, according to the consulted literature
[3,4], while the parameterγ can be estimated from observing
the evolution of the considered epidemic, that is not the case
with the parameterβ.

The landmark study of Kermack and McKendrick [2] pro-
vides an analytical approximated solution (called from now
on the KM approximation) of theSIRmodel of Eq. (7) and
is supposed to be valid at the start of an epidemic, or in
the cases in which the epidemic is not severe. To support
his work, Kermack and McKendrick were able to show how
nicely the approximated solution of theSIRmodel was able
to describe data from a 1905-1906 plague in Bombay, where
80 to 90 percent of the cases reported terminate fatally. As-

FIGURE 1. This plot shows that the Bombay plague of 1905-06
falls under the KM approximation [2]. The graph also shows one
possibility of theI(t) function obtained by integration (accord-
ing to the proposed method described in Sec. 5) of the fullSIR
model (Eqs. (1)-(3)), using the initial conditions and parameters
N = 780030, S0 = 780025, I0 = N − S0 = 5, R0 = 0,
γ = 7.469 (given by hand), andβ = γ/ρ = 1.0056e − 05
(ρ = 742709.03). Since we were unable to find the actual data
used by Kermack and McKendrick [2], the data were approximated
(using the GNU Image Manipulation ProgramGimp[11]) from the
Fig. 2.3, shown in page 23 of Ref. 4. The value ofγ was chosen to
haveN (from Eq. (21)) close to the Bombay population near the
year of the epidemic (obtained from a Wikipedia page [12], where
it is mentioned that “in the census of 1901, the population had ac-
tually fallen to 780,000.”) This figure can easily be updated with
more appropriated epidemiological information from the Bombay
plague (including a reasoned value ofγ).
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suming the fatalities represent the left hand side of Eq. (7),
they concluded that the data falls under the curvedR/dt =
890sech2(0.2t− 3.4). Since then, only a very few infectious
diseases have been reported to follow the KM approxima-
tion [3].

As a bonus of this work, via the methodology presented
in Sec. 5 we can obtain Fig. 1, which shows a numerical
solution of theSIRmodel adjusting itself to the data of the
Bombay plague studied by Kermack and McKendrick. It is
interesting to mention that until now we have been unable
to find (other than the KM approximation) a full solution of
the SIR model adjusted to the Bombay plague. This is in-
dicative of how difficult is to guess appropriate values for the
initial conditions and the parameters necessary to perform a
successfully integration of theSIRmodel falling on the data.
The methodology given in Sec. 5 helps to fill this gap.

4.1. About the coronavirus COVID-19 pandemic data

All coronavirus COVID-19 pandemic data used for analy-
sis in this work are publicly available under theOpen Data
Commons Public Domain and Dedication License[13], from

the source listed in [14]. According to the provided descrip-
tion in the website, data is updated daily, starting January 22,
2020. It contains files listing cumulative confirmed cases, cu-
mulative reported deaths and cumulative reported recoveries,
disaggregated by country (and sometimes subregions) taken
from sources like theWorld Health Organization(WHO)
[15] and theJohns Hopkins University Center for Systems
Science and Engineering[16], among others. The period
covered at the moment of writing this works was January
22-June 28, 2020. Other studies [10] have also considered
cumulative data on modeling the progression of the coron-
avirus COVID-19 infectious disease.

4.2. Analysis of the worldwide aggregated COVID-19
data

We start our study by first considering worldwide aggregated
COVID-19 data [17]. The top left plot on Fig. 2 shows the
cumulative reported cases (confirmed, deaths, and recovery)
as of June 28, 2020. In the top middle and top right plots on
Fig. 2 it is observed how well the data (cumulative combined
deaths and recoveries sets, as required by theSIRmodel) falls

FIGURE 2. The top left plot shows the reported world wide cumulative aggregated COVID-19 data for the period January 22 - June 28, 2020,
available in [17]. The top middle and top right plots show that the data points fall under the KM approximation, given by Eq. (7) (the inverse
time unit was omitted deliberately from the function). The plots on the middle and bottom rows are examples of different scenarios adjusted
to the data by solving the fullSIRmodel of Eqs. (1)-(3) via the methodology presented in Sec. 5 which allows the finding of initial conditions
and the parameterβ if the parameterγ is given (perhaps from observing the evolution of an epidemic that falls under the KM approximation).
Solving theSIRmodel could be used to anticipate hypothetical scenarios (as the ones shown here) on how the epidemic would evolve. Notice
that theSIRsolution approaches the KM approximation asγ increases, but the other parameters also change (see Table I for details).
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under the KM approximation, defined by the Eq. (7) (which
is shown in the title of the top middle plot on Fig. 2 where
the inverse time unit was omitted deliberately).

At this point, it is important to internalize that the shape
of the KM approximation (the hyperbolic secant squared)
was provided by theSIRmodel. Accordingly, instead of just
guessing a best fitting function to a data set, we are finding
that the considered coronavirus COVID-19 data falls on a
functional shape obtained via the theoretical framework de-
fined by theSIRmodel. That is, we have shown that the con-
sidered data set is well described by the proposedSIRmodel.

Continuing the analysis, let’s mention that in the title of
the top middle plot on Fig. 2 it is also shown values for the
Root Mean Square Error(rmse) and theRelative Root Mean
Square Error(rmseRel), defined as follows:

rmse=

√√√√ 1
n

n∑

i=1

(Oi −KMi)
2
, (10)

rmseRel =
rmse

max(O)
. (11)

HereOi is the ith observation in the consideredO data
set,KMi is the corresponding value obtained by the KM ap-
proximation, andmax(O) is the maximum value in the con-
sideredO data set. These measures are used as a way to

compare how well different sets of data fall under theSIR
model. As the uncertainty in the observed valuesOi is un-
known [10], it is unrealistic to emphasize any further statisti-
cal measure characterizing any estimated parameters via the
KM approximation for the COVID-19 pandemic data set.

Let’s mention that every numerical computational work
in this article was carried out via thePython scripting pro-
gramming language and theNumpy/SciPy /Matplotlib
libraries described elsewhere [18,19]. In addition, all of the
available data from January 22, 2020 until June 28, 2020
were used in the computations. Further information from the
epidemiology community is necessary in order to see if any
prediction can be achieved by this model in the future. Never-
theless, some insight could be gained by trying to get a well
reasoned understanding on why the coronavirus COVID-19
data still (after 6 months) falls under the functional shape an-
ticipated by theSIRmodel.

Now, considering the fact that contrary to Physics, where
experiments could be designed to obtain data to test models,
in epidemiology data might be only available from naturally
occurring epidemics and the collected data might be incom-
plete due, for example, to underreporting or any other reason
as discussed in [10]. Under such circumstances, it is strik-
ing to find out that the KM approximation is observed to be
followed by the world wide aggregated data and by data com-

FIGURE 3. The KM approximation is observed in the reported cumulative recoveries and deaths cases of Argentina, Peru, United States of
America, and Mexico. Reported data from Cuba (which seems to have started a new wave of contagions), Spain, Italy, and Germany do not
fall under the KM approximation. Data source (available in [22]) covers the range January 22 - June 28, 2020. Notice that not every country
has reported cases starting from January 22. The inverse time unit was omitted deliberately from the function.
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ing from individual countries, as shown in Fig. 3 and 4. From
an speculative point of view, this might be a consequence that
each cumulative reported data set is a kind of mean value, av-
eraging details of the pandemic evolution at the atomic (city
or town) level. In this respect, by knowing how to inter-
pret the reported results, epidemiologists can use them as a
way to fine tune (perhaps by trial and error testing) theirs
point of view on the quantitative evolution of the coronavirus
COVID-19 infectious disease and offer sound guidance re-
garding what to expect in terms of infections and deaths for
decision making by governors, legislators, mayors, and city
council members. Again if the parameterγ is known, the
methodology presented in Sec. 5 will help to find many sce-
narios of the fullSIRmodel falling on the data.

5. A methodology for solving the full SIR
model on data falling under the KM ap-
proximation

Now, as an original contribution of this work, we will next
describe a procedure that can be applied to find numerical
solution of the fullSIR model (Eqs. (1)-(3)) by obtaining,
via the KM approximation and knowledge of the parameter
γ, necessary information (namely, initial conditions and the
parameterβ) to perform the numerical integration of theSIR
model that adjust itself to the observed data.

As previously mentioned, finding numerical solutions of
the SIRmodel, Eqs. (1)-(4), requires, in addition to the ini-
tial conditions (S0 andI0, with R0 = 0), knowledge of the
parametersβ andγ. While β is not easy to determine from
epidemiological data [3,4], the removal or recovery rate pa-
rameterγ, whose reciprocal (1/γ) determines the average in-
fectious period of the disease, can be estimated from the ob-
served evolution of an epidemic [4].

In fact, according to theEuropean Centre for Disease
Prevention and Controlregarding the coronavirus COVID-19
pandemic [21] the infectious period is “· · · estimated to last
for 7-12 days in moderate cases and up to two weeks on aver-
age in severe cases.” Consequently, in this study one can try
the set of infectious period (1/γ) of 7, 10, and 14 days, giv-
ing, respectively, in turn,γ = 0.1429/day,γ = 0.1/day, and
γ = 0.07143/day. However, we will consider other values
of γ to further explore its effect on the other quantities allow-
ing the integration of the model. This uncertainty in the pa-
rameterγ can be rationalized by the variability in responses
between different individuals over the infectious period, that
in addition that the COVID-19 data by itself contains a high
level of uncertainty [10].

The method is as follows. When reporting the observance
of the KM approximation in data [2-4], Kermack and McK-
endrick considered that what is observed in the vertical axis
of their graph containing the data from the Bombay plague
is the quantitydR/dt (or γI(t) on the left hand side of Eq.
(7)). However, by studying the case of the influenza on a
boarding school presented with some detail in [3], it seems to
the author of this work that what is actually observed is the

quantity(1/γ)(dR/dt). Consequently, considering that such
is the case, Eq. (7) is better written in the form:

1
γ

dR

dt
=

1
2

(αρ

S0

)2

S0 sech2
(α

2
γt− φ

)
. (12)

Recalling that the inverse of time is the unit of the parameter
γ, this Eq. (12) is dimensionless and representsI(t) (from
Eq. (3)). Using this representation, the constants obtained
from an epidemic data set under the KM approximation can
be represented in the form:

1
γ

dR

dt
= C1sech2 (C2t− φ) , (13)

C1 =
1
2

(αρ)2

S0
, (14)

C2 =
1
2
αγ, (15)

C3 = tanh(φ) =
1
α

(
S0
ρ
− 1

)
. (16)

Equation (16) comes from Eq. (9). From Eqs. (14)-(16) and
(8) one can obtain the initial conditions and the parameterβ
in terms of the parameterγ, all of them necessary to solve
numerically theSIRmodel:

α = 2C2
1
γ

, (17)

ρ =
C1

C2

(
C3 +

1
α

)
γ, (18)

β =
γ

ρ
, (19)

S0 = αρ

(
C3 +

1
α

)
, (20)

N = S0 +
S0
2

( ρ

S0

)2
[
α2 −

(
S0
ρ
− 1

)2
]

. (21)

Next, we set our rationality in action. We have already
shown in Fig. 1 that our methodology works on the Bombay
plague studied by Kermack and McKendrick [2]. We will
now continue by showing that it also works on the consid-
ered coronavirus COVID-19 pandemic data by setting a set
of γ values (including the ones mentioned above, inferred
from the infectious period reported by theEuropean Cen-
tre for Disease Prevention and Controlregarding the coro-
navirus COVID-19 pandemic [21]) to obtain the set of val-
ues compiled on the Table I, which were obtained from Eqs.
(17)-(21) using the values ofC1 = 6104586.02, C2 = 0.02,
φ = 3.46, andC3 = 1.00 corresponding to the KM approx-
imation shown in the top middle plot of Fig. 2. The values
compiled in Table I were used to find numerical solutions of
the SIRmodel adjusted to the coronavirus COVID-19 data.
The results are shown in the plots on the rows at the middle
and at the bottom of the Fig. 2 (where for completeness the
KM approximation is also included).
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FIGURE 4. The KM approximation is observed in the reported cumulative confirmed cases of Argentina, Venezuela, Peru, and Mexico.
Reported data from Cuba (which seems to have started a new wave of contagions), United States of America, Spain, Italy, and Germany do
not fall under the KM approximation. Data source (available in [23]) covers the range January 22 - June 28, 2020. Notice that not every
country has reported cases starting from January 22. The inverse time unit was omitted deliberately from the function.

Let’s note from the values on the Table I thatI0 = N−S0
is the same on each considered scenario and that the the basic
reproductive ratioRo approaches to one as the numerical so-
lution of theSIRmodel approaches the KM approximation.
The values ofRo might be indicative that the epidemic is
not severe (relative to the world population, an scenario cor-
responding toγ = 0.95633), as is implied from the KM ap-

proximation. Let’s mention that the compiled scenarios in Ta-
ble I are not fixed, immutable quantities. From there one can
start building new ones by trial an error, adjusting the values
of γ, β, I0, andS0 (with the restriction thatN = S0 + I0).
In other words, scenarios from theSIRmodel can easily be
improved as information about the coronavirus COVID-19
pandemic from epidemiologists is updated.

TABLE I. The values above are used to solve numerically the epidemiologicalSIRmodel defined via the Eqs. (1)-(3). The results are shown
in the plots in the rows at the middle and at the bottom of the Fig. 2. Given the parameterγ, the other quantities were computed using the
Eqs. (17)-(21) and the constantsC1 = 6104586.02, C2 = 0.02, φ = 3.46, andC3 = 1.00, obtained from the coronavirus (COVID-19)
worldwide aggregated data shown in the top middle plot of the Fig. 2, satisfying the KM approximation, Eq. (7) or Eq. (13). Notice that
asγ increases,N approaches the world population (which by the end of January, 2020, was about7, 794, 798, 739 individuals [20]) and the
valueRo decreases to one. The range ofRo values in this table are indicative that the infectious disease is not severe. The scenarios obtained
from this values are shown in Fig. 2. They could be improved with better information from epidemiological centers about the coronavirus
(COVID-19) pandemic.

γ[1/days] N S0 I0 = N − S0 ρ β = γ/ρ[1/days] Ro = S0/ρ

0.07143 96480663 96456822 23841 62206877.11 1.148e-09 1.551

0.10000 152660730 152636890 23840 109552180.95 9.128e-10 1.393

0.14290 261127454 261103614 23840 204752844.72 6.979e-10 1.275

0.30300 921464679 921440838 23841 815581997.17 3.715e-10 1.130

0.50000 2287141587 2287117746 23841 2120340165.98 2.358e-10 1.079

0.95633 7794787378 7794763538 23840 7486874037.44 1.277e-10 1.041
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5.1. Observing the KM approximation in data by coun-
try

To end this section, in Fig. 3 we show that the KM approxi-
mation can be observed on the combined aggregated data on
deaths and recovered reported by individual countries. The
data for analysis comes from [22]. Clearly, Cuba, Spain,
Italy, and Germany (Fig. 3) do not follow the KM approxima-
tion. We can perform on each data set that follows the KM ap-
proximation (Argentina, Peru, US, Mexico, and Venezuela)
the proposed method to find parameters and initial conditions
that helps to find numerical solutions of the fullSIRmodel
that falls on the data of each one of them. That is left as
an exercise. Additionally, in Fig. 4 we show that the KM
approximation can also be observed on the aggregated con-
firmed cases of Argentina, Peru, US, Mexico, and Venezuela.
We can guess that since recovered and deaths come from the
population of confirmed cases, then the KM approximation
should also work in that data set (confirmed cases) when
it does in the former (combined aggregated data on deaths
and recovered). The case of the Bombay plague studied by
Kermack and McKendrick [2] only includes deceases as the
plague was completely lethal.

Let’s mention that some authors [24,25] have been able
to fit cumulative confirmed cases data from Spain, Italy, Ger-
many (or the alike China) using a logistic function, which is
incompatible with the natural initial conditionR(t = 0) = 0,
as the logistic function is obtained from the Kermack and
McKendrick approximation takingS(t = 0) ≈ N , leaving
(from Eq. (4)) I(t = 0) + R(t = 0) = 0.

6. Concluding remarks and Future work

The following conclusions can be drawn from this work.
Cumulative deaths and recoveries from the coronavirus

COVID-19 data [17] reported by countries aggregated world-
wide as a whole (Fig. 2) or (in some cases) individual data
[22] (Fig. 3) (including cumulative data [23] of confirmed
cases as shown in Fig. 4) fall under the Kermack and McK-
endrick approximation [2] of theSIRmodel, indicative that
the coronavirus COVID-19 pandemic is still growing and that
it is not severe relative to the population size. Exceptions are
countries like Spain, Italy or Germany where the cumulative
data seems to have reached a kind of steady state stage. As
shown in Figs. 3 and 4, data from the mentioned countries do
not fall under the KM approximation.

An important result is that with knowledge of the con-
stants defining the KM approximation (Eqs. (14)-(16)), so-
lution of the full SIRmodel (Eqs. (1)-(3)) which falls on the
observed data (i.e. Fig. 1 and 2) can easily be obtained fol-
lowing the method of Sec. 5, which only requires knowledge
of the epidemic infectious period1/γ (a parameter that epi-
demiologists could infer from observing the evolution of any

epidemic) from which other necessary quantities to success-
fully integrate the system of Eqs. (1)-(3) could be obtained
via Eqs. (17)-(21). Many other scenarios following the ob-
served data can be constructed as information about the epi-
demic under consideration from epidemiologists is updated.

Moreover, in case the parametersβ andγ are known, the
methodology presented in Sec. 5 provides a starting point
to initiate an educated trial and error guess work that helps
fine tune the usually unknown initial conditions (S0 andI0),
necessary to find numerical solutions of the full system of
differential Eqs. ((1)-(3)) (defining theSIRmodel) such that
the obtained numerical solution falls under the observed data
(as in Figs. 1 and 3).

At this point it is hard to establish for sure which model
better decribes the evolution of the coronavirus pandemic
[10]. Consequently, given that theSIRmodel captures some
of the COVID-19 data behavior, it could provide guidance to
get better insight on the evolution of the pandemic as the only
two parameters (β andγ) entering in the model are more or
less well understood by epidemiologists and can be inferred
from the data.

Consequently, before considering more complex models
(requiring much more parameters than theSIRmodel), it is
clear that a qualitatively understanding of the parametersβ
andγ in addition to the initial conditionI0, S0 (restricted to
N = I0 + S0) is necessary to give an appropriated quanti-
tative account of an epidemic. The fact that the notation and
meaning of the terms in epidemiological literature (even in
the case of theSIRmodel) is not uniform means that such a
task might be elusive for awhile. Nevertheless, that the KM
approximation is still being observed for so many days on the
coronavirus COVID-19 data is an indication that countries
are not taking enough effective epidemiological measures to
control it, and this might be the case meanwhile a treatment
is available; recoveries and deaths are basically driven by hu-
man body individual responses.

This study provides an opportunity to present in the class-
room an alternative example of real world data on which
physical modeling of complex systems helps to comprehend
how nature works outside physical controlled experiments.
This is certainly a good example to further motivate Biology,
Life Sciences and Medical students in their physics studies
quantitatively [26,27].

A natural extension to this work is to consider extensions
to theSIRmodel (like SEIR or SIRD) [3,4] to track the pro-
gression of the coronavirus COVID-19 infectious disease.
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