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Extended versus point light source: where
does the difference in the illuminance exist?
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In this paper we derive and analyse the expressions to find the illuminance from luminous ball, disc and line in the case of general position of
the light receiver. We show that one can always replace a luminous ball with a point light source located at its center and having the appropriate
luminous intensity. Any luminous disc or line can be considered, with reasonable accuracy (the relative error in the determination of the
illuminance is less than5%), as the point light source with anisotropic (cosine) luminous intensity and placed at their center, if the distance
to the observation point is approximately four times larger than their characteristic sizes. The issues outlined in this article will be useful for
undergraduate students, who study the basics of photometry.
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1. Introduction

Light sources play an important role in our everyday life.
A light source means any object that emits electromagnetic
energy in the visible spectrum. Depending on their nature,
they are divided into artificial and natural light sources. De-
pending on the relationship between their characteristic di-
mensions and the distance to the radiation receiver, all light
sources are divided into extended (continuous) and point
sources. Most volumetric light sources (spherical incandes-
cent light bulb, the milk glass orb lamps, etc.) can be mod-
elled with a luminous ball. Many flat lamps are well de-
scribed by the luminous disk model. Finally, fluorescent
tubes can be successfully approximated by a luminous line.

An important characteristic of the illuminated surface is
the illuminance [1]. There are certain standards for the nomi-
nal illuminance of workplaces and premises [2]. That is why
it is important to be able to calculate this value from vari-
ous light sources. In this paper we derive and analyse the
expressions to find the illuminance from luminous ball, disc
and line in the case of general position of the light receiver.
We compare these results with those obtained on the basis of
the model of the point light source. This helps the readers
to probe the limits of applicability of the point light source
model (that is, the limits of applicability of the inverse square
law approximation [3]). The issues outlined in this article
will be useful for undergraduate students, who study the ba-
sics of photometry.

2. The luminous ball

Let us consider the luminous ball of radiusR, which has a
uniform luminanceL, that is, it obeys the Lambert’s cosine
law [4]. We place infinitesimal illuminated areadA′ on one
of the symmetry axis of the ball perpendicular to it. Accord-
ing to the definition [1,5], illuminanceE is given by relation

E =
dΦ
dA′

, (1)

wheredΦ is the total luminous flux incident on this area. On
the other hand [2]

dΦ = L

∫

A

cos θ dΩ′ dA, (2)

wheredA is the infinitesimal area of the light source;θ is
the angle between the normal to surfacedA and the direction
to dA′; dΩ′ is the infinitesimal solid angle containing this
direction. But

dΩ′ =
dA′

l2
cos θ′, (3)

dΩ =
dA

l2
cos θ, (4)

wherel is the distance betweendA anddA′; θ′ is the angle
between the normal todA′ and the direction of the light;dΩ
is the solid angle, at which radiant areadA is visible from the
illuminated areadA′.

Using Eqs. (1)-(4) we get

E = L

∫
cos θ′ dΩ. (5)

SinceΩ = 2π(1 − cos θ′) [6], we havedΩ = 2π sin θ′dθ′.
Then, using Eq. (5) we derive:

E = πL

Θ∫

0

sin 2θ′dθ′ = πL sin2 Θ. (6)
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FIGURE 1. Geometry used to derive Eq. (7).

HereΘ is the angle, at which the edge of the ball is visible
from dA′. We note that Eq. (6) is applicable not only to a
ball, but also to an arbitrary shape light source with a visible
boundary in the form of a circle, if the radiation receiver lies
on its symmetry axis. For example, it is valid for points lying
on the symmetry axis of the luminous disk [7]. It can be also
applied for an infinite radiant plane. In this caseΘ = π/2
andE = πL = const.

Using Eq. (6) and Fig. 1 we immediately obtain for the
ball:

E =
πLR2

h2
, (7)

whereh is the distance between the center of the ball and
dA′.

Therefore, for any arbitrary distanceh the inverse square
law takes place. It means that we can always replace a lumi-
nous ball with a point light source located at its center and
having luminous intensityI = πLR2.

3. The luminous disc

Let us consider the luminous disc of radiusR, which has
a uniform luminanceL. We investigate the important case,
when areadA′ is parallel to the disc plane. Thenθ = θ′ and
using Eqs. (1)-(3) we get

E = L

∫

A

cos2 θ

l2
dA. (8)

FIGURE 2. Geometry used to derive Eq. (9).

FIGURE 3. IlluminanceE from disc as a function ofh for different
values ofs. 1) s = 0; 2) s = R; 3) s = 1.2R; 4) s = 1.5R.

We set the position of elementdA in the disk plane byr
(the current radius) andϕ (the polar angle). In such a case
dA = rdrdϕ. Due to the symmetry of the problem, the gen-
eral position of elementdA′ is defined byh ≥ 0 (the shortest
distance fromdA′ to the disc plane) ands (the shortest dis-
tance fromdA′ to the perpendicular symmetry axis of the
disc; we allows to change from−∞ to ∞). Considering
Fig. 2 and applying the law of cosines we writecos θ = h/l,
l2 = h2 + r2 + s2 − 2sr cosϕ.

Using these relations, Eq. (8) and the symmetry of the
problem we have

E = 2Lh2

R∫

0

rdr

π∫

0

dϕ

(h2 + r2 + s2 − 2sr cosϕ)2
. (9)

Performing integration in Eq. (9) we finally get

E=
πL

2

[
1+

R2 − h2 − s2

√
(h2 + (R− s)2)(h2 + (R + s)2)

]
. (10)

As expected, along the disk plane (h = 0) E = πL for
|s| < R andE = 0 for |s| > R. Moreover, functionE(h, s)
is invariant under transformations → −s, which is consis-
tent with the symmetry of the problem. At fixed value ofs
and |s| < R, E is a monotonically decreasing function of
h, whereas for|s| > R functionE(h) has a maximum. As
|s| increases, this maximum shifts to the region of large val-
ues ofh; wherein the maximum value ofE becomes smaller
(Fig. 3).

At fixed value ofh, E is a monotonically decreasing func-
tion of |s|. Using the Taylor series of functionE(R) (see
Eq. (10)) containing only the first nonzero term, we find the
illuminance of point light source corresponding to this ex-
tended light source and placed at its center,

Epoint =
πLR2h2

(s2 + h2)2
. (11)
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FIGURE 4. Domains of credibility (white) and incredibility (gray)
of the point source approximation for the luminous disc atδE =
5%.

The illuminance from such a source obeys the inverse square
law, but with anisotropic (cosine) luminous intensity:E =
I cos α/(h2 + s2), whereI = I0 cosα, I0 = πLR2, α =
h/
√

h2 + s2.
Equations (10) and (11) allow one to highlight the do-

main on plane(h, s), for which Eq. (11) gives approximately
correct value for the illuminance from disc. In Fig. 4 we
present the results of numerical calculation of contour line,
along which the relative errorδE = |E − Epoint|/E in the
determination of image distance is equal to 5%.

The domain corresponding to a larger value of this quan-
tity is shaded in gray.

It is seen that the spatial distribution of the relative error
has an anisotropic character. The greatest deviations from the
point light source model take place along the disc plane and
its perpendicular symmetry axis. We conclude that any lumi-
nous disc can be considered, with reasonable accuracy (the
relative error in the determination of the illuminance is less
than 5%), as point light source, if the distance to the obser-
vation point is approximately three times larger than the disc
diameter.

4. The luminous line

Let us consider the luminous line of length2a. We introduce
constant specific luminous intensityK equal to luminous in-
tensity per unit length of the luminous line and directed along
the normal to it. Then, the luminous intensity of infinitesimal
line segmentdx is as follows:

dI = Kdx cos θ, (12)

whereθ is the angle between the normal todx and the direc-
tion to dA′. The illuminance from this segment is given by
relation

dE =
dI

l2
cos θ′. (13)

As in the previous section, we assume that areadA′ is
parallel to the line, that is,θ = θ′. We set the position of
elementdx along the line by coordinatex (the distance from
dx to the line center). The general position of elementdA′ is
defined byh ≥ 0 (the shortest distance fromdA′ to the line
direction) ands (the shortest distance fromdA′ to the per-
pendicular symmetry axis of the line; we allows to change

FIGURE 5. Geometry used to derive Eq. (14).

from−∞ to∞). Considering Fig. 5 we write:cos θ = h/l,
l2 = h2 + (s− x)2.

Using these relations and Eq. (8) we have:

E = Kh2

a∫

−a

dx

(h2 + (s− x)2)2
. (14)

Performing integration in Eq. (12) we finally get

E = K

[
arctan

(
a−s

h

)
+ arctan

(
a+s

h

)

2h

+
a(a2 + h2 − s2)

(a2 + h2 + s2)2 − 4a2s2

]
. (15)

It follows from Eq. (15) that forh → 0 and |s| < R
E → ∞. This non-physical result is explained by neglect-
ing the thickness of a given light source. Therefore, Eq. (15)
is not applicable at distances from the receiver to the light
source of the order of its thickness. Forh = 0 and|s| > a
E = 0. FunctionE(h, s) is invariant under transformation
s → −s, which is consistent with the symmetry of the prob-
lem. At fixed value ofs and |s| < a, E is a monotonically
decreasing function ofh (Fig. 6).

For |s| > a function E(h) has a maximum. As|s| in-
creases this maximum shifts to the region of large values ofh;
wherein the maximum value ofE becomes smaller (Fig. 7).

FIGURE 6. IlluminanceE from line as a function ofh for different
values ofs < a. 1) s = 0; 2) s = a.
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FIGURE 7. IlluminanceE from line as a function ofh for different
values ofs > a. 1) s = 1.2a; 2) s = 1.5a.

At fixed value ofh, E is a monotonically decreasing func-
tion of |s|.

Using the Taylor series of functionE(a) (see Eq. (15))
containing only the first nonzero term, we find the illumi-
nance of point light source corresponding to this extended
light source and placed at its center:

Epoint =
2Kah2

(s2 + h2)2
. (16)

The illuminance from such a source obeys the inverse square
law, but with anisotropic (cosine) luminous intensity:E =
I cosα/(h2 + s2), whereI = I0 cos α, I0 = 2Ka, α =
h/
√

h2 + s2.

Equations (15) and (16) allow one to highlight the do-
main on plane(h, s), for which Eq. (11) gives approximately
correct value for the illuminance from the disc. In Fig. 8 we
present the results of numerical calculation of contour line,
along which the relative errorδE = |E − Epoint|/E in the
determination of image distance is equal to 5%.

FIGURE 8. Domains of credibility (white) and incredibility (gray)
of the point source approximation for the luminous line atδE =
5%.

The domain corresponding to a larger value of this quan-
tity is shaded in gray.

It is seen that the spatial distribution of the relative error
has in anisotropic character. The greatest deviations from the
point light source model take place along the disc plane and
its perpendicular symmetry axis. We conclude that any lu-
minous line can be considered, with reasonable accuracy (the
relative error in the determination of the illuminance is less
than 5%), as point light source, if the distance to the obser-
vation point is approximately four times larger than the line
length.

5. Conclusions

In this paper we derive and analyse the expressions to find
the illuminance from luminous ball, disc and line in the case
of general position of the light receiver. We show that one
can always replace a luminous ball with a point light source
located at its center and having the appropriate luminous in-
tensity. Any luminous disc or line can be considered, with
reasonable accuracy (the relative error in the determination
of the illuminance is less than 5%), as the point light source
with anisotropic (cosine) luminous intensity and placed at
their center, if the distance to the observation point is approxi-
mately four times larger than their characteristic sizes. It will
be interesting in the future to generalize the obtained equa-
tions for the case of arbitrary orientation of the illuminated
area.
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