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The original strategy applied by Langevin to the Brownian movement problem is used to solve the case of a free particle under a harmonic
potential. Such a straightforward strategy consists of separating the noise term in the Langevin equation to solve a deterministic equation
associated with the Mean Square Displacement. In this work, we use the Langevin’s original strategy to calculate the statistical properties
of the harmonic oscillator Brownian Motion, in the damped and periodic cases. It is shown that, in the long time limit, Langevin’s original
method is consistent with the exact theoretical solutions reported by Chandrasekhar and Lemons, these latter obtained using the statistic:
properties of a Gaussian white noise. Also, unexpected results are presented when the method is applied to a free particle case. Our resul
are compared with the exact theoretical solutions, as well as with the numerical simulations.
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1. Introducction nian motion has been developed using the standard method
in the context of the Langevin equation or the Fokker-Planck
In 1908 the physicist P. Langevin [1] presented a straightforequation taking into account the Gaussian statistical proper-
ward method than Einstein’s theory [2] to solve the problenties of noise [4-26]. There exists a variety of methods for
of Brownian motion [3, 4]. In his original paper, Langevin solving the Langevin and Fokker-Planck equations, for in-
proposed a solution based on Newton’s 2nd Law, = F, stance, Laplace transforms, Fourier transforms, Green'’s func-
F’ being the net force acting on the patrticle; in this case, theion method, the variation of parameters, etc. Here, Chan-
friction force (Stokes law) plus a time-dependent fluctuatingdrasekhar’s pioneering contribution must be highlighted be-
force (the noise term). This equation bears his name, and dause, in his paper, the problem of harmonic oscillator Brow-
is also called a stochastic differential equation. Langevin'ian motion (HOBM) was explicitly solved by the usual
purposes was to obtain through the solution of his equamethods of stochastic processes [5]. Lemons [6] also studied
tion the same mean square displacement (MSD) previouslthe problem using the Ito-Type stochastic differential equa-
reported by Einstein, that i&?(t)) = 2Dt, beingD = tion upon the solution of this equation was in terms of differ-
k,T/6mnr Einstein’s diffusion coefficient; the viscosity of  entials, he was able to calculate all the statistical properties
the fluid andr the radius of the particle. The strategy usedof a Brownian Harmonic oscillator. Lemons’ results are the
by Langevin to solve the problem was ingenious and simplesame as those reported by Chandrasekhar. As well, an im-
it consists of eliminating the fluctuating force and then ob-portant amount of research and academic works related to
taining a deterministic equation for the MSD. He also had toHOBM has been reported in the literature [17—23]. Other in-
introduce two important hypotheses: one is the independenderesting and recent publications of experimental academic
between both the fluctuating force and the mean trajectory ofvorks have been reported; for super paramagnetic colloids
the particle, and the other, the energy equipartition theoreri24] and a repetition of Perrin’s experiments [26].
in thermal equilibrium. Finally, for times larger than the re- Our purpose, in the present academic contribution, is to
laxation time, Langevin found Einstein’s result for the MSD. yse Langevin’s original strategy to study the statistical prop-
Nowadays, the Langevin equation or a Langevin-typeerties of a HOBM in the damped and periodic cases. In this
equation is widely used in diverse systems in different fieldsase, all the solutions are approximated but consistent with
such as physics, chemistry, biology, etc. After the publicathe exact [5, 6], and numerical simulations result in the long
tion of Langevin’s work, other outstanding contributions to time limit. Itis shown that, in the short time limit, Langevin’s
the theory of Brownian motion appeared in a collection of pa-methodology mostly it doesn’t work. To a better understand-
pers on noise and stochastic processes [4]. Practically all thag of Langevin's strategy, we first study the free particle
academic and research works related to the study of Browproblem, for which we have found interesting results. In this
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case, the MSD becomes the same as the exact result orffipr a first integration, the solution reads
when the initial velocity is assumed to satisfy the Maxwell )
distribution function; otherwise, the MSD disagree. For the d(z”) _ 2k T 2kBT€—ﬁt
Ornstein-Uhlenbeck (OU) process, Langevin’s original strat- dt mf mf3 ’
egy reproduces the same result as the exact method, WhiCh\lﬂqered<x2(t)>/dt|O — 0. For a second integration, we get
a surprising result. Langevin’s method can be useful for stu- '

dents of Brownian motion graduate courses, since it is sim-  , 9 2k, T 2k,T
pler to apply and gives results that are close to exact, which (£} = {@7(0)) = Bm t= m3?
are shown throughout the work.

Our work is structured as follows: As pedagogical sup-
port we study in Sec. 2 Langevin’s original approach to
calculate the MSD and MSV for a free Brownian patrticle.
Section 3 focuses on Langevin’s strategy to solve the stati

(6)

(1 — e_ﬁt) . (M

the Langevin result.

On the other hand, using the statistical properties of
Gaussian white noise, it can be shown that the exact result
g_or the MSD reads

tical properties associated with a harmonic oscillator in the ) ) s g\ (1—efh)?
damped and periodic cases. Our solutions for HOBM are (z7(t)p — (z7(0)) = (Uo - 25) N
compared with Chandrasekhar’'s and Lemons’ results as well
as numerical simulations. In Sec. 4, the conclusions are + %t - % (L—eP, (8
enunciated, and we add an Appendix at the end of our work. s s
whereq = 28k, T/m. It is well known that, Langevin
2. Free particle Brownian motion Eq. (1) for the velocity is stationary, and it satisfies the
Maxwell distribution function with zero mean value and vari-
2.1. Mean square displacement anceag = <U2>st = k,T/m. In fact, this is one of the

hypotheses used by Langevin in E@) o solve the prob-
In this section, we review the Langevin original strategy tolem. Due to the stationary character of the velocity also
calculate the MSD for a free Brownian particle of mass  (v2) = k,7/m = ¢/2 and therefore, the first term in the
embedded in a thermal bath of temperatiiteln the case, right-hand side of Eq./8) vanishes. In this case, the exact

the Langevin equation can be written as [1] solution B) for the MSD reduces to Eq[7), obtained from
) Langevin’s methodology. It is clear that, if the initial veloc-
dx = _adﬁ +£(1), (1) ity is fixed, then the exact solution does not coincide with
di? dt the Langevin result. That is, if the velocity is initially dis-

where« is the friction Coefﬁcient' anq(t) is the fluctuat- tributed with a Maxwell distribution, then the exact solution
ing force. The first step given by Langevin was to multiply (8) is equal to the one obtained by Langevin's strategy.

Eq. (1) by z to obtain In the short time limit, Eq. ) reduces to(z?(t)) =
) (k,T/m)t2, which corresponds to the ballistic regime,
d’x dz whereas in the large time limit, it becomes
MT— = —0T + x£(t). 2
({z?(t)) — («*(0)) = 2Dt )

Then, he transformed this equation into
the same Einstein’s result. In Langevin’s original paper, he

2.2 2
ldii 2o _Bdat + le(t% (3)  did not show the analysis for short times because his main
2 dt 2.dt —m goal was to recover the Einstein result, and it is obtained in
where = a/m. Next, Langevin took the average ensemblethe long time limit. '
for several identical particles to get In Fig. 1, we compare both MSIY), (8) with the numer-

ical simulation [27] of Eq. [1), whenv3 # (q/2(). In this
1 d*{x?) 3 d{z?) 9 1 case, the result obtained by Langevin's method (red) sepa-
2 a2 92 4t + (%) + E@g(t))' () rates from the exact (black) and numerical simulation (black
circles) in the region of short times, but all of them coincide
in the long time limit.

To continue, two crucial hypotheses were considered
namely: (i) Due to the irregularity of random foregt),
he considered that the average valiget)z) = 0. (i) 5, Mean Square Velocity (MSV)
The validity of the energy equipartition theorem, that is,
in thermal equilibrium, the average kinetic energy satis-n this section, we now investigate if the Langevin original
fies (1/2)m(v?) = (1/2)k,T, and under these conditions, strategy works for a free particle MSV, corresponding to the

Eq. @) is rewritten as Ornstein-Uhlenbeck (OU) process. For this case, we write
d*(z?) d{z?) k,T dv
=— 22—, 5 — = t). 10
a2 =g T2 (5) m av + (1) (10)
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Gy k,T ak,T

10 (v%) 50 =2 G= . (19
« m m
& 1 Therefore, the MSV becomes
X 0 kT
o (A1), = (@Wh)e ™ + =2 [1— e (15)
77 S m
Ell] 1
If we want to obtain the exact solution for MS¥42(t)) .,
1077 5 we have to use the statistical properties of a Gaussian white
noise, curiously, in this caséy?(t)), = (v?(t)),. Surpris-
107 5 ingly, Langevin’s strategy not only works to obtain the free

A5 47 I particle MSV but also becomes the same as the exact solu-
Time tion. In Fig. 2, we show the MSV, Eq16) (red) with both
the exact solution (black) and numerical simulation results

FIGURE 1. Comparison between MSIY) (red), 8) (black), and (black circles).

simulation results (circles), withh = 0, k, T = m = 5 = 1.0.

Multiplying this equation by and taking the ensemble aver- 3. Harmonic oscillator Brownian motion
age, we get
3.1. Mean square displacement

1)2
d{v*) _ —28(v?) + %<v£(t)>~ a1 341

dt

Dammped case > 2w)

Next, to separate the noise term in this equation, we folye proceed to apply Langevin's original strategy to study the
low the Langevin idea. In this case, the correlation functionyroplem of the harmonic oscillator Brownian motion. Here,
(v€(t)) must not be equal to zero, as one could believe, inye calculate the variance and the MSD for the above free par-

stead, we assume that it is constaif(¢)) = Co. This ticle bounded by a harmonic potential for which the Langevin
assumption allows to easily obtain the solution for the Meansquation can be written as

Square Velocity (MSV), which is given by the solution of

d? d 1
7‘: + ﬂ—x + w?r = —£(1), (16)
a (') + m wherew? = k/m is the harmonic oscillator’s characteristic

frequency. To obtain the deterministic equation associated
with the variancer?(t) = (x2(t)) — (z(t))?, we first multi-
ply Eq. (16) by = and thus

Its solution reads

WA0), = e+ D e 19)
«
APz
As can be seen(y can be determined by imposing the Tz
validity of the energy equipartition theorem at thermal equi-
librium. Hence, in the long time limit

dx 9 2_l
+ﬂxa +wir = m:cf(t) a7)

However, we can see that

d?z? d’z dz\? dx? dx
— =2%r— 42— — =2—, (18
4 dt? Tz T (dt) ’ dt Tt (18)
3 and so Eq.[17) transforms into
A
= d?2? da? 2
v — =208 4 B—— + 2w = Zx (). (19
:, W B 2wt = k(). (19)
= Taking the ensemble average and assuming also that
(x&(t)) = 0, we have
d*(2?) d{z?) 2/,.2 2
_— 72 + 0 pn + 2w (x*) = 2(v%). (20)
Lo i 20! On the other hand, we now take the ensemble average of
Time Eq. (16) to obtain
FIGURE 2. Comparison of the MSVI(5) with the exact solution )
Zmd n2ur(‘)nerical simulation. All normalized by the facioyT/m, ddi? + 5d¢<if> +w?{z) =0, (21)
0o = 4.U.
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where(£(t)) = 0, because Eq'24) has to coincide with the coefficients method. First, we solve the homogeneous equa-
harmonic oscillator deterministic equation. We now multiply tion given by
Eq. (21) by (z) to get

d2 d d20923h + 6do-xh T 2w 0_ (27)
@I M o @) @ "
but also and its solution in the damped cage* /8 w) reads
d*(z)” d(z) o (dx))’ d*(z) ) ) (81T
ar X g T2 <dt> = 20@) gz + 2 Oan = Cre 27
_B1./32_8,2
d{z)? d{z) + Coelm2Ha Va8t (28)
In thi EalD) b The particular solution is a constarﬁp = A, which is sub-
n this case, Eqld2) becomes stituted into Eq.27) to get
d*(z)” < > 2
+ = 2(v)*. 24
dt? < > <U> ( ) O'ip _ kBj; (29)
L mw
From Eqgs.20) and (24), we clearly see that the deterministic
equation for the variance reads So the solution of Eq/26) is given byo? = 02, + aw, and
4202 thus
=2((v*) = (v)?).  (25)
a o2(1) = Crel—E—HVIRAN
We take into account the second hypothesis proposed by
Langevin related to the energy equipartition theorem, which + 026(—§+%\/62—8w2)t . (30)
is obtained from the Maxwell equilibrium distribution. mw
For SUCh2 distribution the mean value {8) = 0 and  The constants”, and C, can be obtained from the initial
(1/2)m{v*) = 1/2>k T, and therefore conditionso2(0) = 0 anddo2(0)/dt = 0, so that
d*a? 20 k,T
1= 2 /2 —2 2 2mw?’
which is the deterministic equation associated with the vari- 2w/ B — 8w e
ance. Its solution can be calculated using the undetermined C0— k, T3 kT (31)
| 2 2mw?\/32 — 82  2mw?
Hence, the solution of Eq26) can be written as
k. T 1 . 1 .
Jgo (t) = miﬂ{l — ezt <2 sinh? Zﬂlt + % sinh iﬂlt + 1) }, (32)
where,3; = /32 — 82. In this case, The MSD
k,T 1 . 1 1
(22(t)), = (x(t))? + 2= p— {1 — e 3P (2 sinh? Eﬂlt + gsmh §ﬂ1t + 1> }, (33)
and the solution for the average(t)) comes from the explicit solution of Ec21), that is
1 1 1 200 _14, . . 1
(z(t)) = xoe 2P (cosh §ﬁ1t + % sinh 2617,‘) + 6—10@ 3Pt ginh 551757 (34)

being 51 = /3% — 4w?, andxq, vy the initial conditions for position and velocity, respectively. Equat®8) (s similar
to those obtained by Chandrasekhar and Lemons, being Chandrasekhar’s result the following expression: (see Eq. (214) in
Ref. [5])

(22(t)) o = (x(t))* + :w)T {1 —e Pt (26 sinh? ﬁlt + ésinhﬁlt + 1) }, (35)

where(x(¢)) is the same as Eg34). Lemons’ result is the same as E@5), and it is given by Eq.A.6) in Appendix A.
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FIGURE 3. Comparison between MSD83) (red), 35) (black)

and numerical simulation (circles). All normalized by the factor

kBT/mw2 andxzo = 0 andvy = 1.0.

As we can see, the structure of EG3|is a little bit dif-
ferent from Eqg. [85) because the parametgr # (,, and
the ratio 32/3% that appears in Eqg.36) does no in

Eqg. (33). The comparison between both MSD is shown in
Fig. 3, where we can observe certain deviations in the tran-
sient region. However, as time increases, both MSD reach
the same stationary state value. In Fig. 3, the simulation re- w1
sults (circles) for the MSD coincide with Chandrasekhar’s

101

10-1 4

107t 10° 10!
Time

FIGURE 4. Comparison between MSIB8) (red), 40) (black)
and numerical simulation (circles). All normalized by the factor
kBT/mwQ, with o = 0 andvg = 1.0.

being the mean value
(z(t)) = zoe~ 27" <cos wit + b sinw1t>
2(4)1

Vo _1p; .
+ —e 257551nu11t7

(39)

and Lemons’ results (black curve), and they match with ouwith w; = \/w? — (32/4). On the other side, the MSD pro-

result (red curve)33) as the time gets large.
It is clear that, for3t > 1, the mean valuéz) — 0 and
the MSDs in both treatments become

posed by Chandrasekhar in the periodic case reads

@) = Gty + {1 - e

k. T mw?
<x2>5t == P (36)
mw 52 o ﬁ )
Thus, Langevin’s original methodology is consistent in de- x <2w% sIn” wyt + 2y o 2wt + 1) }7 (40)

scribing the MSD for harmonic oscillator Brownian motion

in the large time limit. We clarify that, the deviations from \here the mean valug:(t)) is the same as Ec39).

the exact solutions, as shown in the transient region of Fig. 3, The MSD @0) is the same resultA(3) reported by
come from having initially eliminated the noise term in the | emons (see Appendix A). Again our theoretical re<as)(
Langevin equation, causing a lack of information for a com-p,55 3 similar structure as the one given by 12@) (This fact

plete solution to the problem.

3.1.2. Periodic cased < 2w)

For the harmonic oscillator in the periodic case, after som

algebra, we can show that the solution of EQ6)(can be
written as

k. T 1
2 _ "B —50t
)= 2" )13
720 (1) mwQ{ ¢

B
V8w

2
><<—2sin2\2fw1t+ sin 2wlt+1>}7 (37)

wherew; = \/w? — (32/8), and then the MSD becomes
kT _8
(@2(0)o = (2(t)* + mwz{l o

X (—2sin2 g&zlt—i— \/gwl sin 2@1t+1> } (38)

is shown in Fig. 4, where we can see deviations from the exact
solution in the transient region; however, as time increases,
both results tend to the stationary state vatud’/mw?, as

gxpected. This confirms the consistency of Langevin’s orig-

inal approach in the large time limit. Similarly as we have
commented in the damped case, the deviations in the tran-
sient region come from the separation of the noise term in the
Langevin equation.

3.2. Mean square velocity (MSV)

Let us now apply the Langevin approach to the case of
HOBM in the velocity space. In this case, due to the presence
of the harmonic force, the cross correlation function plays a
role. We start with the Langevin equation

do _ —Bv — Wi + lf(t).
m

7 (41)
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Again we multiply byv and take the ensemble average to getbeing the average valug(¢)) the deterministic solution of

d(v?) 2 2 2
= —2B(v?) — 2w (xv) + E(“'f(t))-

Considering the hypothesis thét¢(t)) = C; = cte, and
thus

(42)

d{v?)
dt
To obtain the velocity variancg? = (v?) — (v)?, we need to
do the following: we take the ensemble average of [Zd) (
and multiply by(v) in such a way that
d(v)?

= —26(v)? — 2w (z) (v).

= —26(v?) — 2w (2v) + % 43)

(44)

Eqg. 41), and given by

(v(t)) = voe*%m [cosh (;ﬁlt) — gsinh <;ﬁlt)]

(51)

Again the constantC; can be determined by the energy
equipartition theorem at equilibrium. As time increases it is
clearthatthatv?(t)), — (C1/a), and thug’; = ak,T/m,

From Egs. 43) and @4) we obtain the differential equation Which is the same consta@}, obtained before.

for the velocity variance, given by

do? 2
% — 980 — 2202 + (45)
m

wherec?, = (xv) — (x)(v) is thex andv covariance. On
the other hand, from the definition = dz/dt, it is easy to
see that

2 1do?

=__= 46
=5 (46)

The exact solution reported by Chandrasekhar [5] in the
damped case reads

(vz(t)>cz<v(t)>2+k£f{1 e {22; sinh? (;glt>

(52)

- %sinh(ﬂlt) + 1} },

Hence, the velocity variance can be calculated once the co-

variance is obtained from Ec46).
3.2.1. Damped cas¢&(> 2w)

In this case, we use the result given by E&2)( and accord-
ing to Eq. @6), we can show that

2k . T 1=
o2, = L’{e_%m sinh | =1t | . (47)
mﬁl 2
Upon substitution of Eq/47) into Eq. 45), we now get
do? 4k Tw? _:
v 9 2 BT —5Bt
dt ﬁav mﬁl ¢
1 2
X sinh (ﬁﬁ) + Q (48)
2 m

The solution of this equation becomes
k,Tw? k,Tw?
2 _ 2 B —203t B
Tu0(7) (UO m(52% + w2)> ¢ * m(6% + w?)

L [2 sinh? (iﬁ_lt) - z;‘? sinh (;Blt) " 1}

Cl 7%,@

+ﬁ—m<1—e 9, (49)
so that
Jop T?
(A0, = (w(0)? + (of - L) e
kpTw?  aplo a1

+m(627;_”wg)e 36t [2smh2 <4ﬂlt)

30

_ ﬁT sinh (;Eﬁ) +1] —l—% (1—e’%ﬁt> , (50)

1

where(v(t)) is the same as Eq51). In the long time limit,

the exact solution becomés(t)?), = k,T/m, also con-
sistent with the energy equipartition theorem. The structure
of the solution/60) is different from the exact solutioi®b?);
however, in the long time limit both coincide, as expected.
The comparison of the MS\50) with the exact and numer-
ical simulation results is shown in Fig. 5, where the coinci-
dence of the three results is clearly shown in the long time
limit. Discrepancies are observed at short and intermediate
times.

10° A

1071 10? 10!
Time

FIGURE 5. Comparison of MSV50) (red) with both, exact (black)
and numerical simulation (circles) results, for valugs= 1.4y
ro = 0.5.
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3.2.2. Periodic cased < 2w)

For this case, we now use the result given by E2¥) énd,
after some algebra, we can show that

2 ( 2 kBTW2 )62;% kBTW2 —15t

Tvo = \ %0~ m(w? + 32) m(w? + ﬁz)e ’
X [cos (\/iwlt) — \/?)gi sin (\@wlt)}
1
G, 25
+ Fm (1 e t>, (53)
and thus

W2 (t)), = (v(t))2 + (02 W) o261

" e+ )

m(w? + 32

Tw? 1
+ ka)e_zm lcos (\/icblt)

_ \/%i -sin (x/ia;lt)

L9 (1 — ezﬁt). (54)
Bsm
where the average valye(t)) is

(w(t)) = voe 27" {cos (wit) — 2% sin (wlt)]

2
i (w1t) . (55)
w1

Again, for long times we show tha&t; = oK, T/m, due to

the energy equipartition theorem. The exact result reporteg 3.1

by Chandrasekhar for the periodic case is

=

(=]
-
L

MSV < vi>

-

[ =]
=]
L

1077 1071 10° 10
Time

FIGURE 6. Comparison of MSV54) (red) with both, exact (black)
and numerical simulation (circles) results, for valugs = 2,
ro = 1.

107! 10° 10t

FIGURE 7. CCF 57) (red) compared with exact (black) and nu-
merical simulation (circles) results, for values = 1, zo = 1.

A0 = o + 201 e s

- 2%1 sin(wit) + 1} }, (56)
being(v(t)) the same as E5B). In the long time limit, both
Egs. B4) and 66) tend tok,T/m, as must be. We show in
Fig. 6 the comparison between these two results with the
numerical simulations. Again, numerical simulations results
agree with the exact solutio®) and deviate from the ap-
proximate [64). However, the three results coincide for long
times.

3.3. Cross correlation function (CCF)

Finally, we present the CCF with the Langevin methodology,
also in both damped and periodic cases.

Damped caséi(> 2w).

The CCF in the damped case is easily obtained from/£&iq), (
yielding to
(z()v(t))o = (z(t))(v(t))
+ e 5t gon (;mt) .57

mfB

On the other side, Chandrasekhar’s results is given by

48k, T , 1
+ i BB% e Pt sinh? (251t>, (58)

being (z(¢)) and(v(t)), in both, the same as Eqs34) and
(51), respectively. We can observe the difference between the
second terms of the right hand side of both E&S) and 68).

The comparison with the numerical simulations is shown in
Fig. 7.

Rev. Mex. is. E 18(1) 97-106



104 0. CONTRERAS-VERGARA, N. LUCERO-AZUARA, AND N. SNCHEZ-SALA AND J. I. JIMENEZ-AQUINO

method, even when it does not provide the exact solution, it
“xup is consistent in the long time limit. Itis only exact to describe
the free particle OU process.

A o504 In conclusion, the pedagogical application of Langevin’s
\% ] original strategy in the study of Brownian motion has been
barely explored [28]. Therefore, we consider this strategy a
0.00 + useful mathematical tool for graduate courses concerning the
_ theory of Brownian motion.

1.00 A

<xu>,

=0.50 -

1073 10° 100 Appendix
Time pp

FIGURE 8. Langevinvs. Chandrasekhar COV for damped HOMB A. Lemons’ results for MSD
with vo = 2, 2o = 0.5. '
A.1 Periodic casey < 2w

3.3.2. Periodic cased < 2w).
The solution for the HOBM proposed by Lemons in chapter

Here the CCF using Langevin's strategy yields to 9 of his book relies upon the solution of an Ito-type Langevin
_ equation, in terms of differentials [6]. Using the statistical
{w(tyo(t)o = (2(t)) (v(®) properties of a Gaussian white noise, Lemons shows that the
kT g . _ exact solution for the periodic or lightly damped case<
+ V2mi, e~ sin(v2at). (59) 2w) for the variance, which we define asr{X} = 02 _(t),
is given by
The CCF reported by Chandrasekhar reads
ﬂkBT — . 2 _ 52 —~t ﬁ2
@(OO)e = @) ) + e st @), 60w O =55+ g

2, .2 .
In both expressions for CCR(t)) and (v(t)), are the X [—4w® 477 cos 2wt — 29w sin 2w't], (A1)

same as Eqs/36) and 65), respectively. In Fig. 8, we re-

port the CCF for the three cases, namely, Langevin’s originalvherew’ = +/w? — (v2/4), [ parameter represents the

result (red), exact (black), and numerical simulation (circleshoise intensity and satisfies the fluctuation-dissipation rela-

results. tion 32 = 2vk,T/m, - being the friction coefficient. It can
be easily shown that EJA(1) can also be written as

4. Conclusions

kT 72
2 __ VB =t .2
In this work, Langevin’s original strategy to solve the HOBM 75, (1) = {1 € <2 g ST Wt

mw? w
has been applied. Following the methodology, we have calcu-
lated the statistical properties of a HOBM in the damped and + l/ sin 2w't + 1) }, (A.2)
periodic cases. In both cases, similar structure are exhibited 2w

with certain deviations only in the transient region compared

with those reported in [5, 6]. However, as time increasesand the MSD is

our theoretical results are equal to the exact solutions, as it

is indeed shown analytically as well as by numerical simula- 2y _ 2 kT
Ve, = (x(t)” + l1—e

tions. Therefore, in the long time limit, Langevin’s original mw?
strategy is consistent with damped and periodic cases. We 42 7
emphasize that, the deviations in the transient region are due X <2w,2 sin? W't + WG sin 2w't + 1) }, (A.3)

to the absence of noise at the beginning of the solution of the
Langevin equation. This is the reason for the loss of infor- |
mation in the transient regime. Also, the free particle casé{‘”th
has been presented, for which unexpected results have been

found. (x(t)) = mge 20" (cos W't + ﬁ/ sin w’t)

We want to recall that the usual strategy for solving prob- 2w
lems relatgd to Brownlgn motion, relies upon th_e statisti- LYo —1pt sin W't (A.4)
cal properties of the noise. However, the Langevin original w’
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2 Damped casey > 2w

The exact solution for the variance in the damped case

(v

> 2w) has the same algebraic structure as [Zg2), ex-

cept that the parameter must be replaced by’ /2, where

6/

= /2 —4w?, sinw't and sin2w't, respectively by

sinh (1/2)4’t andsinh 5't, yielding to

where the MSD

10.

k., T
2= B e
2+2 1
X <ﬂ72 sinh? §ﬂ’t—|— %sinhﬂ't—i— 1) }, (A.5)

k,T
mw?

(@*(1)), = (a()” +

2
.
x (25/2

{1 —e

T sinh 8t + 1) } (A.6)

1
sinh® FAt+ 7

105

and

(z(t)) = zoe” 27t (cosh %ﬂ’t + % sinh ;ﬂ’t)

209 _1

1
+ —-e Wtsinhgﬁ’t. (A.7)

Equations/A.6) and [A.7) are the same as those reported by
Chandrasekhar and given in Egs. (214) from his 1943 paper.
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