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The original strategy applied by Langevin to the Brownian movement problem is used to solve the case of a free particle under a harmonic
potential. Such a straightforward strategy consists of separating the noise term in the Langevin equation to solve a deterministic equation
associated with the Mean Square Displacement. In this work, we use the Langevin’s original strategy to calculate the statistical properties
of the harmonic oscillator Brownian Motion, in the damped and periodic cases. It is shown that, in the long time limit, Langevin’s original
method is consistent with the exact theoretical solutions reported by Chandrasekhar and Lemons, these latter obtained using the statistical
properties of a Gaussian white noise. Also, unexpected results are presented when the method is applied to a free particle case. Our results
are compared with the exact theoretical solutions, as well as with the numerical simulations.
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1. Introducction

In 1908 the physicist P. Langevin [1] presented a straightfor-
ward method than Einstein’s theory [2] to solve the problem
of Brownian motion [3, 4]. In his original paper, Langevin
proposed a solution based on Newton’s 2nd Law,ma = F ,
F being the net force acting on the particle; in this case, the
friction force (Stokes law) plus a time-dependent fluctuating
force (the noise term). This equation bears his name, and it
is also called a stochastic differential equation. Langevin’s
purposes was to obtain through the solution of his equa-
tion the same mean square displacement (MSD) previously
reported by Einstein, that is〈x2(t)〉 = 2Dt, being D =
k

B
T/6πηr Einstein’s diffusion coefficient,η the viscosity of

the fluid andr the radius of the particle. The strategy used
by Langevin to solve the problem was ingenious and simple;
it consists of eliminating the fluctuating force and then ob-
taining a deterministic equation for the MSD. He also had to
introduce two important hypotheses: one is the independence
between both the fluctuating force and the mean trajectory of
the particle, and the other, the energy equipartition theorem
in thermal equilibrium. Finally, for times larger than the re-
laxation time, Langevin found Einstein’s result for the MSD.

Nowadays, the Langevin equation or a Langevin-type
equation is widely used in diverse systems in different fields
such as physics, chemistry, biology, etc. After the publica-
tion of Langevin’s work, other outstanding contributions to
the theory of Brownian motion appeared in a collection of pa-
pers on noise and stochastic processes [4]. Practically all the
academic and research works related to the study of Brow-

nian motion has been developed using the standard method
in the context of the Langevin equation or the Fokker-Planck
equation taking into account the Gaussian statistical proper-
ties of noise [4-26]. There exists a variety of methods for
solving the Langevin and Fokker-Planck equations, for in-
stance, Laplace transforms, Fourier transforms, Green’s func-
tion method, the variation of parameters, etc. Here, Chan-
drasekhar’s pioneering contribution must be highlighted be-
cause, in his paper, the problem of harmonic oscillator Brow-
nian motion (HOBM) was explicitly solved by the usual
methods of stochastic processes [5]. Lemons [6] also studied
the problem using the Ito-Type stochastic differential equa-
tion upon the solution of this equation was in terms of differ-
entials, he was able to calculate all the statistical properties
of a Brownian Harmonic oscillator. Lemons’ results are the
same as those reported by Chandrasekhar. As well, an im-
portant amount of research and academic works related to
HOBM has been reported in the literature [17–23]. Other in-
teresting and recent publications of experimental academic
works have been reported; for super paramagnetic colloids
[24] and a repetition of Perrin’s experiments [26].

Our purpose, in the present academic contribution, is to
use Langevin’s original strategy to study the statistical prop-
erties of a HOBM in the damped and periodic cases. In this
case, all the solutions are approximated but consistent with
the exact [5, 6], and numerical simulations result in the long
time limit. It is shown that, in the short time limit, Langevin’s
methodology mostly it doesn’t work. To a better understand-
ing of Langevin’s strategy, we first study the free particle
problem, for which we have found interesting results. In this
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case, the MSD becomes the same as the exact result only
when the initial velocity is assumed to satisfy the Maxwell
distribution function; otherwise, the MSD disagree. For the
Ornstein-Uhlenbeck (OU) process, Langevin’s original strat-
egy reproduces the same result as the exact method, which is
a surprising result. Langevin’s method can be useful for stu-
dents of Brownian motion graduate courses, since it is sim-
pler to apply and gives results that are close to exact, which
are shown throughout the work.

Our work is structured as follows: As pedagogical sup-
port we study in Sec. 2 Langevin’s original approach to
calculate the MSD and MSV for a free Brownian particle.
Section 3 focuses on Langevin’s strategy to solve the statis-
tical properties associated with a harmonic oscillator in the
damped and periodic cases. Our solutions for HOBM are
compared with Chandrasekhar’s and Lemons’ results as well
as numerical simulations. In Sec. 4, the conclusions are
enunciated, and we add an Appendix at the end of our work.

2. Free particle Brownian motion

2.1. Mean square displacement

In this section, we review the Langevin original strategy to
calculate the MSD for a free Brownian particle of massm,
embedded in a thermal bath of temperatureT . In the case,
the Langevin equation can be written as [1]

m
d2x

dt2
= −α

dx

dt
+ ξ(t), (1)

whereα is the friction coefficient, andξ(t) is the fluctuat-
ing force. The first step given by Langevin was to multiply
Eq. (1) by x to obtain

mx
d2x

dt2
= −αx

dx

dt
+ xξ(t). (2)

Then, he transformed this equation into

1
2

d2x2

dt2
− v2 = −β

2
dx2

dt
+

1
m

xξ(t), (3)

whereβ = α/m. Next, Langevin took the average ensemble
for several identical particles to get

1
2

d2〈x2〉
dt2

= −β

2
d〈x2〉

dt
+ 〈v2〉+

1
m
〈xξ(t)〉. (4)

To continue, two crucial hypotheses were considered,
namely: (i) Due to the irregularity of random forceξ(t),
he considered that the average value〈ξ(t)x〉 = 0. (ii)
The validity of the energy equipartition theorem, that is,
in thermal equilibrium, the average kinetic energy satis-
fies (1/2)m〈v2〉 = (1/2)k

B
T , and under these conditions,

Eq. (4) is rewritten as

d2〈x2〉
dt2

= −β
d〈x2〉

dt
+ 2

kBT

m
. (5)

For a first integration, the solution reads

d〈x2〉
dt

=
2k

B
T

mβ
− 2k

B
T

mβ
e−βt, (6)

whered〈x2(t)〉/dt|0 = 0. For a second integration, we get

〈x2(t)〉
L
− 〈x2(0)〉 =

2k
B
T

βm
t− 2k

B
T

mβ2

(
1− e−βt

)
. (7)

the Langevin result.
On the other hand, using the statistical properties of

Gaussian white noise, it can be shown that the exact result
for the MSD reads

〈x2(t)〉
E
− 〈x2(0)〉 =

(
v2
0 −

q

2β

)
(1− e.βt)2

β2

+
q

β2
t− q

β3

(
1− e−βt

)
, (8)

where q = 2βk
B
T/m. It is well known that, Langevin

Eq. (1) for the velocity is stationary, and it satisfies the
Maxwell distribution function with zero mean value and vari-
anceσ2

v = 〈v2〉st = k
B
T/m. In fact, this is one of the

hypotheses used by Langevin in Eq. (4) to solve the prob-
lem. Due to the stationary character of the velocity also
〈v2

0〉 = kBT/m = q/2β and therefore, the first term in the
right-hand side of Eq. (8) vanishes. In this case, the exact
solution (8) for the MSD reduces to Eq. (7), obtained from
Langevin’s methodology. It is clear that, if the initial veloc-
ity is fixed, then the exact solution does not coincide with
the Langevin result. That is, if the velocity is initially dis-
tributed with a Maxwell distribution, then the exact solution
(8) is equal to the one obtained by Langevin’s strategy.

In the short time limit, Eq. (7) reduces to〈x2(t)〉 =
(k

B
T/m)t2, which corresponds to the ballistic regime,

whereas in the large time limit, it becomes

〈〈x2(t)〉 − 〈x2(0)〉 = 2Dt, (9)

the same Einstein’s result. In Langevin’s original paper, he
did not show the analysis for short times because his main
goal was to recover the Einstein result, and it is obtained in
the long time limit.

In Fig. 1, we compare both MSD (7), (8) with the numer-
ical simulation [27] of Eq. (1), whenv2

0 6= (q/2β). In this
case, the result obtained by Langevin’s method (red) sepa-
rates from the exact (black) and numerical simulation (black
circles) in the region of short times, but all of them coincide
in the long time limit.

2.2. Mean Square Velocity (MSV)

In this section, we now investigate if the Langevin original
strategy works for a free particle MSV, corresponding to the
Ornstein-Uhlenbeck (OU) process. For this case, we write

m
dv

dt
= −αv + ξ(t). (10)
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FIGURE 1. Comparison between MSD (7) (red), (8) (black), and
simulation results (circles), withv0 = 0, kB T = m = β = 1.0.

Multiplying this equation byv and taking the ensemble aver-
age, we get

d〈v2〉
dt

= −2β〈v2〉+
2
m
〈vξ(t)〉. (11)

Next, to separate the noise term in this equation, we fol-
low the Langevin idea. In this case, the correlation function
〈vξ(t)〉 must not be equal to zero, as one could believe, in-
stead, we assume that it is constant,〈vξ(t)〉 = C0. This
assumption allows to easily obtain the solution for the Mean
Square Velocity (MSV), which is given by the solution of

d〈v2〉
dt

= −2β〈v2〉+
2C0

m
. (12)

Its solution reads

〈v2(t)〉L = 〈v2
0〉e−2βt +

C0

α

[
1− e−2βt

]
. (13)

As can be seen,C0 can be determined by imposing the
validity of the energy equipartition theorem at thermal equi-
librium. Hence, in the long time limit

FIGURE 2. Comparison of the MSV (15) with the exact solution
and numerical simulation. All normalized by the factorkB T/m,
v0 = 2.0.

〈v2〉st =
C0

α
=

k
B
T

m
, C0 =

αk
B
T

m
. (14)

Therefore, the MSV becomes

〈v2(t)〉
L

= 〈v2
0〉e−2βt +

kBT

m

[
1− e−2βt

]
. (15)

If we want to obtain the exact solution for MSV,〈v2(t)〉E ,
we have to use the statistical properties of a Gaussian white
noise, curiously, in this case,〈v2(t)〉E = 〈v2(t)〉L . Surpris-
ingly, Langevin’s strategy not only works to obtain the free
particle MSV but also becomes the same as the exact solu-
tion. In Fig. 2, we show the MSV, Eq. (15) (red) with both
the exact solution (black) and numerical simulation results
(black circles).

3. Harmonic oscillator Brownian motion

3.1. Mean square displacement

3.1.1. Dammped case(β > 2ω)

We proceed to apply Langevin’s original strategy to study the
problem of the harmonic oscillator Brownian motion. Here,
we calculate the variance and the MSD for the above free par-
ticle bounded by a harmonic potential for which the Langevin
equation can be written as

d2x

dt2
+ β

dx

dt
+ ω2x =

1
m

ξ(t), (16)

whereω2 = k/m is the harmonic oscillator’s characteristic
frequency. To obtain the deterministic equation associated
with the varianceσ2

x(t) = 〈x2(t)〉 − 〈x(t)〉2, we first multi-
ply Eq. (16) by x and thus

x
d2x

dt2
+ βx

dx

dt
+ ω2x2 =

1
m

x ξ(t). (17)

However, we can see that

d2x2

dt2
= 2x

d2x

dt2
+ 2

(
dx

dt

)2

,
dx2

dt
= 2x

dx

dt
, (18)

and so Eq. (17) transforms into

d2x2

dt2
− 2v2 + β

dx2

dt
+ 2ω2x2 =

2
m

xξ(t). (19)

Taking the ensemble average and assuming also that
〈xξ(t)〉 = 0, we have

d2〈x2〉
dt2

+ β
d〈x2〉

dt
+ 2ω2〈x2〉 = 2〈v2〉. (20)

On the other hand, we now take the ensemble average of
Eq. (16) to obtain

d2〈x〉
dt2

+ β
d〈x〉
dt

+ ω2〈x〉 = 0, (21)
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where〈ξ(t)〉 = 0, because Eq. (21) has to coincide with the
harmonic oscillator deterministic equation. We now multiply
Eq. (21) by 〈x〉 to get

〈x〉d
2〈x〉
dt2

+ β〈x〉d〈x〉
dt

+ ω2〈x〉2 = 0, (22)

but also

d2〈x〉2
dt2

= 2〈x〉d
2〈x〉
dt2

+ 2
(

d〈x〉
dt

)2

= 2〈x〉d
2〈x〉
dt2

+ 2〈v〉2

d〈x〉2
dt

= 2〈x〉d〈x〉
dt

. (23)

In this case, Eq. (22) becomes

d2〈x〉2
dt2

+ β
d〈x〉2

dt
+ 2ω2〈x〉2 = 2〈v〉2. (24)

From Eqs. (20) and (24), we clearly see that the deterministic
equation for the variance reads

d2σ2
x

dt2
+ β

dσ2
x

dt
+ 2ω2σ2

x = 2(〈v2〉 − 〈v〉2). (25)

We take into account the second hypothesis proposed by
Langevin related to the energy equipartition theorem, which
is obtained from the Maxwell equilibrium distribution.
For such distribution the mean value is〈v〉 = 0 and
(1/2)m〈v2〉 = (1/2)kBT , and therefore

d2σ2
x

dt2
+ β

dσ2
x

dt
+ 2ω2σ2

x = 2
kBT

m
, (26)

which is the deterministic equation associated with the vari-
ance. Its solution can be calculated using the undetermined

coefficients method. First, we solve the homogeneous equa-
tion given by

d2σ2
xh

dt2
+ β

dσ2
xh

dt
+ 2ω2σ2

xh = 0, (27)

and its solution in the damped case (β >
√

8 ω) reads

σ2
xh = C1e

(− β
2− 1

2

√
β2−8ω2)t

+ C2e
(− β

2 + 1
2

√
β2−8ω2)t. (28)

The particular solution is a constantσ2
xp = A, which is sub-

stituted into Eq. (27) to get

σ2
xp =

k
B
T

mω2
. (29)

So the solution of Eq. (26) is given byσ2
x = σ2

xh + σ2
xp, and

thus

σ2
x(t) = C1e

(− β
2− 1

2

√
β2−8ω2)t

+ C2e
(− β

2 + 1
2

√
β2−8ω2)t +

k
B
T

mω2
. (30)

The constantsC1 and C2 can be obtained from the initial
conditionsσ2

x(0) = 0 anddσ2
x(0)/dt = 0, so that

C1 =
kBTβ

2mω2
√

β2 − 8ω2
− kBT

2mω2
,

C2 = − kBTβ

2mω2
√

β2 − 8ω2
− kBT

2mω2
. (31)

Hence, the solution of Eq. (26) can be written as

σ2
xO

(t) =
kBT

mω2

{
1− e−

1
2 βt

(
2 sinh2 1

4
β̄1t +

β

β̄1
sinh

1
2
β̄1t + 1

)}
, (32)

where,β̄1 =
√

β2 − 8ω2. In this case, The MSD

〈x2(t)〉O = 〈x(t)〉2 +
k

B
T

mω2

{
1− e−

1
2 βt

(
2 sinh2 1

4
β̄1t +

β

β̄1
sinh

1
2
β̄1t + 1

)}
, (33)

and the solution for the average〈x(t)〉 comes from the explicit solution of Eq. (21), that is

〈x(t)〉 = x0e
− 1

2 βt

(
cosh

1
2
β1t +

β

β1
sinh

1
2
β1t

)
+

2v0

β1
e−

1
2 βt sinh

1
2
β1t, (34)

beingβ1 =
√

β2 − 4ω2, andx0, v0 the initial conditions for position and velocity, respectively. Equation (33) is similar
to those obtained by Chandrasekhar and Lemons, being Chandrasekhar’s result the following expression: (see Eq. (214) in
Ref. [5])

〈x2(t)〉C = 〈x(t)〉2 +
k

B
T

mω2

{
1− e−βt

(
2
β2

β2
1

sinh2 1
2
β1t +

β

β1
sinhβ1t + 1

)}
, (35)

where〈x(t)〉 is the same as Eq. (34). Lemons’ result is the same as Eq. (35), and it is given by Eq. (A.6) in Appendix A.
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FIGURE 3. Comparison between MSDs (33) (red), (35) (black)
and numerical simulation (circles). All normalized by the factor
kB T/mω2 andx0 = 0 andv0 = 1.0.

As we can see, the structure of Eq. (33) is a little bit dif-
ferent from Eq. (35) because the parameterβ̄1 6= β1, and
the ratio β2/β2

1 that appears in Eq. (35) does no in
Eq. (33). The comparison between both MSD is shown in
Fig. 3, where we can observe certain deviations in the tran-
sient region. However, as time increases, both MSD reach
the same stationary state value. In Fig. 3, the simulation re-
sults (circles) for the MSD coincide with Chandrasekhar’s
and Lemons’ results (black curve), and they match with our
result (red curve) (33) as the time gets large.

It is clear that, forβt À 1, the mean value〈x〉 → 0 and
the MSDs in both treatments become

〈x2〉st =
kBT

mω2
. (36)

Thus, Langevin’s original methodology is consistent in de-
scribing the MSD for harmonic oscillator Brownian motion
in the large time limit. We clarify that, the deviations from
the exact solutions, as shown in the transient region of Fig. 3,
come from having initially eliminated the noise term in the
Langevin equation, causing a lack of information for a com-
plete solution to the problem.

3.1.2. Periodic case (β < 2ω)

For the harmonic oscillator in the periodic case, after some
algebra, we can show that the solution of Eq. (26) can be
written as

σ2
xO

(t) =
kBT

mω2

{
1− e−

1
2 βt

×
(
− 2 sin2

√
2

2
ω̄1t +

β√
8 ω̄1

sin
√

2 ω̄1t + 1
)}

, (37)

whereω̄1 =
√

ω2 − (β2/8), and then the MSD becomes

〈x2(t)〉O = 〈x(t)〉2 +
k

B
T

mω2

{
1− e−

β
2 t

×
(
−2 sin2

√
2

2
ω̄1t+

β√
8ω̄1

sin
√

2 ω̄1t+1
)}

, (38)

FIGURE 4. Comparison between MSD (38) (red), (40) (black)
and numerical simulation (circles). All normalized by the factor
kB T/mω2, with x0 = 0 andv0 = 1.0.

being the mean value

〈x(t)〉 = x0e
− 1

2 βt

(
cosω1t +

β

2ω1
sin ω1t

)

+
v0

ω1
e−

1
2 βt sin ω1t, (39)

with ω1 =
√

ω2 − (β2/4). On the other side, the MSD pro-
posed by Chandrasekhar in the periodic case reads

〈x2〉C = 〈x(t)〉2 +
k

B
T

mω2

{
1− e−βt

×
(

β2

2ω2
1

sin2 ω1t +
β

2ω1
sin 2ω1t + 1

)}
, (40)

where the mean value〈x(t)〉 is the same as Eq. (39).
The MSD (40) is the same result (A.3) reported by

Lemons (see Appendix A). Again our theoretical result (38)
has a similar structure as the one given by Eq. (40). This fact
is shown in Fig. 4, where we can see deviations from the exact
solution in the transient region; however, as time increases,
both results tend to the stationary state valuekBT/mω2, as
expected. This confirms the consistency of Langevin’s orig-
inal approach in the large time limit. Similarly as we have
commented in the damped case, the deviations in the tran-
sient region come from the separation of the noise term in the
Langevin equation.

3.2. Mean square velocity (MSV)

Let us now apply the Langevin approach to the case of
HOBM in the velocity space. In this case, due to the presence
of the harmonic force, the cross correlation function plays a
role. We start with the Langevin equation

dv

dt
= −βv − ω2x +

1
m

ξ(t). (41)

Rev. Mex. F́ıs. E 18 (1) 97–106
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Again we multiply byv and take the ensemble average to get

d〈v2〉
dt

= −2β〈v2〉 − 2ω2〈xv〉+
2
m
〈vξ(t)〉. (42)

Considering the hypothesis that〈vξ(t)〉 = C1 = cte, and
thus

d〈v2〉
dt

= −2β〈v2〉 − 2ω2〈xv〉+
2C1

m
. (43)

To obtain the velocity varianceσ2
v = 〈v2〉− 〈v〉2, we need to

do the following: we take the ensemble average of Eq. (41)
and multiply by〈v〉 in such a way that

d〈v〉2
dt

= −2β〈v〉2 − 2ω2〈x〉〈v〉. (44)

From Eqs. (43) and (44) we obtain the differential equation
for the velocity variance, given by

dσ2
v

dt
= −2βσ2

v − 2ω2σ2
xv +

2C1

m
, (45)

whereσ2
xv = 〈xv〉 − 〈x〉〈v〉 is thex andv covariance. On

the other hand, from the definitionv = dx/dt, it is easy to
see that

σ2
xv =

1
2

dσ2
x

dt
. (46)

Hence, the velocity variance can be calculated once the co-
variance is obtained from Eq. (46).

3.2.1. Damped case (β > 2ω)

In this case, we use the result given by Eq. (32), and accord-
ing to Eq. (46), we can show that

σ2
xv =

2k
B
T

mβ̄1
e−

1
2 βt sinh

(
1
2
β̄1t

)
. (47)

Upon substitution of Eq. (47) into Eq. (45), we now get

dσ2
v

dt
= −2βσ2

v −
4kBTω2

mβ̄1
e−

1
2 βt

× sinh
(

1
2
β̄1t

)
+

2C1

m
. (48)

The solution of this equation becomes

σ2
vO

(x) =
(

σ2
0 −

k
B
Tω2

m(β2 + ω2)

)
e−2βt +

k
B
Tω2

m(β2 + ω2)

× e−
1
2 βt

[
2 sinh2

(
1
4
β̄1t

)
− 3β

β̄1
sinh

(
1
2
β̄1t

)
+ 1

]

+
C1

βm

(
1− e−

1
2 βt

)
, (49)

so that

〈v2(t)〉
O

= 〈v(t)〉2 +
(

σ2
0 −

k
B
Tω2

m(β2 + ω2)

)
e−2βt

+
k

B
Tω2

m(β2 + ω2)
e−

1
2 βt

[
2 sinh2

(
1
4
β̄1t

)

− 3β

β̄1
sinh

(
1
2
β̄1t

)
+1

]
+

C1

βm

(
1−e−

1
2 βt

)
, (50)

being the average value〈v(t)〉 the deterministic solution of
Eq. (41), and given by

〈v(t)〉 = v0e
− 1

2 βt

[
cosh

(
1
2
β1t

)
− β

β1
sinh

(
1
2
β1t

)]

− 2x0ω
2

β1
e−

1
2 βt sinh

(
1
2
β1t

)
. (51)

Again the constantC1 can be determined by the energy
equipartition theorem at equilibrium. As time increases it is
clear that that〈v2(t)〉

O
→ (C1/α), and thusC1 = αk

B
T/m,

which is the same constantC0 obtained before.

The exact solution reported by Chandrasekhar [5] in the
damped case reads

〈v2(t)〉C =〈v(t)〉2+kBT

m

{
1− e−βt

[
2
β2

β2
1

sinh2

(
1
2
β1t

)

− β

β1
sinh(β1t) + 1

]}
, (52)

where〈v(t)〉 is the same as Eq. (51). In the long time limit,
the exact solution becomes〈v(t)2〉

C
= k

B
T/m, also con-

sistent with the energy equipartition theorem. The structure
of the solution (50) is different from the exact solution (52);
however, in the long time limit both coincide, as expected.
The comparison of the MSV (50) with the exact and numer-
ical simulation results is shown in Fig. 5, where the coinci-
dence of the three results is clearly shown in the long time
limit. Discrepancies are observed at short and intermediate
times.

FIGURE 5. Comparison of MSV (50) (red) with both, exact (black)
and numerical simulation (circles) results, for valuesv0 = 1.4 y
x0 = 0.5.
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3.2.2. Periodic case (β < 2ω)

For this case, we now use the result given by Eq. (37) and,
after some algebra, we can show that

σ2
vO

=
(

σ2
0 −

k
B
Tω2

m(ω2 + β2)

)
e−2βt +

k
B
Tω2

m(ω2 + β2)
e−

1
2 βt

×
[
cos

(√
2ω̄1t

)
− 3β√

8ω̄1

sin
(√

2ω̄1t
)]

+
C1

βm

(
1− e−2βt

)
, (53)

and thus

〈v2(t)〉
O

= 〈v(t)〉2 +
(

σ2
0 −

k
B
Tω2

m(ω2 + β2)

)
e−2βt

+
k

B
Tω2

m(ω2 + β2)
e−

1
2 βt

[
cos

(√
2ω̄1t

)

− 3β√
8ω̄1

sin
(√

2ω̄1t
) ]

+
C1

βm

(
1− e−2βt

)
. (54)

where the average value〈v(t)〉 is

〈v(t)〉 = v0e
− 1

2 βt

[
cos (ω1t)− β

2ω1
sin (ω1t)

]

− x0ω
2

ω1
e−

1
2 βt sin (ω1t) . (55)

Again, for long times we show thatC1 = αKBT/m, due to
the energy equipartition theorem. The exact result reported
by Chandrasekhar for the periodic case is

FIGURE 6. Comparison of MSV (54) (red) with both, exact (black)
and numerical simulation (circles) results, for valuesv0 = 2,
x0 = 1.

FIGURE 7. CCF (57) (red) compared with exact (black) and nu-
merical simulation (circles) results, for valuesv0 = 1, x0 = 1.

〈v2(t)〉C = 〈v(t)〉2 +
k

B
T

m

{
1− e−βt

[
β2

2ω2
1

sin2(ω1t)

− β

2ω1
sin(ω1t) + 1

]}
, (56)

being〈v(t)〉 the same as Eq. (55). In the long time limit, both
Eqs. (54) and (56) tend tok

B
T/m, as must be. We show in

Fig. 6 the comparison between these two results with the
numerical simulations. Again, numerical simulations results
agree with the exact solution (56) and deviate from the ap-
proximate (54). However, the three results coincide for long
times.

3.3. Cross correlation function (CCF)

Finally, we present the CCF with the Langevin methodology,
also in both damped and periodic cases.

3.3.1. Damped case (β > 2ω).

The CCF in the damped case is easily obtained from Eq. (47),
yielding to

〈x(t)v(t)〉O = 〈x(t)〉〈v(t)〉

+
2kBT

mβ̄1
e−

1
2 βt sinh

(
1
2
β̄1t

)
. (57)

On the other side, Chandrasekhar’s results is given by

〈x(t)v(t)〉C = 〈x(t)〉〈v(t)〉

+
4βkBT

mβ2
1

e−βt sinh2

(
1
2
β1t

)
, (58)

being〈x(t)〉 and〈v(t)〉, in both, the same as Eqs. (34) and
(51), respectively. We can observe the difference between the
second terms of the right hand side of both Eqs. (57) and (58).
The comparison with the numerical simulations is shown in
Fig. 7.
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FIGURE 8. Langevinvs. Chandrasekhar COV for damped HOMB
with v0 = 2, x0 = 0.5.

3.3.2. Periodic case (β < 2ω).

Here the CCF using Langevin’s strategy yields to

〈x(t)v(t)〉O = 〈x(t)〉〈v(t)〉

+
k

B
T√

2mω̄1

e−βt sin(
√

2ω̄1t). (59)

The CCF reported by Chandrasekhar reads

〈x(t)v(t)〉C = 〈x(t)〉〈v(t)〉+
βk

B
T

mω2
1

e−βt sin2(ω1t). (60)

In both expressions for CCF,〈x(t)〉 and 〈v(t)〉, are the
same as Eqs. (39) and (55), respectively. In Fig. 8, we re-
port the CCF for the three cases, namely, Langevin’s original
result (red), exact (black), and numerical simulation (circles)
results.

4. Conclusions

In this work, Langevin’s original strategy to solve the HOBM
has been applied. Following the methodology, we have calcu-
lated the statistical properties of a HOBM in the damped and
periodic cases. In both cases, similar structure are exhibited
with certain deviations only in the transient region compared
with those reported in [5, 6]. However, as time increases,
our theoretical results are equal to the exact solutions, as it
is indeed shown analytically as well as by numerical simula-
tions. Therefore, in the long time limit, Langevin’s original
strategy is consistent with damped and periodic cases. We
emphasize that, the deviations in the transient region are due
to the absence of noise at the beginning of the solution of the
Langevin equation. This is the reason for the loss of infor-
mation in the transient regime. Also, the free particle case
has been presented, for which unexpected results have been
found.

We want to recall that the usual strategy for solving prob-
lems related to Brownian motion, relies upon the statisti-
cal properties of the noise. However, the Langevin original

method, even when it does not provide the exact solution, it
is consistent in the long time limit. It is only exact to describe
the free particle OU process.

In conclusion, the pedagogical application of Langevin’s
original strategy in the study of Brownian motion has been
barely explored [28]. Therefore, we consider this strategy a
useful mathematical tool for graduate courses concerning the
theory of Brownian motion.

Appendix

A. Lemons’ results for MSD

A.1 Periodic caseγ < 2ω

The solution for the HOBM proposed by Lemons in chapter
9 of his book relies upon the solution of an Ito-type Langevin
equation, in terms of differentials [6]. Using the statistical
properties of a Gaussian white noise, Lemons shows that the
exact solution for the periodic or lightly damped case (γ <
2ω) for the variance, which we define asvar{X} ≡ σ2

xL
(t),

is given by

σ2
xL

(t) =
β2

2γω2
+ e−γt

(
β2

8γω′ 2ω2

)

× [−4ω2 + γ2 cos 2ω′t− 2γω′ sin 2ω′t], (A.1)

whereω′ =
√

ω2 − (γ2/4), β parameter represents the
noise intensity and satisfies the fluctuation-dissipation rela-
tion β2 = 2γk

B
T/m, γ being the friction coefficient. It can

be easily shown that Eq. (A.1) can also be written as

σ2
xL

(t) =
kBT

mω2

{
1− e−γt

(
γ2

2ω′ 2
sin2 ω′t

+
γ

2ω′
sin 2ω′t + 1

)}
, (A.2)

and the MSD is

〈x2〉xL = 〈x(t)〉2 +
k

B
T

mω2

{
1− e−γt

×
(

γ2

2ω′ 2
sin2 ω′t +

γ

2ω′
sin 2ω′t + 1

)}
, (A.3)

with

〈x(t)〉 = x0e
− 1

2 βt

(
cosω′t +

β

2ω′
sin ω′t

)

+
v0

ω′
e−

1
2 βt sin ω′t, (A.4)
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A.2 Damped caseγ > 2ω

The exact solution for the variance in the damped case
(γ > 2ω) has the same algebraic structure as Eq. (A.2), ex-
cept that the parameterω′ must be replaced byβ′/2, where
β′ =

√
γ2 − 4ω2, sin ω′t and sin 2ω′t, respectively by

sinh (1/2)β′t andsinhβ′t, yielding to

σ2
xL

(t) =
k

B
T

mω2

{
1− e−γt

×
(

2γ2

β′ 2
sinh2 1

2
β′t +

γ

β′
sinh β′t + 1

)}
, (A.5)

where the MSD

〈x2(t)〉
L

= 〈x(t)〉2 +
k

B
T

mω2

{
1− e−γt

×
(

2
γ2

β′ 2
sinh2 1

2
β′t +

γ

β′
sinhβ′t + 1

)}
, (A.6)

and

〈x(t)〉 = x0e
− 1

2 γt

(
cosh

1
2
β′t +

γ

β′
sinh

1
2
β′t

)

+
2v0

β′
e−

1
2 γt sinh

1
2
β′t. (A.7)

Equations (A.6) and (A.7) are the same as those reported by
Chandrasekhar and given in Eqs. (214) from his 1943 paper.
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