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Motion of a rolling sphere on an azimuthally symmetric surface
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This paper analyzes the translational motion that a sphere rolling over an azimuthally symmetric surface, under the presence of a constant
gravitational field and with the rolling-without-slipping condition, exhibits in two different situations: with and without friction with air,
where the latter is expressed as a power-series function of the sphere’s translational speed. In order to achieve this, the equations of motion
for each case are obtained through the use of Lagrangian Mechanics and are subsequently solved by numerical computation inWolfram
Mathematica. For the frictionless case, periodic behavior and a conservation law for the angular coordinate have been found, along with the
condition under which an effective potential energy can be approximated as well as the relationships between initial conditions that produce
gravitational-like trajectories for the motion of the sphere. The equations of motion derived for the case with friction are found to predict the
energy loss and general decay of the sphere’s motion. Likewise, the normal force over the sphere as a function of time is obtained through
the method ofLagrange’s Undetermined Multipliers, and thus, the general conditions that the motion must satisfy in order to be described
by the obtained models. Overall, this research provides insight into the type and characteristics of the motion performed by the system in
these two cases, both through equations and their numerical solutions for different surfaces and initial conditions.
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1. Introduction and theoretical background

Newton’s formulation of Classical Mechanics often leads to
a laborious endeavor when trying to identify the forces act-
ing on and sometimes within a system in order to obtain the
equations that describe its motion as a function of time. For-
tunately, the Lagrangian formulation of Classical Mechanics
stands out as a powerful tool to solve the motion of this kind
of systems as its approach is fundamentally different from
the Newtonian. In Lagrangian Mechanics, the LagrangianL
is the central quantity to be found through the incorporation
of both the kinetic and potential energies of the system and
the constraints to the motion of the bodies or particles that
conform it.

Formally, theLagrangianof a particle in generalized co-
ordinatesqi is a function of these coordinates and their time
derivatives; and its equal to the difference between its kinetic
energyT and its potential energyV [1]

L(q1, . . . , qN , q̇1, . . . q̇N ) = T − V. (1)

The equations of motion corresponding to each coordi-
nate can be subsequently obtained by substituting theLa-
grangianinto theEuler-Lagrangeequation, which for thei-
th coordinate of a given coordinate system is [2]

d

dt

(
∂L
∂q̇i

)
− ∂L

∂qi
= 0. (2)

The main goal of the present research is to describe and
predict the translational motion that a spherical rigid object
would exhibit in the presence of a constant gravitational field,
both with and without friction with air, over the surface of an-
other rigid object whose shape is described by the real part of
the surface Eq. (3). Figure 1 shows two possible examples of
such surface.

z = a(ρ− h)n (3)

FIGURE 1. Two examples of the type of surfaces described by Eq. (3). Surface 1 (a cone) hasa = 1, h = 0 andn = 1; Surface 2 hasa = 1,
h = 0 andn = 0.5. Thez-axis points vertically up through the symmetry axis of both surfaces.
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Equation (3) is stated in cylindrical coordinates, which
simply are another set of coordinates axes that describe the
position of any point in space by specifying the values of
three cylindrical coordinates:ρ, φ, andz, which are com-
monly called theradius, azimuth, andheightcoordinates, re-
spectively. Their mathematical connection with the cartesian
coordinate system is stated in the following set of equations,
including their unit vectors and the equation for velocity in
this particular coordinate system [3]:

x = ρ cosφ y = ρ sin φ z = z

ρ̂ = x̂ cosφ + ŷ sin φ

φ̂ = −x̂ sin φ + ŷ cos φ z = z

~v = ρ̇ρ̂ + ρφ̇φ̂ + żẑ. (4)

Figure 2 shows the diagram of a standard cylindrical co-
ordinate system with its corresponding unit vectors. For this
kind of coordinate system we have that the generalized coor-
dinatesqi take the following form:

q1 = ρ q̇1 = ρ̇

q2 = φ q̇2 = φ̇

q3 = z q̇3 = ż.

The family of surfaces in which this investigation is con-
cerned about has the characteristic of being rotationally sym-
metric around thez-axis, or in other words, it exhibitsaz-
imuthalsymmetry, which is implicitly present in Eq. (3) by
the independence of thez-coordinate on theφ-coordinate.

FIGURE 2. Diagram of a standard cylindrical coordinate system
with radiusρ, azimuthφ, and heightz (MIT, 2005, p. 6).

For the sake of simplicity it is also considered that the
constant gravitational field points along the negativez-axis,
and thus interacts with any object in the form of gravitational
potential energy described by

V (z) = mgz. (5)

Throughout this research, the obtained solutions are ana-
lyzed for arbitrarily selected special cases with theWolfram
Mathematicasoftware to illustrate the behavior of the system
in two and three dimensions, as well as the motion in each
coordinate as a function of time. In order to achieve this, the
results are presented in the form of plots and graphs which
represent the solutions to the equations of motion obtained
by giving the software enough parameters to calculate. These
parameters will be specified for each case.

It is worth mentioning that, as a consequence of the so-
lution’s generality, the measurement system used in this re-
search may well be any self-consistent and well-defined mea-
surement system, but in order to stick with international stan-
dards, all the quantities presented on this research are given
in the International System of Units. For example, ifz andρ
from the surface Eq. (3) are quantities that represent distance
and thus have units of length, and taking into consideration
that the exponentn is a unitless constant, then bothz andρ
are measured in metersm and the constantsh anda are given
in m andm1−n respectively, letting us preserve the consis-
tency of our units.

2. Frictionless model

2.1. Derivation of the equations of motion

Let us derive the equations of motion for a solid sphere
rolling on top of any surface described by Eq. (3), under the
assumptions that the rolling-without-slipping condition (see
Eq. (8)) is met for every timet and that there is no energy loss
caused by dissipative forces like friction (whether with air or
with the surface itself). Let us also approximate the motion in
such a way that we are able to assume that the object’s center
of mass lies in the point of contact with the surface, which
could actually be done if we demand the condition that the
radiusr of the sphere is sufficiently small such that the fixed
normal distancer of the sphere’s center of mass to the point
of contact with the surface is negligible.

By computing the scalar product of Eq. (4) for the
sphere’s velocity with itself, we find the equation for the we
find that the equation for the squared speed is:

|~v|2 = ρ̇2 + ρ2φ̇2 + ż2. (6)

Let us consider a solid sphere whose moment of inertia
around an axis parallel to the immediate surface on which the
object lies (and therefore around the axis on which it momen-
tarily rotates) is described by the following equation

I = kmr2, (7)

Rev. Mex. Fis. E65 (2019) 128–151



130 D.M. MARÍN QUIROZ

wherek is a dimensionless constant that may take any value
from cero (if the mass is concentrated almost entirely on the
sphere’s center) to 2/3 (the corresponding value ofk for a
hollow sphere). As an example we could havek = 2/5 for a
uniformly solid sphere.

With this in mind, let us recall that the rolling-without-
slipping condition takes the following form

|~ω| = |~v|
r

, (8)

where ~ω is the angular velocity vector that describes the
sphere’s rotation around its rotational axis. By using Eqs. (6),
(7) and (8), we are able to write the equation for the total ki-
netic energyT of the sphere

T =
1
2
m|~v|2 +

1
2
I|~ω|2 =

1
2
m|~v|2 +

1
2
mk|~v|2

=
1
2
m(1 + k)|~v|2. (9)

In addition, it can be observed that the surfaces described
by Eq. (3) represent an holonomic constraint to the motion
of our object. An holonomic constraint is simply a constraint
that can be written as a relationship between the coordinates
being used and does not depend on the path that our object
has taken. This constraint can be used to reduce the number
of coordinates on which theLagrangiandepends.

In order to achieve this, let us find the squared time
derivative of Eq. (3) which, as a consequence of its role as
constraint of the sphere’s motion, also represents the height
z of the sphere for every timet (the limits for this condition
are explored in the sectionLimitations of the Model):

ż2 = a2n2(ρ− h)2(n−1)ρ̇2. (10)

By substituting the Eq. (10) and the surface Eq. (3) into
(6) and (5), respectively, we are able to find the equations for
the squared speed and potential energy solely as functions of
ρ, ρ̇ andφ̇:

|~v|2 = (1 + a2n2(ρ− h)2(n−1))ρ̇ + ρ2φ̇2 (11)

V (ρ) = amg(ρ− h)n. (12)

Likewise, by substituting the kinetic energy Eq. (9) into
the Lagrangian (1) we get:

L(q1, . . . , qN , q̇1, . . . q̇N ) =
1
2
m(1 + k)|~v|2 − V.

or, with Eqs. (11) and (12):

L(ρ, ρ̇, φ̇) =
1
2
m(1 + k)

× ((1 + a2n2(ρ− h)2(n−1))ρ̇2 + ρ2φ̇2)

− amg(ρ− h)n. (13)

Forq1 andq2 we have the following results for the corre-
sponding partial derivatives:

∂L
∂ρ

= m(1 + k)
[
a2n2(n− 1)(ρ− h)2n−3ρ̇2

+ ρφ̇2 − ang(ρ− h)n−1

(1 + k)

]

∂L
∂ρ̇

= m(1 + k)(1 + a2n2(ρ− h)2(n−1))ρ̇

d

dt

(
∂L
∂ρ̇

)
= m(1 + k)

[
(1 + a2n2(ρ− h)2(n−1))ρ̈

+ 2a2n2(n− 1)(ρ− h)2n−3ρ̇2

]

∂L
∂φ

= 0

∂L
∂φ̇

= m(1 + k)ρ2φ̇

d

dt

(
∂L
∂φ̇

)
= m(1 + k)[ρ2φ̈ + 2ρρ̇φ̇]. (14)

Therefore, the Euler-Lagrange equation (1) takes the fol-
lowing form for each coordinate:

d

dt

(
∂L
∂ρ̇

)
− ∂L

∂ρ
= 0 (15)

d

dt

(
∂L
∂φ̇

)
= 0 ↔ ∂L

∂φ̇
= constant, (16)

where from (16) we have now found thatφ is an ignorable
coordinate, which is a direct consequence of the system’s az-
imuthal symmetry. By substituting the derivatives from (14)
into Eqs. (15) and (16) we obtain the following two equations
of motion:

m(1 + k)
[
(1 + a2n2(ρ− h)2(n−1))ρ̈ + a2n2(n− 1)

× (ρ− h)2n−3ρ̇2 − ρφ̇2 − ρφ̇2

+
ang(ρ− h)n−1

(1 + k)

]
= 0 (17)

m(1 + k)ρ2φ̇ ≡ (1 + k)Lz. (18)

In the last step the constant(1 + k)Lz has been intro-
duced, whereLz = mρ2φ̇ represents thez-component of
the angular momentum of the object’s center of mass with
respect to the origin, a quantity that must be conserved ac-
cording to Eq. 16, and thus, lets us already derive its own
conservation law. Because this quantity keeps constant along
the complete motion of the sphere, its magnitude must always
be the same regardless of time, including att = 0 (which can
be arbitrarily selected), where we have:

Lz = mρ(0)2φ̇(0) = constant. (19)
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By substituting this last equation into the equation of mo-
tion for theφ coordinate (18) we get:

φ̇ =
ρ(0)2φ̇(0)

ρ2
. (20)

Likewise, by substituting Eq. (20) into Eq. (17) and di-
viding bym and(1+k) - which we assume not to be equal to
cero - we finally get a nonlinear ordinary differential equation
for ρ (see Eq. (21)), whose solution lets us immediately know
the motion of the sphere along theφ andz coordinates, the
former by direct integration of Eq. (20), and the latter by di-
rect substitution into the surface Eq. (3), letting the sphere’s
translational motion be fully described by the following set
of equations:

(1 + a2n2(ρ− h)2(n−1))ρ̈ + a2n2(n− 1)

× (ρ− h)2n−3ρ̇2 − ρ(0)4φ̇(0)2

ρ3

+
ang(ρ− h)n−1

(1 + k)
= 0 (21)

φ(t) =
∫

ρ(0)2φ̇(0)
ρ(t)2

dt (22)

z = a(ρ− h)n. (23)

These equations can be numerically solved when all of
the following parameters are specified:

• Three surface constants:a, h, n

• One rigid body parameter:k

• One gravitational constant:g

• Four initial conditions:ρ(0), ρ̇(0), φ(0), andφ̇(0).

2.2. Analysis of special cases without friction

In order to show the solutions to the motion described by
Eqs. 21, 22, and 23, we proceed to analyze their predictions
for certain special cases. Surfaces one through six (-shown
in Fig. 3, along with the geometrical parameters and initial

FIGURE 3. Six special cases to analyze. Surfaces 1, 2, 3, 4, 5, and 6 are described by Eq. (3) and correspond to the followinga, h, andn
values: Surface 1: (1, 0, 1), Surface 2: (1, 0, 0.5), Surface 3: (1, 2, 2), Surface 4: (0.2, 1.8, 3), Surface 5: (-1, 0, -1), and Surface 6: (-0.1,
0.08, -1/3). Surface 6 shows a central protuberance due to the existence of a vertical asymptote inρ = h = 0.08. Such protuberance in the
region−h < ρ < h is not correctly depicted by the computer software used. The reader can safely ignore such region since it never interacts
with the motion of the sphere as long as the sphere’s radius remains negligible, its motion satisfiesρ(0) > h, and it always keeps in contact
with the surface.
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132 D.M. MARÍN QUIROZ

values indicated) have been selected to be analyzed as these
special cases to illustrate the behavior of the system. The fol-
lowing are the sets of corresponding parameters{

{aj , hj , nj}, {kj}, {gj}, {ρ(0)j , ρ̇(0)j , φ(0)j , φ̇(0)j}
}

being corresponded by (recalling thatk andn are dimension-
less) the units set{

{m1−n, m, (no units)}, {(no units)},
{m

s2

}
,

{
m,

m
s

, rad,
rad
s

}}

for eachj-th special case to be analyzed, withj = 1, 2,. . . ,7:

• Special Case 1 - Surface 1:{ {1,0,1}, {0.4}, {1},
{1,1,0,1}}

• Special Case 2 - Surface 2:{{1,0,0.5}, {0.6}, {1},
{0.5,0.5,1,-1}}

• Special Case 3 - Surface 3:{{1,2,2}, {0.01}, {1},
{1.3,0.5,0.1,0.5}}

• Special Case 4 - Surface 4:{{0.2,1.8,3}, {0.1}, {0.7},
{0.6,0.7,1,1}}

• Special Case 5 - Surface 5:{{-1,0,-1}, {0}, {1},
{1,0.5,0,1}}

FIGURE 4. Parametric solutions for special cases 1 and 2 in thex− y plane.

FIGURE 5. Parametric solutions for special cases 3 and 4 in thex− y plane.
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FIGURE 6. Parametric solutions for special cases 5 and 6 in thex− y plane.

FIGURE 7. Parametric solution for special case 7 in thex−y plane.

• Special Case 6 - Surface 6a:{{-0.1,0.08,-1/3}, {0.5},
{1}, {0.5,0,1,0.22600245}}

• Special Case 7 - Surface 6b:{{-0.1,0.08,-1/3}, {0.5},
{1}, {0.5,0,1,0.22600246}}.

This goal is achieved by using the technical computer
software programWolfram Mathematica, which is able to
find a numeric solution for Eqs. (21), (22), and (23), when
all the previous parameters are specified. The corresponding
pieces of code used to solve these equations are shown in the
Appendix. We proceed to show the solutions to the motion in
thex− y plane for each of these seven special cases.

2.2.1. 2D parametric plots

The motion in thex − y plane is presented for eachjth spe-
cial case in Figs. 4 – 7 evidencing the cyclic behavior of the
system with stable orbits for cases 1, 2, 3, 4, 5, and 6. They
also show that the motion takes place between some maxi-
mum and minimum values ofρ in the first six cases while it
describes a monotonic (clockwise or anticlockwise) motion
in theφ-coordinate. This last result is a consequence of the
conservation of angular momentum described by Eq. (19),
showing thatφ̇ has always the same sign. Because of the non-
decaying and cyclic motion of the sphere, it can be seen that
there is no loss of energy in any trajectory, and thus, it sat-
isfies the conditions set in itsLagrangianregarding the con-
servative nature of the constant gravitational field. To further
analyze the motion presented for Surface 7, let us first ob-
serve the motion in its full three-dimensional nature in Figs. 8
to 14.

2.2.2. 3D parametric plots

From these solutions to the equations of motion it can be seen
that the holonomic constraints are satisfied by all the trajec-
tories that the rolling sphere describes. Besides this, it can
also be noticed that special case 7 has no stable orbits, but
instead, its motion decays into circles of decreasing radius
and itsz-coordinate tends to minus infinity as time increases.
Although each of the trajectories described by the sphere in
special cases 6 and 7 are done over the same Surface 6, it can
be seen that they are quite different since special case 6 has
fully stable orbits just as the other previous five special cases
while special case 7 does not.
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FIGURE 8. Three-dimensional parametric plot of the solution for Special Case 1.

FIGURE 9. Three-dimensional parametric plot of the solution for Special Case 2.

FIGURE 10. Three-dimensional parametric plot of the solution for Special Case 3.

FIGURE 11. Three-dimensional parametric plot of the solution for Special Case 4.
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FIGURE 12. Three-dimensional parametric plot of the solution for Special Case 5.

FIGURE 13. Three-dimensional parametric plot of the solution for Special Case 6.

FIGURE 14. Three-dimensional parametric plot of the solution for
Special Case 7.

This discrepancy in the motion is a result of the slight dif-
ference between the parameters given to each special case 6
and 7, which differ by1 × 10−8 rad/s of their initial values
for φ̇(t), demonstrating that a relatively small change on the
initial conditions may create a whole different outcome. It is
also important to mention that the solutions that exhibit stable
orbits show characteristic precession on them. Let us further
analyze the motion of the rolling sphere by plotting the solu-
tion of its movement on the three cylindrical coordinates and
their corresponding time derivatives as functions of time in
Figs. 15 and 16.

2.2.3. Coordinates and speeds as functions of time

The motion in all three coordinates and their time-derivatives
is found to describe a periodic behavior that is characteris-
tic of the null loss of energy in the system. This statement
holds just for the radial and azimuthal motions of special
case 7, while an increasing and non-cyclic behavior is shown
for the z-coordinate, which as was previously seen, with a
slight change of initial conditions describes stable orbits. It is
evident that certain asymptotic surfaces (like Surface 6) will
exhibit non-cyclic motion on thez-coordinate under certain
circumstances, since the motion of the sphere in these cases
may approach to freefall as time tends to infinity.

The role of the conservation law Eq. (19) for the angular
momentum is evidenced when comparing both the plot of the
radial coordinateρ(t) and the plot of the angular speedφ̇(t)
as functions of time, for whenever the former is a minimum,
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FIGURE 15. Plot of the solutions to the motion for the three coordinates and their time-derivatives as functions of time for special cases 1,
2, 3, and 4. For the sake of clarity, it was chosen not to plotφ(t) but insteadsin(φ(t)). Nevertheless, such decision was arbitrary, so plotting
cos(φ(t)) instead would have served the same purpose.

then the latter is a maximum, and vice versa. The symmetry
of the motion of the sphere is not just a direct result of the
azimuthal symmetry of the surface but also a consequence of
the symmetry of the sphere itself, letting the motion repeat
indefinitely for the cases in which stable orbits exist.

3. Approximation of an effective potential en-
ergy

By recalling the kinetic and potential energies (from the La-
grangian, in Eq. (13)) along with the conservation of thez-
component of the sphere’s angular momentum Eq. (19), we
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FIGURE 16. Plot of the solutions to the motion for the three coordinates and their time-derivatives as functions of time for Special Cases 5,
6, and 7.

can approximate an effective potential energy for certain spe-
cial cases of the sphere’s motion.

The total energy of the system is just the sum of its kinetic
and potential energies:

E = T + V. (24)

After substituting these energies from the Lagrangian
(19) into (24) and expanding the first term we get:

E =
1
2
m(1 + k)

(
(1 + a2n2(ρ− h)2(n−1))ρ̇2 + ρ2φ̇2

)

+ amg(ρ− h)n

E =
1
2
m(1 + k)(1 + a2n2(ρ− h)2(n−1))ρ̇2

+
1
2
m(1 + k)ρ2φ̇2 + amg(ρ− h)n, (25)

where we can recognize the first and second terms as the ra-
dial and angular kinetic energies, respectively. Furthermore,
by recalling that

Lz = mρ2φ̇ = constant, (26)

we can manipulate the angular kinetic energy term in the fol-
lowing way:

Tφ ≡ 1
2
m(1 + k)ρ2φ̇2 =

1
2
(1 + k)

(mρ2φ̇)2

mρ2

=
1
2
(1 + k)

L2
z

mρ2
.

Therefore, by substituting this last result into the energy
Eq. 25 we get:
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E =
1
2
m(1 + k)

(
1 + a2n2(ρ− h)2(n−1)

)
ρ̇2

+
1
2
(1 + k)

L2
z

mρ2
+ amg(ρ− h)n. (27)

Notice that the last two terms depend only on the coordi-
nateρ in such a way that they could be merged into a unique
effective potential energy for the system if the factor before
ρ̇2 was just equal to one (since the first term would become
dependent only oḟρ), which suggests that under the criterion
that

a2n2(ρ− h)2(n−1) ¿ 1

or, becausea2n2 is a positive quantity that can take any de-
sired value

(ρ− h)2(n−1) ¿ 1
a2n2

, (28)

then the energy equation for the rolling sphere becomes

E ≈ 1
2
m(1 + k)ρ̇2

+
1
2
(1 + k)

L2
z

mρ2
+ amg(ρ− h)n, (29)

which can be rewritten in the following way

E =
1
2
m(1 + k)ρ̇2 + Veff(ρ), (30)

with Veff(ρ) defined as:

Veff(ρ) ≡ 1
2
(1 + k)

L2
z

mρ2
+ amg(ρ− h)n. (31)

Equation (31) is the effective potential energy of the
rolling sphere when its motion is governed under Eq. (28).

3.1. Gravitational well

When solving the famous “Two Body Problem” in classical
gravitation, there is a common parameter called the “reduced
mass” of two objects with massesm1 andm2, which is de-
fined as [5]:

µ =
m1m2

m1 + m2
.

To make the following steps clearer, let us renamem1 and
m2 asM andm, respectively. If we consider the case where
M À m and take the limit asM goes to infinity we get:

lim
M→∞

µ = m.

This last result is important because the following cited
equations use the parameterµ. This parameter will be shown
asm since we will only be concerned with the caseM À m

due to the following comparison. We can notice the similar-
ity between Eq. (29) and the energy Eq. (32) for a particle of
mass m moving under the presence of the gravitational field
of a much larger massM that satisfies the conditionM À m
[6]:

EG =
1
2
mρ̇2 +

1
2

L2
z

mρ2
− GMm

ρ
, (32)

which has the corresponding effective potential energy func-
tion given by [1]

Veff(ρ) =
1
2

L2
z

mρ2
− GMm

ρ
.

Let us now recall the approximated energy equation for
the rolling sphere:

E ∼= 1
2
m(1 + k)ρ̇2

+
1
2
(1 + k)

L2
z

mρ2
+ amg(ρ− h)n.

If our desire is to obtain a surface that generates an effec-
tive potential energy function for the rolling sphere similar to
that one felt by the gravitationally-bound massm under the
conditionM À m, we could just leth = 0, try to make
k (from now on equal to cero) as small as possible, perhaps
concentrating most of the sphere’s mass into a small region
compared to its radius in order to minimize its moment of
inertia around any instantaneous rolling axis (and thus the
constantk), and also let the following comparison between
potential energies be:

amgρn = −GMm

ρ
,

aρn = −
(

GM

g

)
1
ρ
, (33)

where it can clearly be seen thata andn must take the fol-
lowing values:

a = −
(

GM

g

)
, n = −1.

The surface obtained by substituting these parameters
into Eq. (3) is shown in Fig. 17.

The rolling object cannot be let to roll with any desired
initial condition if we wish to obtain a similar motion to that
of an object moving through the previously described grav-
itational field, for we must remember the criterion used to
derive the effective potential (31) and the approximated en-
ergy Eq. (29). By substituting the last values fora andn into
the Eq. (28) the criterion now becomes:

ρ À
√

GM

g
. (34)

This condition may be held if we recall that a particle that
moves under a gravitational field with total energyE < 0 de-
scribes an elliptical orbit with its motion determined by the
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FIGURE 17. Surface 5 is the surface that mimics Newtonian grav-
itation under criterion in Eq. (30) (takingGM/g = 1 for demon-
stration purposes).

following set of equations [7,8]:

ρmin = a′(1− e) (35)

E = −GMm

2a′
(36)

e =

√
1 +

2EL2
Z

G2M2m3
(37)

LZ = mρ(0)2φ̇(0) (38)

EG =
1
2
m(ρ̇(0)2 + ρ(0)2φ̇(0)2)− GMm

ρ(0)
, (39)

wherea′ is the semimajor axis of the elliptical orbit,e is its
eccentricity (both constants determining the geometry of the
orbit),LZ is the angular momentum around thez-axis (which
is taken to cross one focus and be perpendicular to the plane
of motion of the particle), andEG is the total mechanical en-
ergy of the particle. Both of these last quantities -LZ and
EG- are conserved; the former as a result from Kepler’s Sec-
ond Law, and the latter as a consequence of the conservative
nature of the gravitational field.

Moreover, by substituting Eqs. (36) and (37) into the
Eq. (35) for the orbit’s periapsisρmin, using this quantity in
criterion (34) (for it represents the closest distance between
the object and the origin of our coordinate system), and in-
troducing an arbitrary new constantl to change the inequality
into an equation (which results in an increasing accuracy of
the model with an increasing value ofl) we get:

ρmin = −GMm

2E

(
1−

√
1 +

2EL2
Z

G2M2m3

)

≡ l

√
GM

g
. (40)

By substituting Eqs. (38) and (39) into this last Eq. (40)
we obtain the following relationship between the initial con-

ditionsρ(0), ρ̇(0), andφ̇(0):

ρmin = − GM

ρ̇(0)2 + ρ(0)2φ̇(0)2 − 2GM
ρ(0)

×




1−

√√√√√
1 +

ρ(0)4φ̇(0)2
(

ρ̇(0)2 + ρ(0)2φ̇(0)2 − 2GM
ρ(0)

)

G2M2




= l

√
GM

g
. (41)

We also get the natural result that this last equation is in-
dependent of the sphere’s massm and the value ofφ(0), for
the last one just rotates the resulting ellipse in the counter-
clockwise direction for increasing initial values ofφ(0) [9],
and the first one shows the analogy with classical gravitation
where, under the conditionM À m, the object’s orbit is in-
dependent of its own mass. On the other hand, we may solve
this equation by choosing the value of any desired two vari-
ablesρ(0), ρ̇(0), or φ̇(0) and using mathematical software to
solve for the third.

It is also evident that the criterion

ρ(0) > l

√
GM

g
(42)

must always be met; forρ(0) should never be smaller than
ρmin, which is by definition the smallest distance from the or-
biting massm to the much larger massM , or in other words,
the periapsis of the sphere’s elliptical orbit. Because our de-
sire is to obtain elliptical orbits, there’s another condition that
must be satisfied byρ(0), ρ̇(0), andφ̇(0):

EG =
1
2
m(ρ̇(0)2 + ρ(0)2φ̇(0)2)− GMm

ρ(0)
< 0. (43)

If a certain value ofρ(0) that satisfies (42) is given, then
the values oḟρ(0) andφ̇(0) that will also satisfy the energy in-
equality (43) and Eq. (41) can be determined by using math-
ematical software. Let us proceed to observe some examples
of the solutions to Eqs. (21) and (22) when the sphere rolls
over Surface 5, under criterion (34), and thus, with its initial
conditions satisfying the relationships (41), (42) and (43) in
Figs. 18 and 19.

These solutions to the motion seem to describe elliptical
orbits as those performed by astronomical objects around a
relatively massive star, each with different initial conditions
that satisfy relationships (41), (42) and (43). It is important to
remember that these orbits are just approximately elliptical,
if we let the sphere orbit for enough time, this approximated
model will no longer be accurate and the motion will stop
describing perfectly elliptical orbits, as is the case of the “El-
liptic” Orbit 6 shown in Fig. 19. It is also worth comparing
these trajectories to those followed by the sphere in Special
Case 5 (shown in Figs. 6 and 12), where it also rolls over
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FIGURE 18. Parametric solutions for the movement of the sphere on Surface 5 and under the previous conditions, describing elliptical orbits.
The following are the parametersG, M , g, l, ρ(0), φ(0), ρ̇(0), andφ̇(0) used to create these graphs, all of them in their respective MKS
units. Orbit 1: (1, 1, 1, 70, 70, 0, 0, 0.00231473), orbit 2: (1, 1, 1, 90, 100,π, 0.0372136, -0.00124006), orbit 3: (6× 10−11, 2× 10−30, 10,
60,1 × 1012, −π/4, 10788.3,6.82306 × 10−9) [parameters comparable with the ones from planets in our solar system], orbit 4: (1, 1, 1,
70, 70, 0, 0, 0.00171473).

FIGURE 19. Parametric solutions for the movement of the sphere on Surface 5 and under the previous conditions, describing elliptical orbits.
The following are the parametersG, M , g, l, ρ(0), φ(0), ρ̇(0), andφ̇(0) used to create these graphs, all of them with their respective MKS
units. Orbit 5: (4, 3, 10, 50, 100,π/3, 0.229464, 0.00327871), orbit 6: (2,1,1,70,400,0,0,0.000111352).

Rev. Mex. Fis. E65 (2019) 128–151



MOTION OF A ROLLING SPHERE ON AN AZIMUTHALLY SYMMETRIC SURFACE 141

FIGURE 20. Code used inWolfram Mathematicato obtain the initial conditions required to produce Elliptic Orbit 5, a similar procedure was
used for creating the other five elliptic orbits.

Surface 5 but without describing elliptical orbits, evidencing
that its initial conditions do not satisfy Eq. (41).

The code used inWolfram Mathematicato solve the sys-
tem of relations (41) and (43) that determines the values that
ρ̇(0) and φ̇(0) can take for a given initial radial condition
ρ(0) is shown with the specific example of Elliptic Orbit 5
in Fig. 20. After obtaining the possible values forρ̇(0) and
φ̇(0), any value within the output range forρ̇(0) can be se-
lected, automatically determining the values thatφ̇(0) can
take to satisfy the conditions (41) and (43), one positive and
one negative with same modulus, demonstrating once again
the presence of the azimuthal symmetry of the system.

4. Modelling with friction

4.1. Introduction of friction into the Lagrangian

The previous model (the one described by Eqs. (21), (22),
and (23) is not accurate when considering the presence of
non-conservative forces as friction. If we assume that the
rolling-without-slipping condition takes place, we can notice
that “no loss of mechanical energy occurs [due to friction be-
tween the sphere and the surface] because the contact point is
at rest relative to the surface at any instant” since this is part of
the definition of the rolling-without-slipping condition [10].
Therefore, under this idealistic condition, we would just have
to concern about the friction that the rolling sphere experi-
ences with air if it is our wish to describe the motion of the
sphere under these circumstances.

Let us consider a force of friction between the sphere and
the air as a function of the rolling object’s speed with the fol-

lowing form:

~F = −(c1|~v|+ c2|~v|2 + . . . + cN |~v|N )v̂ =

−
(

N∑

k=1

ck|~v|k
)

v̂ = −ψ(|~v|)v̂, (44)

where:

ψ(|v̂|) ≡
(

N∑

k=1

ck|~v|k
)

.

It is considered that friction between air and the sphere
takes this form since “any reasonable function is expected to
have a Taylor series expansion,F = a + bv + cv2 + . . .. For
low enoughv, the first three terms should give a good approx-
imation, and, sinceF = 0 whenv = 0 the constant term,a,
has to be zero” [1]. Therefore there is no need to consider a
constantc0 in Eq. (44). Likewise, with the objective of not
losing generality, a “full” (N -terms) power series expansion
of the friction force is considered in the following process.

According to Goldstein, “if not all the forces acting on
the system are derivable from a potential, then Lagrange’s
equations can always be written in the form” [11]

d

dt

(
∂L
∂q̇i

)
− ∂L

∂qi
−Qi = 0, (45)

with Qi defined as:

Qi ≡ ~F · ∂~v

∂q̇i
= −ψ(|~v|)∂|~v|

∂q̇i
, (46)

where in the last step Eq. (44) has been used. By recalling
the Eq. (11) for the sphere’s squared speed in cylindrical co-
ordinates, we have:

|~v|2 = (1 + a2n2(ρ− h)2(n−1))ρ̇2 + ρ2φ̇2

≡ w1q̇
2
1 + w2q̇

2
2 , (47)
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with:

w1 ≡ (1 + a2n2(ρ− h)2(n−1))

w2 ≡ ρ2.

And by calculating the derivative of (47) with respect to
q̇i, with i ∈ {1, 2}, we get:

∂|~v|
∂q̇i

= wi
q̇i

|~v| .

Likewise, by substituting this last result into Eq. (46) we
get:

Qi = −ψ(|~v|) ∂~v

∂q̇i
= −

(
N∑

k=1

ck|~v|k
)

wi
q̇i

|~v|

= −
(

N∑

k=1

ck|~v|k−1

)
wiq̇i. (48)

Therefore the Euler-Lagrange Eq. (45) for thei-th coor-
dinate is:

d

dt

(
∂L
∂q̇i

)
− ∂L

∂qi
+

(
N∑

k=1

ck|~v|k−1

)
wiq̇i = 0. (49)

And now by substituting Eqs. (14) and (47) into (49) for
theρ andφ-coordinates, as well as for thei-th constants, we
get the equations of motion (50) and (51), which along with

Eq. (52), let us once again determine the full translational
motion of the sphere but now under the presence of a force of
friction as described by Eq. (44):

m(1 + k)
[
(1 + a2n2(ρ− h)2(n−1))ρ̈

+ a2n2(n− 1)(ρ− h)2n−3ρ̇2 − ρφ̇2

+
ang(ρ− h)n−1

(1 + k)

]
+

(
N∑

k=1

ck|~v|k−1

)

× (1 + a2n2(ρ− h)2(n−1))ρ̇ = 0 (50)

m(1 + k)
[
ρ2φ̈ + 2ρρ̇φ̇

]
+

(
N∑

k=1

ck|~v|k−1

)
ρ2φ̇ = 0 (51)

z = a(ρ− h)n. (52)

In analogy with part one, this system of nonlinear coupled
ordinary differential equations can be numerically solved by
specifying each of the following parameters:

• Three surface constants:a, n, h.

• Two rigid body parameters:m, k

• N friction constants:c1, c2, . . .cN

• Four initial conditions:ρ(0), ρ̇(0), φ(0), andφ̇(0).

4.2. Analysis of Special Cases with Friction

4.2.1. 2D parametric plots

FIGURE 21. Parametric solutions in thex− y plane for special cases 1 and 2 with friction. The plot for Surface 1a was made with the same
parameters as Special Case 1 but withk = 0.01 andρ̇(0) = 0, which in the absence of friction, would create an almost-circular orbit.
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FIGURE 22. Parametric solutions in thex− y plane for special cases 3, 4, and 5 with friction.

4.2.2. 3D parametric plots

FIGURE 23. Three-dimensional parametric plots of the solutions for the special case 1 and for Surface 1a with friction.

FIGURE 24. Three-dimensional parametric plots of the solutions for special cases 2 and 3 with friction.
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FIGURE 25. Three-dimensional parametric plots of the solutions for special cases 4 and 5 with friction.

4.2.3. Coordinates and speeds as functions of time

FIGURE 26. Plot of the motion in the three cylindrical coordinates and their corresponding time-derivatives as functions of time for special
case 1.
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FIGURE 27. Plot of the motion in the three cylindrical coordinates and their corresponding time-derivatives as functions of time for Surface
1a and special cases 2, 3, and 4.

FIGURE 28. Plot of the motion in the three cylindrical coordinates and their corresponding-time derivatives as functions of time for special
case 5.

4.2.4. Energies as functions of time

The previous solutions to the motion of the sphere were nu-
merically solved withWolfram Mathematicaby specifying
the same parameters as in the Special Cases analyzed in Part

1, plus the new special case for Surface 1a where the same
parameters as special case 1 were used except for those spec-
ified in Fig. 21’s caption. Different values forN and theck

coefficients in Eqs. (50) and (51) were selected for each case
to show the behavior of the system under arbitrarily different
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FIGURE 29. Plot of the dependence of the KineticT (t) (Eq. 9), PotentialV (t) (Eq. 5), and Total MechanicalE(t) = T (t) + V (t) energies
as functions of time for special cases 1, 2, 3, 4, 5, and Surface 1a with friction.

forces of friction. These equations may take as input any de-
sired value for such quantities, resulting in different but corre-
sponding solutions to the motion as determined by Eqs. (50),
(51) and (52). Eachck has its corresponding unit kg m1−k

sk−2.
Friction Parameters:

• Special Case 1 - Surface:c1 = 0.01

• N/A - Surface 1a:c1 = 0.01, c2 = 0.01

• Special Case 2 - Surface 2:c1 = 0.01, c2 = 0.02

• Special Case 3 - Surface 3:c1 = 0.08

• Special Case 4 - Surface 4:c1 = 0.040, c2 = 0.030,
c3 = 0.020. c4 = 0.010

• Special Case 5 - Surface 5:c1 = 0.001, c2 = 0.001,
c3 = 0.002, c4 = 0.002, c5 = 0.003, c6 = 0.003.

The effect of the loss of kinetic and potential energy in the
system can clearly be seen in the 2D and 3D Parametric Plots
of the motion shown in Figs. 21 to 25, both by the decrease
of the orbits’ radius and/or the following stationary motion
that is obtained from non-asymptotic surfaces. This can intu-
itively (although of course not necessarily) indicate that the
equations of motion obtained are in agreement with reality
when the sphere is directly experiencing a friction force as
described by Eq. 44. It can also be observed that the motion
effectively stops in a potential valley when there is one -like
with Surface 3 in special case 3- while losing kinetic energy
and speed in both the radial and angular coordinates.

Furthermore, the plot of the coordinates and their time
derivatives as functions of time in Figs. 26, 27 and 28, re-
veal that the cyclic behavior of the sphere is deformed by
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the presence of friction, reducing or augmenting the ampli-
tude of the oscillations that these functions exhibit, as well
as stretching or compressing them along thet-axis when they
are plotted against time. From the energy graphs shown in
Fig. 29 it can be observed that the total mechanical energy
of the system decreases invariably as time goes by and as a
direct consequence of the energy dissipation that originates
from friction. Besides this, it is also worth noting the differ-
ent outcomes that Eqs. (50) and (51) predict for special case 5
(on the asymptotic Surface 5), where the sphere falls to ever-
decreasing negativez-values as shown in Figs. 22 and 25
with the same conditions that in the frictionless case would
make the sphere describe stable orbits as shown in Figs. 6
and 12.

The plot of speeds against time for this last case in Fig. 28
reveals the important prediction that the sphere must reach a
terminalz-coordinate-speed as it falls with aerodynamic fric-
tion, as well as an asymptotic behavior to cero for the speed in
theρ andφ-coordinates. It is also worth noting that Eqs. (50)
and (51) are dependent on the massm of the sphere unless
all their friction coefficients equal cero, where the equations
become independent ofm once again as in the frictionless
case. In fact, Eqs. (50) and (51) are found to reduce (as they
should) to Eqs. (21) and (22) from the frictionless case when
all theck ’s are equal to cero.

5. Limitations of the model

The general equation for the normal force over the rolling
sphere must be derived for the case with friction (and thus
implicitly for the frictionless case) in order to obtain its lim-
itations: the sphere is no longer restricted to move under the
holonomic constraint if the magnitude of the normal force
is negative at any moment, for it would stop being in con-
tact with the surface and thus its motion would be uncon-
strained. To accomplish this we proceed to use the method
of Lagrange’s Undetermined Multiplierswith the surfaces’
holonomic constraint, which is useful when “you wish to de-
termine forces of constraint using the Lagrangian approach”
[12].

The following holonomic constraint for the motion of the
sphere was introduced for the frictionless case since it is just
the surface Eq. (3):

f(z, ρ) = z − a(ρ− h)n = 0. (53)

In order to use Lagrange’s multipliers to obtain the nor-
mal force on the sphere as a function of time, we let each one
of Lagrange’s equations to be [5]:

d

dt

(
∂L
∂q̇i

)
− ∂L

∂qi
−Qi = λ

∂f

∂qi
, (54)

whereλ is called the Lagrange Multiplier andf is the pre-
vious holonomic constraint. This equation must be used
for each coordinate without substituting the holonomic con-
straint in the left side of Eq. 54, for we must deal with more

equations than degrees of freedom in order to use the La-
grange Multipliers and get to know the constraint forces [13].

The generalized constraint force corresponding to the ith
generalized coordinate is given by [5]:

Fi = λ
∂f

∂qi
. (55)

This generalized force “is a force if the corresponding
generalized coordinate is a spatial coordinate and a torque if
the corresponding generalized coordinate is an angular coor-
dinate” [14]. For each of our three cylindrical coordinates we
get:

Fp = λ
∂f

∂ρ
= −λan(ρ− h)n−1,

Fz = λ
∂f

∂z
= λ,

Fφ = λ
∂f

∂φ
= 0,

As we can see, there is no generalized force (torque) on
the φ coordinate due to the azimuthal symmetry of the sys-
tem, and therefore, the normal force will be the norm of the
normal force vector (56):

~N(t) = λ
∂f

∂ρ
ρ̂ + λ

∂f

∂z
ẑ (56)

| ~N(t)| =
(

3∑

i=1

F 2
i

)1/2

=

√(
λ

∂f

∂ρ

)2

+
(

λ
∂f

∂z

)2

= λ(1 + a2n2(ρ− h)2(n−1))1/2. (57)

Now we want to eliminateλ from (57) to obtain| ~N(t)|
as a function of the coordinates whose behavior we already
know from Eqs. (50) and (51). By doing a similar procedure
as in Sec. 4.1 to obtainQρ for theρ-coordinate but now with-
out substituting the holonomic constraint in the equation for
the squared speed (using Eq. (4) as shown), we get:

Qρ = ~F · ∂~v

∂ρ̇
= −ψ(|~v|)∂|~v|

∂ρ̇
= −ψ(|~v|) ∂

∂ρ̇

× (ρ̇2 + ρ2φ̇2 + ż2)1/2 = −
(

N∑

k=1

ck|~v|k−1

)
ρ̇. (58)

Now, by substitutingQρ and Fρ into Eq. 54 for the
ρ-coordinate, remembering not to substitute the holonomic
constraint into the Lagrangian at its left-hand side, and calcu-
lating the corresponding partial derivatives, we obtain Eq. 59:

m(1 + k)(ρ̈− φ̇2ρ) +

(
N∑

k=1

ck|~v|k−1

)
ρ̇

= −λan(ρ− h)n−1. (59)
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FIGURE 30. Plot of the normal force that the surfaces exert over the rolling sphere in special cases 1, 2, 3, and 7, both with and without
friction as described in “Friction Parameters”.
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FIGURE 31. Plot of the normal force that the Surface 3 exerts over the rolling sphere from special case 3 and a modified version of it with
φ̇(0) = 3, both with friction as described in “Friction Parameters”.

A thorough procedure to obtain this last equation can be
found in the section “Appendix 2: Obtaining Eq. (59)”. Al-
ternatively, by isolating the Lagrange Multiplierλ we get:

λ = − 1
an(ρ− h)n−1

(
m(1 + k)(ρ̈− φ̇2ρ)

+

(
N∑

k=1

ck|~v|k−1

)
ρ̇

)
. (60)

Therefore, we find by substituting (60) into (57) that the
normal force’s modulus as a function of time will be

| ~N(t)| = − 1
an(ρ− h)n−1

(
m(1 + k)(ρ̈− φ̇2ρ)

+

(
N∑

k=1

ck|~v|k−1

)
ρ̇

)

× (1 + a2n2(ρ− h)2(n−1))1/2. (61)

Let us recall that in order for the model to be valid at all
times, the condition

| ~N(t)| ≥ 0 (62)

must always be met, meaning that if| ~N(t)| is at some time
t0 a negative function oft, then the equations of motion (50)
and (51) will stop describing the real motion of the system
because it will dissatisfy the holonomic constraint (53).

Examples of such function| ~N(t)| for some of the special
cases used to illustrate the predictions from Secs. 2 and 4 are
shown in Figs. 30 and 31 (note that| ~N(t)| is never negative
in these cases).

We can see from the plots of Fig. 30 that the magnitude
of the normal force can either decrease, increase, or stay the
same throughout the motion of the sphere when it is in the
presence of friction forces; while in the frictionless cases, the
normal force describes a periodic behavior when stable orbits
exist.

An interesting prediction that further exposes the differ-
ences between the friction and frictionless cases is that spe-
cial case 7 with friction on Surface 6b is found to describe an
asymptotic behavior to cero for the normal force, evidently
as a consequence that the speed on theazimuthalcoordinate
also tends to cero, while in the frictionless case the normal
force is found to have an asymptotic behavior to a constant
positive value as the sphere keeps describing falling orbits
around thez-axis.

Moreover, we can recall that the motion described in spe-
cial case 3 tends to stop in a potential valley on Surface 3 as
shown in Figs. 22 and 24, meaning that the normal force felt
by the sphere should tend to| ~N(t)| = mg as time tends to
infinity, exactly as shown in Fig. 31 (recall that for special
case 3 we havem = 1 andg = 1).

It is also important to show the plot of the normal force’s
modulus function (61) when the necessary conditions needed
to satisfy condition (62) are not met, as illustrated in Fig. 31
and created by using the initial conditionφ̇(0) = 3 that makes
the sphere have enough speed to stop being in contact with
the surface, thus forcing it to dissatisfy the holonomic con-
straint (53). All of the examples previously provided in this
paper follow at all times the condition (62), which is easily
unmet by letting the initial conditions describe a sufficiently
fast motion that turns| ~N(t)| into a negative function oft and
thus, make the sphere and surface be related no more by the
holonomic constraint.

6. Final remarks

The limitations and conditions of the models derived for the
rolling sphere must be strictly considered in order to achieve
the desired and previously described motion. These limita-
tions offer a path of possible future research when consider-
ing distinct types of friction with diverse functional depen-
dence on speed as well as the generalization to a wider space
of surfaces that may not necessarily be azimuthally symmet-
ric or single-termed functions of the radial coordinate.
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Further modeling may involve more complex friction
forces, since the one proposed in this research is strictly inac-
curate as it does not consider the chaotic interaction between
the rolling motion of the sphere and the air that surrounds it.
Likewise, the interaction of the sphere with the surface itself
remains unconsidered as neither the sphere nor the surface
are in reality perfectly rigid bodies and may not necessarily
follow at all times the rolling-without-slipping condition. In
addition, diverse types of gravitational fields could be as well
considered part of the system and may lead to further analo-
gies with other force fields as considered here with Newto-
nian Gravitation and classically depicted elliptical orbits.

Appendix

A. Code in mathematica

Figure 32 shows the code used for the model with friction in
Wolfram Mathematica.

B. Obtaining Eq. (59)

Here, the procedure to obtain Eq. (59) is shown. This equa-
tion comes from the substitution of a new Lagrangian (let us

call it L′) into the modified Euler-Lagrange equation (54) for
theρ-coordinate (Eq. B.1)

d

dt

(
∂L
∂ρ̇

)
− ∂L

∂ρ
−Qρ = λ

∂f

∂ρ
(B.1)

when the holonomic constraint (3) is not used and after the
corresponding partial derivatives from the resulting equation
are calculated.

The Lagrangianwithout substituting the constraint (as
now required by the method ofLagrange’s Undetermined
Multipliers) is:

L′ =
1
2
m(1 + k)|~v|2 − V,

L′(ρ, ρ̇, φ̇, z, ż) =
1
2
m(1 + k)(ρ̇2 + ρ2φ̇2 + ż2)−mgz.

Note that the only difference with the Lagrangian 2.08
from section 2.1 was not substituting the holonomic con-
straint into|~v|2 andV . Afterwards, all we have to do is to
substitute this lastLagrangianL′ into the modified Euler-
Lagrangeequation B.1 whenqi = q1 = ρ and calculate the
corresponding partial derivatives:

FIGURE 32. Code used inWolfram Mathematicato obtain the solutions to the equations of motion required to produce the graphs and plots
for special case 1, a similar procedure (with different parameters) was used to obtain the solutions to the other cases. “o[t ]” represents the
Normal Force FunctionN(t), likewise “p” and “f ” represent the coordinatesρ andφ, respectively.
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∂L′
∂ρ

= m(1 + k)φ̇2ρ

∂L′
∂ρ̇

= m(1 + k)ρ̇

d

dt

(
∂L′
∂ρ̇

)
= m(1 + k)ρ̈

Now, by substituting these equations into (54) we get:

m(1 + k)ρ̈−m(1 + k)φ̇2ρ−Qρ = λ
∂f

∂ρ
,

or, simplifying:

m(1 + k)(ρ̈− φ̇2ρ)−Qρ = λ
∂f

∂ρ
.

Finally, by substituting the values found forQρ in Eq.
(58) andλ(∂f/∂ρ) (in page 20) we get Eq. (59):

m(1 + k)(ρ̈− φ̇2ρ) +

(
N∑

k=1

ck|~v|k−1

)
ρ̇

= −λan(ρ− h)n−1.
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