
Education in Physics Revista Mexicana de Fı́sica E 18, 020206 1-24 JULY–DECEMBER 2021

Sphericalaccretion ofa perfect fluid onto a black hole

F. S. Guzmán
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In this academic paper we present in detail the numerical solution of the accretion of a perfect flui onto a black hole. The conditions are
very simple, we consider a radial flu being accreted by a Schwarzschild black hole. We present two scenarios: 1) the test fiel case in
which the flui does not affect the geometry of the black hole space-time background, and 2) the full non-linear scenario, in which the
geometry of the space-time evolves simultaneously with the flui according to Einstein’s equations. In the two scenarios we describe the
black hole space-time in horizon penetrating coordinates, so that it is possible to visualize that accretion actually takes place within the
numerical domain. In the non-linear scenario we solve the equations of geometry using the ADM formulation of General Relativity, with
very simple gauge and boundary conditions, and include diagnostics related to the apparent and event horizon growth. In view of the recent
spectacular discoveries by the Event Horizon Telescope (EHT) collaboration and future discoveries, the aim of this paper is to provide a
detailed description for interested students in Black Hole Astrophysics, of accretion onto black holes in the simplest scenario, which can be
introductory to understand the much more realistic magnetohydrodynamics accretion solutions used to model the EHT observations.
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1. Introduction

One of the outstanding recent breakthroughs in science is the
capture of the firs image of a black hole by the Event Hori-
zon Telescope collaboration. This result is a consequence
of intense observational and theoretical efforts that brought
together the largest array of telescopes ever, and the most
sophisticated theoretical models and simulations of plasma
dynamics around black holes [1].

The discovery and science around the image of black
holes contain important contributions on matter modeling
and data analysis for the transformation of observational
data into accurate physical scenarios. Matter models involve
magnetohydrodynamics (MHD) and radiation, coupled with
different degrees of complexity. For example, the plasma
around black holes in the EHT discovery, was supposed to
be a gas obeying the MHD equations under a garden variety
of magnetic fiel and environment conditions. With such a
number of simulations, during a post-process analysis, a cat-
alog of images was produced to compare with observations
using image classificatio methods [1].

Simulations provide the solution of a direct problem for
various combinations of gas and magnetic fiel configura
tions, black hole masses and various other parameters, which
are essential to construct an image catalog. The identificatio
of the simulations of the catalog with the astronomical obser-

vations define an inverse problem that determines the most
likely values of the parameters used in simulations. For a de-
scription of a simple direct-inverse problem in the context of
black hole images with simple flui conditions see e.g. [2]. In
this academic paper we focus on the basics of flui dynamics
of matter around black holes.

We illustrate the process of accretion considering the sim-
plest scenario, namely a Schwarzschild black hole and a
spherically symmetric accretion of a perfect fluid As sim-
ple as it is, all the involved technicalities form a considerable
set of details worth being aware of. The idea in this paper is
to be as detailed as possible, even if we deal with a simple
scenario.

The problem is solved in two cases: 1) the test flui case,
in which the matter does not affect the geometry of the space-
time, and 2) the full non-linear accretion that involves the
evolution of the space-time, which needs the solution of Ein-
stein’s equations simultaneously with the fluid s equations,
and illustrate the growth of the apparent and event horizon
of the black hole during the accretion. We expect the non-
linear case to be the state of the art in the symbiosis between
higher resolution observations and simulations in the near fu-
ture within the EHT research, of course with the General Rel-
ativistic MHD which is considerably more complex than the
case in this paper.
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The paper is organized as follows. In Sec. 2 we describe
the evolution equations of a perfect flui on top of the black
hole space-time background, so as the numerical methods
used to solve them. In Sec. 3 we present the solution for the
accretion process. In Sec. 4 we present the strategy to solve
Einstein’s equations for a spherically symmetric space-time
using simple gauge and boundary conditions; we analyze a
particular case in detail using important diagnostics of matter
and space-time dynamics. Finally in Section V we mention a
few fina comments.

2. Hydrodynamics equations on a spherically
symmetric space-time

The construction of the flui dynamics and space-time geom-
etry equations will be based on the 3+1 decomposition of the
space-time. The line element for a general space-time metric
in this approach reads [3]

ds2 = (−α2 + βiβi)dt2 + 2βidtdxi + γijdxidxj , (1)

where α is the lapse, βi the shift vector, γij is the 3-metric of
the spatial hypersurfaces of the space-timeΣt, with i, j label-
ing spatial coordinates and βi = γijβ

j . The normal vector to
Σt at each point of the space-time is given by nµ = gµνnν ,
where nν = (−α, 0, 0, 0) is the 1-form measuring the density
of hypersurfaces along the normal direction.

We consider the matter to be a perfect fluid whose stress-
energy tensor for a general space-time with metric gµν is

Tµν = ρ0huµuν + pgµν , (2)

where each volume element has rest mass density ρ0, specifi
enthalpy h = 1 + e + p/ρ0, internal energy e, pressure p and
4-velocity uµ.

With this metric one can construct expressions of the 4-
velocity of a flui element uµ = (u0, ui) in terms of the ve-
locities according to Eulerian observers:

u0 =
dt

dτ
=

W

α
=

1
α
√

1− vivi

,

vi =
ui

u0
=

ui

W
+

βi

α
, (3)

where t is the coordinate time associated to a flui element
from an Eulerian reference frame, τ the proper time mea-
sured by the element, vi the components of its 3-velocity and
W the Lorentz factor where vivi = γijv

ivj .
Relativistic hydrodynamics equations consist of the mass

conservation and the divergence-free nature of the stress-
energy tensor, whose covariant expressions are

∇µ(ρ0u
µ) = 0, (4)

∇µTµν = 0, (5)

where∇µ is the covariant derivative consistent with the met-
ric gµν , of the space-time, xµ = x0, x1, x2, x3 or xµ = x0, xi

are the coordinates of the space-time, where greek indices
label space-time coordinates 0, 1, 2, 3, whereas latin indices
1, 2, 3 label space coordinates of the hypersurfaces Σt.

These equations are the Relativistic Euler equations, and
can be cast in a flu balance set of laws based on the Valen-
cia formulation [4, 5]. These equations can be constructed if
the conservation laws are written such that the divergence is
applied on a vector fiel ξµ, so that we can use the formula
∇µξµ = (1/

√−g)∂µ(
√−gξµ). Equation (4) has already

this form and can be expanded immediately. However equa-
tion (5) can be brought to this form by calculating the diver-
gence of the projections of Tµν . For the projection one de-
fine the local basis of the space-time {e0, ei}, with e0 = nµ

and ei = (βi, γij), a basis such that e0 · ei = 0. Then the di-
vergence of the product Tµνeiν is the divergence of the pro-
jection on the hypersurface Σt and becomes three equations,
whereas the divergence of Tµνe0ν is the projection along the
normal to Σt, whose divergence is the equation for the con-
servation of energy. With this in mind, equations (4) and (5)
can be reduced to the following set of flu balance equations

∂u
∂t

+
∂Fi(u)

∂xi
= S(u), (6)

with the following state vector u, vector of flu es F and vec-
tor of sources S:

u =




D
Jj

τ


 ,

F(u) =




α
(
vi − βi

α

)
D

α
(
vi − βi

α

)
Jj + α

√
γpδi

j

α
(
vi − βi

α

)
τ + α

√
γpvi


 ,

S(u) =




0
α
√

γTµνgνσΓσ
µj

α
√

γ(Tµ0∂µα− αTµνΓ0
µν)


 , (7)

for i, j = 1, 2, 3, where the state vector entries are define in
terms of the six primitive variables ρ0, v

i, e, p as

D =
√

γρ0W,

Ji =
√

γρ0hW 2vi,

τ =
√

γ(ρ0hW 2 − p− ρ0W ), (8)

called the conservative variables associated to mass, momen-
tum and energy densities. System (6,7,8) is an underdeter-
mined system of f ve equations for the six primitive variables.
In order to close the system, it is common to assume the flui
obeys an ideal gas equation of state

p = ρ0e(Γ− 1), (9)

with Γ the adiabatic index.
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Let us now restrict to a spherically symmetric space-time
described in spherical coordinates. The most general 3+1 line
element with these conditions is

ds2 = (−α2 + βrβ
r)dt2 + 2βrdtdr

+ γrrdr2 + γθθ(dθ2 + sin2 θdφ2), (10)

where all the functions depend on (t, r). From this metric
one has that if γ = det(γij), then

√
γ =

√
γrrγθθ sin θ.

Assuming there is only radial motion, then vi = (vr, 0, 0),
which implies viv

i = γrrv
rvr useful to calculate the Lorentz

factor W . Moreover, the components of Ji are Jr =√
γρ0hW 2γrrv

r, Jθ =
√

γρ0hW 2γθθv
θ = 0 and Jφ =√

γρ0hW 2γφφvφ = 0.
Therefore the system of Eqs. (6,7,8) becomes

∂u
∂t

+
∂Fr(u)

∂r
+

∂Fθ(u)
∂θ

+
∂Fφ(u)

∂φ
= S(u), (11)

where the state variables, flu es and source vectors are explicitly

u =




D
Jr

Jθ

Jφ

τ




=




D
Jr

0
0
τ




,

Fr(u) =




α
(
vr − βr

α

)
D

α
(
vr − βr

α

)
Jr + α

√
γpδr

r

α
(
vr − βr

α

)
Jθ + α

√
γpδr

θ

α
(
vr − βr

α

)
Jφ + α

√
γpδr

φ

α
(
vr − βr

α

)
τ + α

√
γpvr




=




α
(
vr − βr

α

)
D

α
(
vr − βr

α

)
Jr + α

√
γp

0
0

α
(
vr − βr

α

)
τ + α

√
γpvr




,

Fθ(u) =




α
(
vθ − βθ

α

)
D

α
(
vθ − βθ

α

)
Jr + α

√
γpδθ

r

α
(
vθ − βθ

α

)
Jθ + α

√
γpδθ

θ

α
(
vθ − βθ

α

)
Jφ + α

√
γpδθ

φ

α
(
vθ − βθ

α

)
τ + α

√
γpvθ




=




0
0

α
√

γp
0
0




,

Fφ(u) =




α
(
vφ − βφ

α

)
D

α
(
vφ − βφ

α

)
Jr + α

√
γpδφ

r

α
(
vφ − βφ

α

)
Jθ + α

√
γpδφ

θ

α
(
vφ − βφ

α

)
Jφ + α

√
γpδφ

φ

α
(
vφ − βφ

α

)
τ + α

√
γpvφ




=




0
0
0

α
√

γp
0




,

S(u) =




0
α
√

γTµνgνσΓσ
µr

α
√

γTµνgνσΓσ
µθ

α
√

γTµνgνσΓσ
µφ

α
√

γ(Tµ0∂µα− αTµνΓ0
µν)




. (12)

Since Fθ and Fφ have each a non-zero component, it is worth discussing this their influenc on the equations (11). Before
that, we write down the non-zero stress energy tensor components that will contribute to sources. Using equations (2) and (3)
these components are

T 00 =
1
α2

(ρ0hW 2 − p), T r0 =
ρ0hW 2

α

(
vr − βr

α

)
+

βr

α2
p

T rr = ρ0hW 2

(
vr − βr

α

)2

+
(

1
γrr

− βrβr

α2

)
p, T θθ =

p

γθθ
, Tφφ =

p

γφφ
. (13)
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The other components, T 0θ, T 0φ, T rθ, T rφ, T θφ, are zero either because uθ = uφ = 0 or because g0θ = g0φ = grθ =
grφ = gθφ = 0. The sources also involve the Christoffel symbols for metric (10), that we show explicitly in Appendix A.

With the non-zero stress-energy tensor components and the non-zero Christoffel symbols, the entries of the source vector
in (12) are

0 = 0

α
√

γTµνgνσΓσ
µr = α

√
γ(T 00[(−α2 + γrr(βr)2)Γ0

0r + γrrβ
rΓr

0r] + T r0[(−α2 + γrr(βr)2)Γ0
rr

+ γrrΓr
0r + γrrβ

r(Γr
rr + Γ0

0r)] + T rr[γrrΓr
rr + γrrβ

rΓ0
rr] + T θθγθθΓθ

θr + TφφγφφΓφ
φr),

α
√

γTµνgνσΓσ
µθ = TφφγφφΓφ

φθ = α
√

γp cot θ,

α
√

γTµνgνσΓσ
µφ = 0,

α
√

γ(Tµ0∂µα− αTµνΓ0
µν) = α

√
γ( T 00(∂0α− αΓ0

00)

+ T r0(∂rα− 2αΓ0
r0)− α(T rrΓ0

rr + T θθΓ0
θθ + TφφΓ0

φφ) ). (14)

Now it is possible to study the effects of the non-trivial
entries of Fθ and Fφ in (11,12). To study the third term
∂Fθ/∂θ in Eq. (11), notice that the third entry of Fθ in (12),
contributes to the third term of the third equation in (11) be-
cause

∂Fθ

∂θ
= ∂θ[α(t, r)

√
γrr(t, r)γθθ(t, r) sin θ p(t, r)]

= α(t, r)
√

γrr(t, r)γθθ(t, r) cos θ p(t, r).

On the other hand, the third entry of the sources, namely
the third of Eqs. (14) is precisely α

√
γrrγθθp sin θ cot θ and

therefore these terms in the third of Eqs. (11) cancel out,
which implies that the evolution equation for Jθ is an identity.

Let us now see the fourth entry of Fφ, notice that
α
√

γp = α(t, r)
√

γrr(t, r)γθθ(t, r) sin θp(t, r), therefore
∂Fφ/∂φ = 0, and thus the fourth term vanishes in (11) for
all components of Fφ, and the evolution equation for Jφ be-
comes an identity as well.

With the non-trivial equations, one can defin an Initial
Value Problem for the evolution of a perfect fluid with radial
flux on top of a spherically symmetric space-time, written in
the form (11), with three non-trivial equations only:

∂tD + ∂r

(
α

[
vr − βr

α

]
D

)
= 0, (15)

∂tJr + ∂r

(
α

[
vr − βr

α

]
Jr + α

√
γp

)

= α
√

γTµνgνσΓσ
µr,

∂tτ + ∂r

(
α

[
vr − βr

α

]
τ + α

√
γpvr

)

= α
√

γ(Tµ0∂µα− αTµνΓ0
µν),

where D = D(t, r), Jr = Jr(t, r), τ = τ(t, r) depend on
ρ0, vr, p, e, through Eqs. (8). The problem is define on
the domain D = r ∈ [rmin, rmax] × t ∈ [0, tf ], with initial
conditions ρ0(0, r), vr(0, r), e(0, r), p(0, r) and boundary
conditions D(t, {rmin, rmax}), Jr(t, {rmin, rmax}),

τ(t, {rmin, rmax}). This is a system of three equations for
three conservative variablesD, Jr, τ , related to the four prim-
itive variables ρ0, v

r, e, p, which is closed using the EoS (9).
We solve this evolution problem using High Resolution

Shock Capturing Methods (HRSC), which have become the
standard method in Numerical Relativity with matter [6].
Here we present a brief summary of these methods and refer
to the educative paper [7] for a detailed description. The rea-
son to use these methods is that shocks can form due to the
quasi-linear nature of Euler’s equations, and Finite Volume
based methods like HRSC methods help constructing weak
solutions of problems with discontinuities.

2.1. Summary of a simple HRSC implementation

High Resolution Shock Capturing Methods are based on a Fi-
nite Volume discretization of an Initial Value Problem (IVP).
In [7] a detailed description of these methods applied to the
solution of relativistic flui equations can be found, which is
based on the seminal descriptions in [4, 5, 8].

Assume one has an IVP associated to a set of flu balance
law equations, say in the (t, r) domain

∂u
∂t

+
∂(F(u))

∂r
= S(u), (16)

where u is a state vector, F a vector of flu es and S a vector
with sources, like in our case (15). These equations can be
solved using the method of lines, provided there are appro-
priate right hand sides for the evolution of u as described in
Appendix B. An essential property of Euler equations, like
ours in (15), is that even for smooth initial data, shocks can
be formed due to the cross of characteristic lines, and conse-
quently spatial derivatives of flu es become undefined This
problem is solved using a Finite Volume approach that solves
local Riemann Problems, by assuming the flui elements are
define within cells, a method described in [6, 9–11]. A
Riemann problem is define at each boundary between two
neighboring cells, one to the left L, one to the right R, in

Rev. Mex. F́ıs. E18, 020206
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which average values of the variables and flu es are define
(see [7]).

The implementation firs requires to rewrite the equations
as

∂u
∂t

+
dF
du

∂u
∂r

= S(u), (17)

where dF/du is a Jacobian matrix whose eigenvalues are the
local characteristic speeds of the characteristic modes of the
system of equations. With the characteristic information, dif-
ferent approximate values of the original term ∂(F(u))/∂r
in (16) can be constructed. For example Roe, HLLE, HLLC,
HLLD approximate flu es, with different properties each, for
example their capacity to track the fast modes only, or contact
discontinuity modes, etcetera, provide approximate value of
the flu es [6, 9–11].

We assume the IVP associated with the evolution
Eqs. (15) and (17), is define on the domain D =
[rmin, rmax]×[0, tf ]. The implementation requires the defini
tion of a discrete domainDd, here we consider a uniform grid
given by Dd = {(tn, ri) | ri = rmin + i∆r, tn = n∆t, i =
0, ...Nr}, with resolutions∆r = (rmax−rmin)/Nr and∆t =
C∆r. A cell of the domain centered at (tn+1/2, xi+1/2) is
define by four vertices at (tn, ri), (tn, ri+1), (tn+1, ri) and
(tn+1, ri+1).

Lines of constant ri become boundaries between
neighboring cells (tn+1/2, xi−1/2) at the left L and
(tn+1/2, xi+1/2) at the right R. The flu es across these
boundaries can be calculated using approximate Riemann
solvers associated to formulas for the flu es at cells L and
R [6, 11].

As a particular case, here we use the HLLE approximate
flu formula given by [11–13]

F̄HLLE
i+1/2 =

λ+F(ũL
i+1/2)−λ−F(ũR

i+1/2)+λ+λ−(ũR
i+1/2−ũL

i+1/2)

λ+−λ−
. (18)

In our problem (15) we have three equations, and
therefore a 3×3 Jacobian matrix in (17) with eigenvalues
λ1, λ2, λ3. In terms of these eigenvalues λ+ and λ− are
define by

λ+ = max(0, λR
1 , λR

2 , λR
3 , λL

1 , λL
2 , λL

3 ),

λ− = min(0, λR
1 , λR

2 , λR
3 , λL

1 , λL
2 , λL

3 ), (19)

with λL
i and λR

i the eigenvalues at cells L and R of the
Jacobian matrix in Eq. (17). The quantities uL

i+1/2 and
uR

i+1/2 are the values of the state variables at the centers
of the cell at the Left and at the Right, respectively, and
ūi =

∫ i+1/2

i−1/2
u(t, r)dr/∆r. The values of these variables can

be reconstructed in various ways, for instance the Godunov
reconstruction assumes these variables are constant across
the entire cell. Other reconstructors assume the variables are

linear piece-wise using the information in nearest neighbor
cells, for example the minmod method that we use here.
These two methods are very well detailed in the educative
paper [7]. There are other higher order reconstructors that
involve the information from second nearest neighbors, that
limit the slope of piece-wise variables, or the flu es [6, 11].

With an approximate flu formula like (18) one can cal-
culate the evolution of the variables using the method of lines
as explained in Appendix B with the appropriate right hand
sides:

∂ū
∂t

= −
(F̄HLLE

i+1/2 − F̄HLLE
i−1/2 )

∆x
+ S̄n+1/2

i , (20)

which in principle allow the integration in time.
The steps we follow to construct the flu es are the follow-

ing:

a) Reconstruct the variables uL
i+1/2 and uR

i+1/2 at L and
R cells. Notice that in our problem (15) the flu es
depend both on primitive and conservative variables,
and therefore not only conservative, but primitive vari-
ables need to be reconstructed as well. This can be
done using constant piece-wise or linear reconstruc-
tors, for example Godunov or minmod methods re-
spectively [6, 7]. We use minmod.

b) Calculate the eigenvalues λL
i and λR

i of the Jacobian
matrix for the system (15).

c) Calculate λ+ and λ− using (19).

d) Calculate the flu es F(ũL
i+1/2) and F(ũR

i+1/2).

e) Calculate the HLLE flu es with (18).

f) Use the method of lines with the expression (20) to in-
tegrate in time, as described in the Appendix B.

g) Implement boundary conditions on the conservative
variables.

When applied to Euler equations, density must be finit
in order to avoid divergencies, for example, the specifi en-
thalpy in (2) diverges for zero density, which will immedi-
ately translate the divergency to all other quantities of the
equations. Then we need to set a minimum value of ρ0 known
as an atmosphere value ρatm, because it acts like a back-
ground value in the whole numerical domain at all times.

The reader can enhance the accuracy of the HRSC
method by using other flu formulae from the same fam-
ily of methods, namely like HLLC, HLLD, which are nearly
straightforward generalizations of the HLLE used here, and
also experiment with other numerical flu constructions, like
Roe and Marquina methods [6, 11]. Another part that can be
enhanced is the reconstruction of variables using higher order
reconstructors [6].

Rev. Mex. F́ıs. E18, 020206



6 F. S. GUZMÁN, A. ROMERO-AMEZCUA AND I. ALVAREZ-RÍOS

2.2. Implementation of HRSC methods for a spherically symmetric flow

According to item (b), for the implementation of these HRSC methods one needs the characteristic structure of Eqs. (11). We
do not calculate the eigenvalues here, instead we take them from Eqs. (21) and (22) in [5], which are

λ1 = αvr − βr,

λ2 =
α

1− vrvrc2
s

[
vr(1− c2

s) + cs

√
(1− vrvr)[γrr(1− vrvrc2

s)− vrvr(1− c2
s)]

]
− βr,

λ5 =
α

1− vrvrc2
s

[
vr(1− c2

s)− cs

√
(1− vrvr)[γrr(1− vrvrc2

s)− vrvr(1− c2
s)]

]
− βr, (21)

with cs the speed of sound define as

hc2
s = χ +

(
p

ρ2
0

)
κ, χ =

∂p

∂ρ0
, + κ =

∂p

∂e
. (22)

For the EoS p = ρ0e(Γ− 1), χ = ∂p/∂ρ0 = e(Γ− 1) =
p/ρ0 and κ = ∂p/∂e = ρ0(Γ − 1), therefore using that
h = 1 + e + p/ρ0 = 1 + (p/ρ0)(Γ/Γ− 1), the speed of
sound is

c2
s =

χ + κ p
ρ2
0

h
=

p(Γ− 1)Γ
ρ0(Γ− 1) + pΓ

. (23)

As mentioned in item (a) above, the flu es of system
(15) are written in terms of primitive and conservative vari-
ables, which obliges one to calculate the primitive variables
ρ0, v

r, p, e immediately after there are new values for the
conservative variables D, Jr, τ during the evolution. The
primitive variables in terms of conservative variables are

vr =
Jr√

γρ0hW 2γrr
=

Jr

(τ +
√

γp + D)γrr
,

ρ0 =
D

W
√

γ
=

D√
γ

√
1− γrr(vr)2,

p = p(ρ0, e). (24)

The pressure depends on density and internal energy through
the ideal gas EoS. Developing the third of equations (24) we
have

p = ρ0e(Γ− 1)

= (Γ− 1)(ρ0h− ρ0 − p)

= (Γ− 1)
(

1
W 2

[
τ√
γ

+ p +
D√
γ

]
− ρ0 − p

)

= ρ0(Γ− 1)
(

τ + p
√

γ + D − ρ0
√

γW 2 − p
√

γW 2

ρ0

√
ΓW 2

)

= ρ0(Γ− 1)
(

τ + D[1−W ] + p
√

γ[1−W 2]
DW

)
, (25)

where the Lorentz factor

W =
1√

1− γrr(vr)2
=

1√
1− J2

r

γrr(τ+
√

γp+D)2

=
√

γrr(τ +
√

γp + D)√
γrr(τ +

√
γp + D)2 − J2

r

, (26)

has to be substituted into (25), which in turn has to be
solved for p. The solution is commonly calculated using the
Newton-Raphson method. For each cell of the numerical do-
main one has to fin the zeroes of the function

f = p− ρ0(Γ− 1)
(

τ + D[1−W ] + p
√

γ[1−W 2]
DW

)
,

with

W =
√

γrr(τ +
√

γp + D)√
γrr(τ +

√
γp + D)2 − J2

r

.

For this we iterate the value of pressure

pk = pk−1 − f(p)
f ′(p)

,

at each cell until a tolerance is achieved. An initial guess is
needed to start the loop, for example for k = 0 we defin
pk=0 = (pi + pi+1)/2, which is an average of the pressure
at two neighboring cells from the previous time step of the
evolution.

We stop the process once the following criterion, relat-
ing the difference between consecutive values of the pressure
weighed with the average between the two values is fulfille

∣∣∣∣
pk − pk−1

1
2 (pk + pk−1)

∣∣∣∣ < 10−12,

a criterion achieved after less than ten iterations for each cell
for the examples in this paper. Finally, once the pressure
has been calculated, the internal energy is obtained from the
equation of state e = p/(Γ− 1)ρ0, which is finit as long as
ρ0 6= 0, which is the case due to the atmosphere. With this,
all primitive variables are now known. With them it is possi-
ble to calculate the eigenvalues λi with (21) needed in item
(c), then the flu es in (d).

3. Test fluid case

Now we have all the matter related ingredients needed for the
simulation of the accretion process, we only need to specify
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the space-time. In this firs scenario, the flui evolves on top
of the fi ed space-time background of a Schwarzschild black
hole, that we describe in Eddington-Finkelstein (EF) coordi-
nates, whose line element in spherical coordinates is

ds2 = −
(

1− 2M

r

)
dt2 +

4M

r
dtdr

+
(

1 +
2M

r

)
dr2 + r2(dθ2 + sin2 θdφ2), (27)

with M the mass of the black hole. The reason for writing
the metric using EF coordinates is because these coordinates
penetrate the event horizon as opposed to the Schwarzschild
coordinates that diverge at the horizon as detailed below.

From this line element one can extract the geometrical
quantities needed to write down all the elements of the evo-
lution equations for the fluid Identifying eq. (10) with (27)
one obtains the 3+1 gauge and metric functions

α =
1√

1 + 2M
r

,

βi = (βr, 0, 0) =

(
2M

r

1
1 + 2M

r

, 0, 0

)
,

γij=(γrr, γθθ, sin2 θγθθ)=diag
(

1+
2M

r
, r2, r2 sin2 θ

)
,

βr = γrrβ
r =

2M

r
,

√
γ =

√
γrrγθθγφφ = r2 sin θ

√
1 +

2M

r
, (28)

which are needed to calculate the stress energy tensor com-
ponents (13), sources (14), flu es (18) and the equation for
the pressure (25).

Additionally, the sources involve Christoffel symbols,
and here we write down the non-zero ones for the EF space-
time:

Γ0
00 = 2M2

r3 , Γ0
0r = M

r2

(
1 + 2M

r

)
,

Γr
0r = − 2M2

r3 , Γ0
rr = 2M

r2

(
1 + M

r

)
,

Γr
rr = −M

r2

(
1 + 2M

r

)
, Γθ

rθ = 1
r ,

Γφ
rφ = 1

r , Γ0
θθ = −2M,

Γ0
φφ = −2M sin2 θ, Γr

00 = M
r2

(
1− 2M

r

)
,

Γr
θθ = 2M − r, Γr

φφ = (2M − r) sin2 θ,

Γθ
φφ = − sin θ cos θ, Γφ

θφ = cot θ.
(29)

This completes the information needed to solve the evo-
lution of a perfect flui being accreted by a black hole.

FIGURE 1. a) We show a bundle of null rays that illustrates the
light cone structure of the Schwarzschild black hole space-time de-
scribed with Eddington-Finkelstein coordinates. Continuous and
dotted lines correspond to outgoing and ingoing null rays respec-
tively. We draw a few light cones, to indicate the causal structure at
different points of the domain. b) For comparison we also show the
null ray structure in Schwarzschild coordinates outside the horizon,
which shows how light cones collapse when r approaches 2M .

3.1. Numerical solution

The numerical solution is a solution of a discrete version of
the IVP in (15), which needs a well define domain, initial
conditions and boundary conditions.

The physical problem will be the accretion of a flui ini-
tially with uniform density and velocity, which is a particular
solution of the IVP (15). In what follows we present a de-
scription of details needed to achieve a successful accretion
solution.
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8 F. S. GUZMÁN, A. ROMERO-AMEZCUA AND I. ALVAREZ-RÍOS

It is a common practice to use geometric unitsG = c = 1
for the construction of numerical solutions. In these units, as
described in Appendix C, length and time are in units of M .
Therefore the domain will be define in these units.

We set the numerical domain such that the inner boundary
is at rmin = M , within the black hole horizon, in order to al-
low the flui to enter the horizon. The external boundary ide-
ally has to be located at spatial infinit , which can be achieved
with a compactifie radial coordinate (see, e.g., [14]). More
commonly, the external boundary can be set far from the hori-
zon using a logarithmic radial coordinate [15], or other sorts
of stretched coordinates (e.g., [16]). In general, there is no
prescription for a location of the external boundary, but it is
always desirable to defin it as far away from the strong fiel
region as possible, so that there the space-time is a small per-
turbation of Minkowski space-time. For simplicity we use a
uniformly discretized numerical domain and set the external
boundary at rmax = 51M , where the metric departs from
that of Minkowski space-time by 4%. The fina time is set to
tf = 1000M in order for the accretion to get stationary.

Numerical Domain. We use the discrete domain Dd de-
fine above and we rewrite it here, Dd = {(tn, ri) | ri =
rmin + i∆r, tn = n∆t, i = 0, ...Nr, n = 0, 1, 2, ..., Nt},
with resolutions ∆r = (rmax − rmin)/Nr and ∆t = C∆r.
We set C = 0.25 and our base resolution to ∆r = 0.05 or
equivalently Nr = 1000.

Atmosphere. As mentioned before, the numerical method
requires the density to be non-zero in order to avoid diver-
gencies. We set the minimum rest mass density value to
ρatm = 10−13, which is a value near the round-off error. That
is, we set ρ0 = max(ρ0, ρatm) when updating the rest mass
density. In the examples below, the atmosphere value is or-
ders of magnitude smaller that the maximum of the density.
We can use such small value in our problem because no de-
pletion regions are formed during the evolution. In full three
dimensions the complex fl ws usually trigger the formation
of depletion zones, where density and pressure decrease, and
it is common to use bigger values of ρatm in those scenarios.

Initial conditions. We consider the flui to have initially a
constant density ρ0,ini and constant inward velocity vr

ini.
Boundary conditions. At the outer boundaryin r = rmax

we want to maintain the flu injected constantly. This is done
by setting the right hand sides of D, Jr, τ of Eqs. (15) to zero
at this boundary.

At the inner boundaryr = rmin, it is useful to see the
light cone structure of the space-time. In EF coordinates the
null rays obey the equation dt/dr = (2M ± r)/(r − 2M),
where the minus/plus sign stands for ingoing/outgoing rays,
and all ingoing null rays have slope -1. Then, null ray trajec-
tories in the space-time rt−plane are given by t = −r + r0

for ingoing rays and t = r− r0 +4M ln(r − 2M/r0 − 2M)
for outgoing ones, with r0 the initial position of a particular
ray at t = 0. A bundle of these null rays is shown in Fig. 1.
For comparison we also show the null rays for the space-time
in Schwarzschild coordinates ds2 = − (1− [2M/r]) dt2 +
dr2/ (1− [2M/r])+ r2(dθ2 +sin2 θdφ2). Null rays for this

metric obey the equation dt/dr = ±1/1− (2M/r), with
solutions t = ± (r − r0 + 2M ln((r − 2M)/(r0 − 2M))).
We show sample of these rays also in Fig. 1 for comparison.

What we want to stress is that in EF coordinates light
cones remain open for all r > 0, whereas in Schwarzschild
coordinates the cones collapse when r → 2M+, because
there dt/dx diverges. This property of EF coordinates allows
one to consider a numerical domain that includes part of the
region inside the event horizon, and set the inner boundary
within this surface.

Moreover, in EF coordinates, due to the light cone struc-
ture, the information is expected to travel only toward the
origin of coordinates for r < 2M and not to escape from
the horizon, as can be seen in Fig. 1. Then, an extrapola-
tion of the values of the conservative variables suffice and
no boundary condition is needed. Using the Lagrange inter-
polation formula with three points we set the values of con-
servative variables at rmin = r0:

D0 = 3D1 − 3D2 + D3,

J0 = 3J1 − 3J2 + J3,

τ0 = 3τ1 − 3τ2 + τ3. (30)

Finally, with these initial and boundary conditions, the
flui will evolve and acquire a non-uniform density, velocity
and pressure profiles

Fortunately there are solutions to compare with in order
to know whether the results are correct or not. Comparison
with exact solutions at this stage is very important, because
we will know whether the numerical solutions are correct.

Solutions for the radial stationary infall of a perfect flui
toward a point-like accretor were firs constructed in Newto-
nian gravity by Bondi [17], and later on the solutions of sta-
tionary radial fl w on Schwarzschild’s space-time were well
established by Michel [18], that we consider here. These so-
lutions contain two important cases, the pressure-less or dust
and the ideal gas or Michel case that we present next.

The solution for dust corresponds to the accretion of a
pressure-less perfect flui p = 0 onto a Black Hole. The
solution for the density and velocity profiles for the metric
written in EF coordinates, was developed in [19], and reads
as follows

ρdust(r) =
−C1

r2

√
2M
r

,

vr
dust(r) = − 1

√
1 + r

2M

(
1 +

√
2M
r + 2M

r

) , (31)

where C1 is a constant of integration.
As a firs test we use (31) as initial conditions with

C = −0.01, and fin that density and velocity profile re-
main time-independent, which shows that the exact solution
is stable at least under numerical perturbations due to the nu-
merical methods.
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FIGURE 2. Numerical solution for ρ0 and vr , with p = 0 and
C1 = −0.01 at various times. Both, density and velocity start be-
ing constant and with time they tend toward the exact dust solution
(31) in an attractor-like fashion. On the right axes the values in cgs
units of density and velocity are shown for a black hole of mass
M = 106M¯, using the conversion factors in Appendix C. The
time of snapshots in the plots are in units of M , in physical units
they correspond to t = 0, 246.25, 492.5, 1477.5s. Finally in the
last plot we show the convergence of the L2 norm of the error in ρ0

of the numerical solution.

For a non-trivial test, we start the evolution by setting the
constant density to the constant value ρini = ρdust(rmax) and
vr

ini = vr
dust(rmax). We solve the equations for C1 = −0.01

and the results are in Fig. 2. Both ρ0(r) and vr(r) start as
constants and with time they change until the fl w becomes
stationary. An interesting result is that the stationary solution
approaches the exact dust solution (31) during the evolution,

in an attractor-like fashion. In the last plot of Fig. 2 we show
the L2 norm of the error of the numerical solution with re-
spect to the exact solution. The curves indicate firs that the
numerical solution starts far from the exact solution and with
time the error decreases by t ∼ 200 to its minimum. It also
shows how the error decreases as function of resolution and
the convergence to the exact solution, a concept that will be
clarifie in detail in Sec. 4.4.1.

An important technical point is in turn when solving
problems with a pressure-less fluid When recovering the
pressure in terms of conservative values using Eqs. (25, 26),
one simply sets p = 0, and afterwards the internal en-
ergy becomes e = p/(Γ − 1)/ρ0, which is zero for ρ0 =
max(ρ0, ρatm) > 0.

Ideal gas. This is the spherically symmetric stationary in-
fl w solution of a perfect fluid this time with pressure, onto
a Black Hole [18].

Although the ideal gas solution is stationary like the dust
case, it does not have a closed formula and the solution is nu-
merical. We do not develop here the solution, although some
didactic descriptions of this solution on the EF space-time
are found in [19], the appendix of [20] and [21], indicating
the steps to construct the density, pressure and velocity fiel
of the solution, which is parameterized by critical density and
radius ρc and rc, that fi all the flui variables.

In our example we use a relativistic flui with adiabatic
index Γ = 4/3. We set initial constant density and veloc-
ity profile to the values ρini = ρ0,ideal gas(rmax) and vr

ini =
vr

ideal gas(rmax), using ρc = 0.1 and rc = 100 in terms of
the notation of [19–21]. Notice that we assume density and
velocity profile to be constant initially. The flui will be con-
stantly injected until the matter evolves in time approaching
a stationary state.

We show the numerical solution of this problem in Fig. 3.
Once again, density and velocity profile have initially con-
stant profiles and with time they approach the exact solution.
This exercise shows that the stationary solution behaves as
an attractor in time. In fact, it would be possible to look for a
basin of attraction by exploring various initial density and ve-
locity profiles as well as measure the Lyapunov exponent of
L2(eρ0), indicating how the numerical solution approaches
the exact solution as function of time.

In the last plot of Fig. 3 we show how the L2 norm of the
error in ρ0 decreases with time until t ∼ 500, when the dif-
ference stabilizes. This indicates that the numerical solution
approaches the exact solution in time. We show this result for
three different resolutions in order to show that the numerical
solution converges with resolution, to the exact solution with
second order, consistently with the accuracy order of the nu-
merical methods used to construct the numerical solution, a
concept that will be detailed in Sec. IV-D-1.

3.2. Accretion rate

One of the most important quantities in accretion processes
is the mass accretion rate. Due to spherical symmetry the ac-
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FIGURE 3. Numerical solution of ρ0, p and vr . Notice that the
numerical solution converges toward the exact solution with time.
On the right axes the values in cgs units of density and velocity
are shown for a black hole of mass M = 106 M¯, using the con-
version factors in Appendix C. Finally in the last plot we show the
convergence of the numerical solution toward the exact solution as
function of resolution.

cretion mass rate is the integral of Fr
1 in (12) on a spherical

surface of radius rd. For the Eddington-Finkelstein metric it
reads

Ṁacc(rd) =
∫

S2(rd)

α

(
vr − βr

α

)
DdS

∣∣∣∣
rd

FIGURE 4. Accretion mass rate Ṁacc for the cases of dust a) and
ideal gas b), measured by detectors located at rd = 2M, 7M, 12M ,
for the simulations in Figs. 2 and 3. The resolution used in this ex-
amples is ∆r = 0.0125.

=
∫

S2(rd)

α

(
vr − βr

α

)
ρ0W

√
γdθdφ

∣∣∣∣
rd

= 4πα

(
vr − βr

α

)
ρ0W

√
γrrγθθ

∣∣∣∣
rd

, (32)

where all the factors in the expression are evaluated at r = rd.
The geometric factors correspond to those of the background
EF space-time explicit in (28). This quantity is measured at
various spherical surfaces of radius rd and plotted as a func-
tion of time in Fig. 4.

Notice that in the two cases the accretion rate starts grow-
ing and afterwards tends to a constant value asymptotically
in time. Strictly speaking, the atmosphere intrinsic to the nu-
merical method will also contribute all the way with a para-
site accretion.

4. The non-linear case

In this second scenario, Einstein equations (EEs) are solved
simultaneously with Euler equations for the fluid EEs
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can be cast in a variety of forms including the 3+1, con-
formal, characteristic and harmonic formalisms. Since we
have used the 3+1 decomposition of the space-time for
the description of flui dynamics equations, it is natural to
use the 3+1 decomposition of space-time for its own de-
scription. Within the 3+1 decomposition approach, there
are still a number of formulations of EEs, including for
example the Arnowitt-Desser-Misner (ADM), Baumgarte-
Shapiro-Shibata-Nakamura (BSSN), Bona-Masso, Kidder-
Scheel-Teukolsky (KST) formulations, among others (see
e.g. [6, 22, 23]). The ADM is the simplest one, on top of
which the other alternatives can be derived with desirable
properties. Among the differences of 3+1 formulations is the
degree of hyperbolicity, which is related to the well posed-
ness of an Initial Value Problem, which in turn is related to
the stability of solutions [22, 23]. The ADM formulation for
instance is weakly hyperbolic, whereas BSSN and KST are
strongly hyperbolic (see [24] for an educative example us-
ing the KST formulation). Concerning popularity, the BSSN
formulation is the most commonly used for state of the art
evolution of space-times involving black hole binaries that
source Gravitational Waves [25, 26]. In this academic paper
though, we use the ADM formulation because one can imple-
ment straightforwardly the evolution equations, and because
for the accretion processes here no instabilities emerge, we
let the implementation of the accretion using the BSSN for-
mulation for a follow-up work [27].

It is important to understand that these formulations de-
fin evolution equations for geometric quantities, associated
to an IVP, subject to the satisfaction of a set of constraint
equations at initial time. The solution of this IVP is a chunk
of the space-time itself, commonly define in a finit spatial
domain and time. The chunk of space-time depends on the
problem one is interested in, for example, the collision of two
black holes might need a considerably big domain in time for
the system to orbit, collide and relax, and a sufficientl big
spatial domain for the black holes to have room for various
orbits and the extraction of gravitational wave detectors far
away from the holes.

The ADM equations for the 3+1 metric (1) are explicitly
twelve evolution equations and four constraints. These are
six evolution equations for the components of the 3-metric
γij of Σt (see [22, 23])

∂tγij = −2αKij + Diβj + Djβi, (33)

where Di is the covariant derivative on the hypersurface Σt

consistent with γij . Six evolution equations for the compo-
nents of the extrinsic curvature of Σt on the ambient space-
time

∂tKij = α(Rij − 2KikKk
j + KKij)−DiDjα

− 8πα(Sij − 1
2
γij(S − ρ))

+ βk∂kKij + Kik∂jβ
k + Kkj∂iβ

k, (34)

and the four constraints

R + K2 −KijK
ij = 16πρ, (35)

Dj(Kij − γijK) = 8πSi, (36)

respectively the Hamiltonian and three Momentum con-
straints.

Evolution and constraint Eqs. (33,34,35,36) involve the
following geometric quantities of the hypersurfacesΣt, Ricci
scalar R, extrinsic curvature components Kij , and its trace
K.

In these equations, matter terms are define as projections
of the stress energy tensor along hypersurfaces Σt, their nor-
mal vectors nµ or mixed projections [22, 23]:

ρ = nµnνTµν ,

Si = −γijnµTµj ,

Sij = γiµγjνTµν ,

S = γijSij , (37)

with nµ = (−α, 0, 0, 0) as we have set before in this paper.
For the stress energy tensor of a perfect flui (2) with flui
element velocities (3) these matter quantities read

ρ = ρ0hW 2 − p,

Si = ρ0hW 2vi,

Sij = ρ0hW 2vivj + γijp,

S = ρ0hW 2viv
i + 3p. (38)

Notice that ρ has to be distinguished from the rest mass den-
sity ρ0.

4.1. Spherical symmetry

As we have seen, for a spherically symmetric space-time
written in spherical coordinates, the most general line ele-
ment is (10), from which the components of the 3-metric of
Σt are γij = diag(γrr, γθθ, sin2 θγθθ).

For the implementation of the numerical solution it is
necessary specify all the terms in the constraint and evolu-
tion Eqs. (33-36). From (33) one find that the extrinsic cur-
vature is diagonal Kij = diag(Krr, Kθθ, sin2 θKθθ). In the
evolution equations and constraints the following expression
related to the extrinsic curvature are needed

K = γijKij =
Krr

γrr
+ 2

Kθθ

γθθ
,

KijK
ij = Kijγ

ikγjlKkl =
K2

rr

γ2
rr

+ 2
K2

θθ

γ2
θθ

. (39)

Matter. Considering only radial velocity vi = (vr, 0, 0),
one find that the non-zero 3+1 matter quantities (38) are
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ρ = ρ0hW 2 − p, Sr = ρ0hW 2vr,

Srr = ρ0hW 2vrvr + γrrp, Sθθ = γθθp,

Sφφ = sin2 θSθθ, S = ρ0hW 2vrv
r + 3p. (40)

Since we assume radial fl ws, Sθ = Sφ = 0 and the
only non-zero component of Si is Sr = ρ0hW 2vr. Also the
non-diagonal components of Sij vanish.

The evolution equations (33-34) for the independent
metric and curvature components γrr, γθθ, Krr and Kθθ are
finall

∂tγrr = −2αKrr + 2Drβr

= −2αKrr + 2γrr∂rβ
r + βr∂rγrr, (41)

∂tγθθ = −2αKθθ + 2Dθβθ

= −2αKθθ + βr∂rγθθ, (42)

∂tKrr = α(Rrr − 2KrkKk
r + KKrr)−DrDrα

+ βk∂kKrr + Krk∂rβ
k + Kkr∂rβ

k

− 8πα(Srr − 1
2
γrr(S − ρ))

= α

(
− ∂rrγθθ

γθθ
+

1
2

(∂rγθθ)2

γ2
θθ

+
1
2

(∂rγrr)(∂rγθθ)
γrrγθθ

− K2
rr

γrr
+ 2

KrrKθθ

γθθ

)
− ∂rrα +

1
2
∂rα

∂rγrr

γrr

+ βr∂rKrr + 2Krr∂rβ
r − 8πα

×
(

Srr − 1
2
γrr(S − ρ)

)
, (43)

∂tKθθ = α(Rθθ − 2KθkKk
θ + KKθθ)−DθDθα + βk∂kKθθ

− 8πα

(
Sθθ − 1

2
γθθ(S − ρ)

)
= α

(
− 1

2
∂rrγθθ

γrr

+ 1 +
1
4

(∂rγrr)(∂rγθθ)
γ2

rr

+
KrrKθθ

γrr

)
− 1

2
∂rγθθ

γrr
∂rα

+ βr∂rKθθ − 8πα

(
Sθθ − 1

2
γθθ(S − ρ)

)
, (44)

where we have used the following expressions in the evolu-
tion equations (33) and (34):

DrDrα = ∂rrα− Γr
rr∂rα = ∂rrα− 1

2
∂rγrr

γrr
∂rα,

DθDθα = −Γr
θθ∂rα =

1
2

∂rγθθ

γrr
∂rα,

Drβ
r = ∂rβr − Γr

rrβr = ∂rβr − 1
2
βr∂rγrr,

Dθβθ = −Γr
θθβr =

1
2
βr∂rγθθ. (45)

These covariant derivatives use the Christoffel symbols
on Σt, being the non-zero ones

Γr
rr = 1

2
∂rγrr

γrr
, Γr

θθ = − 1
2

∂rγθθ

γrr
,

Γr
φφ = − 1

2
sin2 θ∂rγθθ

γrr
, Γθ

rθ = 1
2

∂rγθθ

γθθ
,

Γθ
φφ = − sin θ cos θ, Γφ

rφ = 1
2

∂rγθθ

γθθ
,

Γφ
θφ = cot θ,

(46)

which will become useful also to calculate the Ricci tensor
components of Σt.

We also need explicit expressions for the constraints. In
the Hamiltonian constraint, aside of K and KijK

ij , one
needs the expression for R. The Ricci tensor is Rij =
diag(Rrr, Rθθ, sin2 θRθθ) whose components and trace are

Rrr = −∂rrγθθ

γθθ
+

1
2

(∂rγθθ)2

γ2
θθ

+
1
2

(∂rγrr)(∂rγθθ)
γrrγθθ

,

Rθθ = −1
2

∂rrγθθ

γrr
+ 1 +

1
4

∂rγrr∂rγθθ

γ2
rr

,

R = γijRij = −2
∂rrγθθ

γrrγθθ
+

1
2

(∂rγθθ)2

γrrγ2
θθ

+
∂rγrr∂rγθθ

γ2
rrγθθ

+
2

γθθ
. (47)

The Momentum constraint additionally needs the terms
DjK

ij and Dj(γijK) = γijDjK, which for i = r read

DjK
rj = ∂r

(
Krr

γ2
rr

)
+ 2

Krr

γ2
rr

Γr
rr +

Krr

γ2
rr

(Γθ
rθ + Γφ

rφ)

+
Kθθ

γ2
θθ

Γr
θθ +

Kφφ

γ2
φφ

Γr
φφ =

∂rKrr

γ2
rr

− Krr∂rγrr

γ3
rr

+
Krr∂rγθθ

γ2
rrγθθ

− Kθθ∂rγθθ

γ2
θθγrr

,

=
∂rKrr

γ2
rr

− Krr∂rγrr

γ3
rr

γrjDjK =
∂rK

γrr

+ 2
∂rKθθ

γrrγθθ
− 2

Kθθ∂rγθθ

γrrγ2
θθ

.

Then the expressions for the two non-trivial constraints
(35-36) are written as

H := 2
(

Kθθ

γθθ

)2

+ 4
KrrKθθ

γrrγθθ
+

γ′rrγ
′
θθ

γ2
rrγθθ

+
2

γθθ

+
γ′2θθ

2γrrγ2
θθ

− 2
γ′′θθ

γrrγθθ
− 16πρ = 0, (48)

Mr := −2
K ′

θθ

γrrγθθ
+

Kθθγ
′
θθ

γrrγ2
θθ

+
Krrγ

′
θθ

γ2
rrγθθ

− 8πSr = 0. (49)
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These expressions will be important in two ways: i) they will
be used for the construction of consistent initial conditions
for the IVP and ii) used to monitor whether or not the numer-
ical solution is consistent in the continuum limit with Ein-
stein’s equations.

4.2. The evolution problem

It is time to wrap up the ingredients constructed so far. The
goal is to solve the evolution problem for matter variables and
geometry simultaneously. Evolution equations are the equa-
tions for a perfect flui (15), this time with geometric factors
evolving in time according to the ADM Eqs. (41-44).

Notice that geometric factors affect the flu es in (15) for
the evolution of the flui through α, β and √γ, and also the
sources (14) that depend on the time-changing Christoffel
symbols of the space-time metric (10). These symbols ap-
pear in Appendix 5., and are different from those exclusive
for the EF metric (29), which is stationary, and from those
for solely the hypersurfaces (46).

Conversely, the time-dependent matter sources affect the
evolution of metric and curvature components in (41- 44)
through ρ, Srr, Sθθ, S. We say that matter and space-time
evolution is fully coupled.

For the solution to be consistent with Einstein’s equa-
tions, it is necessary to set initial conditions that are solu-
tion of Einstein’s equations. In order to guarantee this con-
dition, one needs to set an initial matter distribution consis-
tent with the space-time geometry that satisfie the constraint
Eqs. (48,49) at initial time. Those initial data are used to
evolve the system using Eqs. (15,41-44).

4.2.1. Initial conditions

We have to solve the two equations H andMr given a dis-
tribution of matter characterized by ρ0, v

r, p, e at initial time,
for the four variables γrr, γθθ,Krr,Kθθ. This system is un-
derdetermined, with two equations and four unknowns, and
there are various strategies to solve it (see, e.g, [22,23]). Here
we solve this problem by assuming an ansatz for two vari-
ables and solving for the two remaining ones. We choose to
set

γθθ = r2,

Krr = −2M

r2

1 + M
r√

1 + 2M
r

, (50)

which are the expressions for the Eddington-Finkelstein met-
ric detailed in Appendix A. Then constraints (48,49) become
the following two equations for γrr and Kθθ, assuming these
variables depend on r only, at initial time

γ′rr = (1− γrr)
γrr

r
− K2

θθ

r3
γ2

rr

− 2γrr
KrrKθθ

r
+ 8πrγ2

rrρ,

K ′
θθ =

r

γrr
Krr +

Kθθ

r
− 4πr2γrrS

r. (51)

These can be solved using an ODE integrator across the
spatial domain r ∈ [rmin, rmax]. In our case we use a fourth
order Runge-Kutta method. As initial conditions for these
two equations, we use the values for γrr and Kθθ in (28) and
the Appendix A, evaluated at rmin

γrr(0, rmin) = 1 +
2M

rmin
,

Kθθ(0, rmin) =
2M√

1 +
2M

rmin

, (52)

corresponding to the EF space-time.
For this, the flui properties need to be prescribed. As an

example, we consider the matter and velocity distributions to
be

ρ0 = max
(
Ae−(r−r0)

2/σ2
, ρatm

)
,

vr =
{

v0 if ρ0 > ρatm

0 otherwise,

e = e0, (53)

and from here one can construct p = ρ0e(Γ − 1), h =
1 + e + p/ρ0, whereas W = 1/

√
1− γrrvrvr, needed to

calculate the matter quantities ρ and Sr in (40), contains the
unknown γrr, and then incorporated into (51). The reason
to choose a region with non-zero initial velocity is that, as
described in section 2.1., these methods need a non-zero den-
sity that works as a background atmosphere, and we simply
do not want the atmosphere to move at the beginning.

4.2.2. Numerical methods for the evolution of geometry

The problem consists in solving the Euler equations in (15) at
the same time as the evolution equations of geometry (41-44)
on the same discrete domain. We use the same domain used
for the test fiel case that we rewrite here, with rmin = 1,
rmax = 51, and defin the discrete domain as the set of points
(tn, ri) such that ri = rmin + i∆r, i = 0, 1, 2, ..., Nr and
tn = n∆t, n = 0, 1, 2, ..., Nt such that tf = Nt∆t. The
spatial resolution is ∆r = (rmax − rmin)/Nr, and time res-
olution ∆t = 0.25∆r. Notice that for the geometry the nu-
merical domain is vertex-centered, and at the same time we
use this numerical domain for the finit volume discretization
used for hydrodynamics equations. One only has to be care-
ful with keeping in mind that vertices at (tn, ri) correspond
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to a corner shared by the L cell, centered at (tn+1/2, ri−1/2)
and the R cell centered at (tn+1/2, ri+1/2).

We solve Eqs. (41-44) for the evolution of geometry us-
ing the method of lines (MoL), with second order accurate
expressions for the space derivatives on the right hand sides
and a third order integrator in time. Moreover we discretize
advection terms with speed βr with causally connected sten-
cils. The details are described in Appendix B.

4.2.3. Gauge

The evolution of gauge functions α and βr can be driven by
evolution equations that prevent the grid stretching that pro-
motes the formation of gauge shocks or singularities of geo-
metric quantities [22, 23]. Nevertheless, here we use a more
basic and illustrative gauge control, requiring α and βr to
obey some simple conditions.

Condition 1.The space-time is being foliated with hyper-
surfaces Σt, which in turn are foliated with spheres of area
4πγθθ and radial lines of constant (θ, φ). For simplicity we
request the condition that the area of spheres to be 4πr2, that
is, we set γθθ = r2 as we did for the initial conditions, but we
want to keep it that way during the evolution. Then we force
the right hand side of Eq. (42) to be zero, that is α is forced
to obey the condition

−2αKθθ + βr∂rγθθ = 0. (54)

Condition 2.We want to keep the ingoing radial null rays
to have slope -1 like in Fig. 1, a convenient property of EF
coordinates is that it helps with keeping the light cones open
near the event horizon of the black hole, even if the space-
time is not exactly that of EF. This condition can be obtained
from the equation for radial null rays in metric (10)

ds2 = (−α2 + γrrβ
rβr)dt2 + 2γrrβ

rdrdt + γrrdr2 = 0

⇒ (−α2+γrrβ
rβr)

(
dt

dr

)2

+2γrrβ
r dt

dr
+γrr=0,

assuming the condition dt/dr = −1 one has

α = ±√γrr(1− βr), (55)

with the positive sign corresponding to ingoing rays. Solving
(54) and (55) for α and βr one obtains

βr =
2
√

γrrKθθ

2
√

γrrKθθ + γ′θθ

,

α =
√

γrr(1− βr). (56)

We enforce these conditions to hold during the evolution after
every step during time-integration with the MoL.

4.2.4. Boundary conditions

Inner boundary conditions.Due to the causal structure in-
side the horizon, where the light cones point inwards, similar

to those in Fig. 1, we use the same condition as for the flui
in the fi ed background accretion case, that is, we extrapo-
late the values of both, conservative variablesD,Jr, τ for the
matter and γrr, γθθ,Krr,Kθθ for the geometry at rmin, as
done in (30).

Outer boundary conditions.We start with the conditions
for the geometry. It is common to consider that metric and
curvature components behave like waves moving at the speed
of light, far enough from the zones of strong gravitational
field in our case far from the black hole horizon. In par-
ticular, it is assumed that if the system is isolated the waves
travel outwards. Here we follow this assumption for geo-
metric functions. Any of these quantities is represented by
ψ = ψ(t, r), then it obeys the wave equation ¤ψ = 0 with ¤
the D’Alambert operator for Minkowski space-time, which is
appropriate for a far enough external boundary. In spherical
coordinates the spherical wave operator in Minkowski space-
time can be factorized as follows

¤ψ =
∂2ψ

∂t2
− c2∇2ψ =

∂2ψ

∂t2
− c2

(
∂2ψ

∂r2
+

2
r

∂ψ

∂r

)

=
[

∂

∂t
+c−

(
∂

∂r
+

1
r

)] [
∂

∂t
−c−

(
∂

∂r
+

1
r

)]
ψ = 0,

where the firs factor corresponds to the mode moving inward
and the second one corresponds to the outgoing mode. Since
we want the outgoing mode to survive, we must set the ingo-
ing mode to zero, that is, we impose the condition

[
∂

∂t
+ c−

(
∂

∂r
+

1
r

)]
ψ = 0, (57)

for ψ. Now, the velocity c− is the velocity of light written
in terms of the space-time coordinates at r = rmax. This
velocity results from the null ray condition ds2 = (−α2 +
γrrβ

rβr)dt2 + 2γrrβ
rdrdt + γrrdr2 = 0 as above, but now

solving for

c± =
(

dr

dt

)∣∣∣∣
rmax

=
(
−βr ∓ α√

γrr

)∣∣∣∣
rmax

.

Now the question is who is ψ. One possibility is to ap-
ply this condition to the metric and curvature components
ψ = γrr, γθθ,Krr,Kθθ. However, following [15], we de-
fin the evolution of γrr, γθθ,Krr,Kθθ assuming the depar-
ture of these functions from a certain background space-time
is a wave, that is, we impose the evolution of geometrical
variables as follows

∂ψ

∂t
= −c−

(
∂

∂r
+

1
r

)
ψ̃, (58)

where ψ can be γrr, γθθ,Krr,Kθθ, and ψ̃ = ψ − ψbg . Since
the space-time we deal with is similar to that of EF, we choose
the background metric and curvature components to be those
of EF, whose formulas are in (28) and in Appendix D.

Now, the boundary condition for matterat rmax is out-
fl w, so that the flui can get off the domain. This is imple-
mented by copying the values of the conservative variables
D, Jr, τ at point Nr from their values at point Nr − 1 of Dd.
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4.3. Example

We implement the methods described above using various
resolutions with Nr = 2000, 4000, 8000 or equivalently
∆r = 0.025, 0.0125, 0.00625, whereas time is discretized
with resolution ∆t = 0.25 ∆r. We set ρatm = 10−13.

For initial data in (53) we use a pulse with A = 10−4,
r0 = 20, σ = 0.5, v0 = −0.1, e0 = 0.01 and consider a
relativistic gas with Γ = 4/3. The results of the solution are
summarized in Fig. 5, where we show the dynamics of ρ0, p,
vr, γrr, Krr and Kθθ.

Let us firs describe the initial conditions. Notice that
the rest mass density and pressure show the Gaussian profile
whereas the velocity fiel has a square pulse shape. The met-
ric function γrr and Kθθ bent near r = 20 at the center of
the Gaussian for matter, whereas γθθ and Krr are those of
the EF metric as prescribed before. Notice that, according
to (53) the velocity is discontinuous at two points, where the
Gaussian density coincides with the atmosphere value.

One of those points, the one at the right, evolves as a
shock, discontinuous in density, pressure and velocity as can
be seen in the snapshots. The one at the left evolves with
a smooth density and pressure, but discontinuous in veloc-
ity. After initial time the pulse expands due to pressure and
redistributes across the numerical domain, part of the gas to-
ward the black hole, where vr < 0 and part trying to escape
in regions where vr > 0. Eventually the density decreases
in amplitude, which means that it has been absorbed by the
black hole and finall escaped through the boundary at rmin.
Notice from the plot for ρ0 that the amount of matter moving
to the right is small compared to that being accreted by the
black hole.

With time ρ0, p and vr approach a stationary state with
profile very similar to those for the accretion on the fi ed
background in Fig. 3, and although small not completely the
value of ρatm. This is a parasitic accretion of the fluid which
is unavoidable with the finit volume approach and is due
to the presence of the atmosphere. This means that the at-
mosphere is all the time contributing with a small amount to
the accretion process but is unphysical. In order to see how
much this remanent is due to the atmosphere we solved the
system for initial conditions with ρ0 = ρatm and zero veloc-
ity initially. This is pretty similar to the case we solved with
the background fi ed, but this time the geometry evolves. In
Fig. 6 we show the comparison between the remanent density
profil after the Gaussian has been evolved in our example
above and the density profil resulting from the evolution of
only the atmosphere. The two profile are very similar, but
not the same, and the profil of only the atmosphere has a
smaller ρ0 than that of the remanent. This indicates that part
of the matter in the Gaussian pulse is never accreted nor es-
caped from the black hole and can be due to the accumulation
of numerical errors.

Later on we will measure the amount of matter accreted
during the process and see whether or not the Gaussian was
accreted by the black hole.

As for the geometry in Fig. 5, the metric functions and

extrinsic curvature components expel the bump set at initial
time due to the Gaussian shell of matter.

As far as the numerical solution is concerned, up to here
the problem can be said it has been solved, nevertheless, the
physics and numerical reliability of the solution require some
extra work we describe now.

4.4. Diagnostics

4.4.1. Convergence of constraints

Notice that we are not solving the whole set of Einstein’s
equations, only those for the evolution of the metric and ex-
trinsic curvature components, whereas the constraints have
been solved only at initial time. This is not a particular is-
sue of the approach here, but it is a common signature of
General Relativistic simulations based on the 3+1 decompo-
sition of the space-time: there are evolution equations solved
as an Initial Value Problem, and constraint equations used to
monitor the reliability of the solutions [22,23], in fact, formu-
lations other than ADM, defin constraints additional to the
Hamiltonian and Momentum Constraints, which may also be
monitored.

Constraint Eqs. (48) and (49) have to be fulfille in the
continuum in order for the numerical solution of evolution
equations to be consistent with Einstein’s equations. For this
we have to check that in the continuum limitH andMr con-
verge to zero. For this we apply a convergence test as fol-
lows. Suppose we calculateH1 when we solve the equations
using a base resolution ∆r1 = ∆r, then we construct a sec-
ond solution H2 using resolution ∆r2 = ∆r1/2. Assuming
the dominating global error of the solution, with all the meth-
ods used for hydrodynamics and for geometry are of order
n, and noticing that the errors depending on time resolution
∆t = C∆r are already encrypted in the errors in ∆r, we can
write that

H1 = H0 + E∆rn,

H2 = H0 + E

(
∆r

2

)n

, (59)

where E is the amplitude of the error that depends on both,
space and time, and H0 is the value of the constraint in the
continuum limit. Dividing these two expressions and substi-
tuting that H0 = 0, that is, the constraint is fulfille in the
continuum, one find that

H1

H2
' 2n, (60)

is the Convergence Factor (CF) of the numerical solutions.
The time integrator of the MoL is third order accurate, finit
differences for the right hand sides of Eqs. (41-44) is second
order accurate, and the HRSC methods of hydrodynamics are
second order accurate for smooth fl ws and firs order near
discontinuities, in particular the outgoing shock wave. Thus,
depending on the part of the domain, n should be in theory

Rev. Mex. F́ıs. E18, 020206
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FIGURE 5. Snapshots of ρ0, p, vr , γrr , Krr and Kθθ for the accretion of a Gaussian shell. Notice that matter and geometry evolve in
time and become nearly stationary after the pulse has been absorbed by the inner boundary within the black hole’s horizon. These results
correspond to the solution with ∆r = 0.0125. The lines with points indicate the initial values for each variable. As an example with units,
this solution for a black hole of initial horizon mass M = 100M¯ the range of ρ0 in cgs units is from 6.177 to 6.177 × 1010 gr/cm3, the
velocity in units of c and the range of pressure axis is from 5.55× 1018 to 5.55× 1029 gr/cm/s2.

1 ≤ n ≤ 2. That is, the violation of the Hamiltonian con-
straint, that now we see depends on resolution, should ap-
proximately fulfil relation (60). We say the relation (60) has
to be fulfille approximately because in (59) the expansion is
truncated.

Now, checking whether the constraint converges at every
time is rather unpractical, one would need to check this rela-
tion at every point of the space-time domain. Based on the
Lax Theorem [28], we in principle can use the convergence

of a norm, for example L∞, L1 or L2. We choose the L2

norm ofH is calculated as

L2(H) =

√√√√√
rmax∫

rmin

|H|2dr,

integrated on the numerical domain along the radial direction.
Then L2(H) can be calculated at each time and then used to
track the convergence of the numerical solution.
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FIGURE 6. We show the remanent of the rest mass density ρ0 and
compare its profil with the evolution of purely the atmosphere.

FIGURE 7. Convergence of L2(H) to zero as a function of time in
the continuum limit. The factor between curves varies between 2
and 4. In the inset we show the convergence factor of the L2 norm
of H using ∆r = 0.025 and 0.0125, which implies that (60) is
fulfille between n = 1 and n = 2.

We show in Fig. 7 the convergence test of L2(H) for
three different resolutions. We use a log scale in order to in-
clude more than two resolutions. The CF of L2(H) between
two consecutive resolutions is close to 4, which confirm that
the dominant accuracy of the numerical solution is of order
n ' 2.

4.4.2. Apparent horizon

An Apparent Horizon (AH) is a marginally trapped 2-
dimensional surface embedded within the hypersurface Σt,
on which the expansion Θ of outgoing null geodesics is zero
[23]. For the spherically symmetric space-time with metric
(10) the expansion reads

Θ =
∂rγθθ√
γrrγθθ

− 2
Kθθ

γθθ
. (61)

In this case the AH is a two-sphere of radius rAH . The
marginally nature means that rAH is the outermost value of

FIGURE 8. In the top we show the Apparent Horizon radius rAH

as a function of time using various resolutions. We also show the
Richarson extrapolation of the radius, which is constructed with the
two fines resolutions and formula (64). In the bottom we show the
self-convergence factor of rAH calculated using the three resolu-
tions and formula (63). The spike appears at the moment when the
horizon starts growing.

r at which Θ = 0, for which we search for zeroes of Θ from
rmax inwards.

Formally the areal radius of the apparent horizon is
RAH =

√
γθθ(t, rAH), located where the outermost zero

of Θ is found. Then we calculate the area of the AH as that
of the corresponding 2-sphere AAH = 4πR2

AH and the AH
mass MAH = RAH/2 [22,23]. In our case, we are enforcing
the condition γθθ = r2, and therefore rAH = RAH .

The apparent horizon radius from our simulations with
different resolutions is shown in Fig. 8. This is a real nu-
merical simulation, and the plot must show how the appar-
ent horizon can depend importantly on the resolution of the
numerical domain. However one has to check whether the
apparent horizon radius is numerically valid.

Unlike the convergence test for the Hamiltonian con-
straint above, in this case what we need is a self-convergence
test for rAH . Assume the unknown value in the contin-
uum at a given t is rAH,0, and that rAH,1, rAH,2 and rAH,3

are the apparent horizon radii calculated for numerical solu-
tions using respectively ∆r1 = 0.025, ∆r2 = ∆r1/2 and
∆r3 = ∆r2/2. Then one can construct expressions for the
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numerical values in terms of the hypothetical value rAH,0 as
follows:

rAH,1 = rAH,0 + E∆rn
1 ,

rAH,2 = rAH,0 + E

(
∆r1

2

)n

,

rAH,3 = rAH,0 + E

(
∆r1

4

)n

, (62)

with E the amplitude of the error. A combination of these
expressions leads to the self-convergence factor (SCF)

SCF =
rAH,1 − rAH,2

rAH,2 − rAH,3
' 2n, (63)

where n is the order of self-convergence. In Fig. 8 we also
show the SCF for rAH that oscillates between 3.7 and 4, as
expected, since the accuracy of our methods lies between
n = 1 and n = 2. In fact we can extract n = SCF/ log(2)
that oscillates in time because SCF does.

Now that we know rAH self-converges with order n that
changes in time within the expected range 1 ≤ n ≤ 2, we are
authorized to apply a Richardson extrapolation for rAH . The
extrapolated value is nearly the horizon radius in the contin-
uum limit. Two resolutions suffic to calculate an extrapola-
tion, for instance ∆r2 and ∆r3. From the two last expres-
sions in (62) one can obtain that

rAH,0 ' 2nrAH,3 − rAH,2

2n − 1
, (64)

which is the extrapolated AH radius. This is the expected ra-
dius in the continuum limit that we also show in Fig. 8 with
a continuous line.

4.4.3. Event Horizon

The Event Horizonon the other hand, is a 3-surface, which
is the boundary between the outgoing null rays that can es-
cape to future null infinit I +, and those that end up in the
space-time singularity of the black hole. For a formal def-
inition see [3, 22, 23]. In order to exactly locate the EH of
a space-time, one needs to know the whole space-time. An
example is Schwarzschild solution in Schwarzschild coordi-
nates, which is static, and the event horizon is the 3-surface
consisting on the 2-sphere of radius 2M cross the domain of
time S2(2M)× R.

In our problem of the evolution of a black hole, as well as
in professional simulations of black holes mergers and other
compact objects [25, 26], only a small portion of the space-
time is known. For example in the firs simulations of head-
on mergers of black holes, the event horizon looks like a pair-
of pants that lasts only a finit time, as can be seen in [29] and
the cover of that number of Science [30].

Here we implement a practical approach to locating the
EH of our black hole. For this we launch outgoing null rays
generated from initial locations r = gk of the spatial domain

FIGURE 9. Bundle of outgoing null rays departing from points
rk(0) = gk near r = 2M at initial time. The ray from which out-
going null rays depart outwards exponentially is the Event Horizon.
The dashed line indicates the extrapolated Apparent Horizon radius
for comparison. Notice that the AH lies inside the EH all the way.

and some of them will be able to escape to infinit , whereas
others will end up pointing toward the black hole singularity.
The limiting ray between these two behaviors will indicate
within numerical accuracy, the location of the Event Horizon.

The evolution equation of a null ray is obtained from
the condition ds2 = (−α2 + γrrβ

rβr)dt2 + 2γrrβ
rdrdt +

γrrdr2 = 0 for radial rays. This time we search for an ex-
pression of dr/dt:

ds2 = (−α2 + γrrβ
rβr)dt2 + 2γrrβ

rdrdt + γrrdr2 = 0

⇒ γrr

(
dr

dt

)2

+ 2γrrβ
r dr

dt
+ (−α2 + γrrβ

rβr) = 0,

which implies

dr

dt
= −βr ± α√

γrr
, (65)

for each null ray k with points at (t, rk). The initial condi-
tions for each geodesic k are set to rk(0) = gk. In Fig. 9
we show a bundle of outgoing null rays departing from near
the event horizon at initial time. For this particular bundle of
geodesics, it can be noticed how the geodesics depart from
each other at around t ∼ 150, some of them moving toward
the singularity and some others escaping to infinit .

For this figur we calculate these rays with the highest
resolution solution ∆r = 0.00625, and also show the appar-
ent horizon radius rAH . Notice that the EH appears outside
the apparent horizon and in fact starts growing earlier. This is
a sign of the locality of the AH, estimated at everyΣt, and the
global nature of the EH. A fina comment on the difference
between AH and EH is that the EH is gauge independent,
whereas the AH depends importantly on the gauge used to
embed the spatial hypersurfaces into the space-time.

On the method. The method used here is rather te-
dious because one has to fine-tun the initial position of null
geodesics that will be found to be close enough to each other
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FIGURE 10. Time dependence of MMS and MAH . Notice how
the apparent horizon grows when the pulse is being accreted be-
tween t ∼40 and 80M . Afterwards the apparent horizon mass
approaches the Misner-Sharp mass, which indicates that black hole
has accreted the flui in the domain.

and will depart only later in time. An advantage of our ap-
proach is that we solve the position equation of null rays (65)
forward in time, simultaneously with matter and geometric
variables using the MoL.

One more professional strategy consists in launching a
bundle of null rays from the future starting at say t = 200 and
backwards in time, and the null ray to which they converge
will mark the location of the event horizon. A considerable
drawback is that one has to save in the hard disk the metric
components at all times, which, depending on time resolu-
tion, can be a limitation, and the backward in time null-ray
tracking has to be done at post-processing. This strategy is
the one followed in the most general situations for the bi-
nary black hole and compact objects mergers, and actually
captures the EH with any number of multipolar components,
on which null surfaces launched backwards from the future
converge to. This numerical tool, the Event Horizon Finder
was developed within the code Cactus [31], and as far as we
can tell, is a production tool used to track Event Horizons un-
der fully non-linear 3D General Relativistic simulations [32].
This method has also been used in simpler applications, for
example [33].

4.4.4. Mass

The Misner-Sharp mass is a useful quantity that serves to
monitor the mass of a space-time slice Σt . For the 3+1 met-
ric used here, its expression reads [34]

MMS =
1
2
√

γθθ

(
1− 1

4
(∂rγθθ)2

γrrγθθ
+

Kθθ

γθθ

)
. (66)

This mass accounts for the rest mass and energy contents of
the slice and in the limit of r → ∞ its value tends to the
ADM mass of Σt. Here we use MMS to measure the energy
content of the space-time in time during the evolution, and to
see how the black hole horizon mass compares with it.

In Fig. 10 we show as functions of time, the appar-
ent horizon mass MAH = rAH/2 and MMS . Notice that
at initial time, the apparent horizon mass is one, whereas
MMS ∼ 1.458. This means that the energy contents of the
perfect flui is initially ∼ 0.458. By time t ∼ 150M the
Gaussian shell is accreted and the horizon mass grows until it
asymptotically approaches the value ofMMS . In practice the
value ofMMS is not constant, because there is the permanent
atmosphere within the whole numerical domain that is being
added up to the space-time mass. This is not important when
the background space-time is fi ed, like in Michel accretion,
but must be taken into account in full non-linear simulations.

5. Final comments

We have presented in detail the basic strategy and methods
used to solve the time dependent accretion process of a per-
fect flui onto a black hole.

We expect this version of the problem to boost the starting
point of students working on general relativity and relativistic
astrophysics, to tackle more sophisticated accretion problems
involving magnetohydrodynamics and radiation, ingredients
that model the matter around black holes at current state of
the art.

Appendix

A. Christoffel symbols of the general spherically
symmetric space-time

Since the geometry is changing in time we need the symbols
for the general space-time (10), not only for the EF space-
time (27) as we did in the test flui case. The non-zero
Christoffel symbols for metric (10) are the following:

Γt
tt =

(γ̇rr − 2γrrβ
r′ − βrγ′rr) (βr)2 + 2α (α̇ + α′βr)

2α2
,

Γt
tr =

2αα′ + βr (γ̇rr − 2γrrβ
r′ − βrγ′rr)

2α2
,

Γt
rr =

γ̇rr − 2γrrβ
r′ − βrγ′rr

2α2
,

Γt
θθ =

γ̇θθ − βrγ′θθ

2α2
,

Γt
φφ = sin2 θΓt

θθ,

Γr
tt =

1
2


βr

(
βr

(
γ̇rrβ

r + 2γrrβ̇
r + 2γ̇rrβ

r
)
− 2αα̇

)

α2

+

(
1
γrr
− (βr)2

α2

) (
−γ′rr (β

r)2 + 2 (γ̇rr − γrrβ
r′) βr

+ 2 αα′ + 2γrrβ̇
r
)]

, (A.1)
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Γr
tr =

1
2

(
(−γ̇rr + 2γrrβ

r′ + βrγ′rr) (βr)2

α2
− 2α′βr

α
+

γ̇rr
γrr

)
,

Γr
rr =

1
2

(
γ′rr
γrr

+
βr (−γ̇rr + 2γrrβ

r′ + βrγ′rr)
α2

)
,

Γr
θθ =

1
2

(
βr (βrγ′θθ − γ̇θθ)

α2
− γ′θθ

γrr

)
,

Γr
φφ = sin2 θΓr

θθ,

Γθ
tθ =

γ̇θθ

2γθθ
,

Γθ
rθ =

γ′θθ

2γθθ
,

Γθ
φφ = − cos θ sin θ,

Γφ
tφ =

γ̇θθ

2γθθ
,

Γφ
rφ =

γ′θθ

2γθθ
,

Γφ
θφ = cot θ, (A.2)

where we used a prime to denote derivative with respect to r
and dot for time derivative.

An important practical detail is that in these expressions
there are time derivatives of various functions. It is conve-
nient to set the values for γ̇rr and ˙γθθ to the right hand sides
of their respective evolution Eqs. (41) and (42). The term α̇
is set to zero since there is no evolution equation for α.

B. Method of lines

Assume one has to solve an Initial Value Problem involving a
firs order in time differential equation define on a chunk of
space-time described by the variables t and x, and ruled by
the evolution equation

∂f

∂t
= rhs

(
h,

∂g

∂x

)
, (B.1)

where f = f(t, x), g = g(t, x), h = h(t, x) are functions
define on the domain D = x ∈ [xmin, xmax] × t ∈ [0, tf ],
with some initial f(0, x) = f0(x) and boundary conditions
f(t, xmin), f(t, xmax) on f . The right hand side of the equa-
tion is a generic function. This is a type of equation we deal
with in this paper, (15) and (41-44). An important property
is that the equations of hydrodynamics and geometry are firs
order in time and contain firs order and at most second order
derivatives in space. Here we use firs order derivatives in
space for illustration.

A discrete version of the problem requires the definitio
of a discrete version of the domain Dd = {(tn, xi) | xi =
xmin + i∆x, t = n∆t}, i = 0, ..., Nx, n = 0, 1, ...,
where ∆x = (xmax − xmin)/Nx is the spatial resolution and

∆t = C∆x the time resolution. The functions involved in
the equation, f, g, h and their derivatives are define only at
elements of Dd. At each point (tn, xi) ∈ Dd one define the
semi-discrete version of the Eq. (B.1) as follows:

∂f

∂t

∣∣∣∣
(tk,xi)

= rhs

(
h

∣∣∣∣
(tn,xi)

,
∂g

∂x

∣∣∣∣
(tn,xi)

)
. (B.2)

This is an ODE for f at each xi, to be integrated from tn to
tn+1. In fact it is an IVP in the time domain t ∈ [0, tf ] for
each value xi. This approach is called the Method of Lines
(MoL), because the IVP associated to a PDE will be solved
by integrating the set of Nx +1 ODEs along lines of constant
position xi for i = 0, ..., Nx.

The integration from tn to tn+1 can be carried out using
an integrator of ODEs, in our case a third order Runge-Kutta
method. Then, the implementation of the MoL centers in the
ability to construct the discrete version of rhs. In our equa-
tions we have spatial derivatives of firs and second order.

FIGURE B.1. We show the molecules used for the centered Finite
Differences approximation with second order accuracy for βr = 0
at the top, the one-sided used for βr > 0 at the middle and the
one-sided used for βr < 0 at the bottom. White circles indicate
the points of Dd that are not used for the evolution step from tn to
tn+1 in each case.
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Expressions for the firs order derivative on Dd are

∂g

∂x

∣∣∣∣
(tn,xi)

=
gn

i+1 − gn
i−1

2∆x
+O(∆x2), (B.3)

∂g

∂x

∣∣∣∣
(tn,xi)

=
−3gn

i + 4gn
i+1 − gn

i+2

2∆x
+O(∆x2), (B.4)

∂g

∂x

∣∣∣∣
(tn,xi)

=
3gn

i − 4gn
i−1 + gn

i−2

2∆x
+O(∆x2), (B.5)

obtained from Taylor expansions of g around xi and along the
spatial direction of the domain. Expression (B.3) is centered,
and uses the information of g at the two nearest neighbors
of (tn, xi). The later two expressions are one-sided because
they use values of g to the right or left from (tn, xi).

For example, assume rhs(h, ∂g/∂x) = a∂g/∂x, then
the semi-discrete version of the equation would be

∂f

∂t

∣∣∣∣
(xi,tn)

= a
gn

i+1 − gn
i−1

2∆x
+O(∆x2). (B.6)

This version is commonly represented as a molecule, indicat-
ing the points of the domain involved to achieve a jump of f
from tn to tn+1. In the particular case of (B.6) the molecule
appears at the top in Fig. B.1.

MoL for HRSC methods. The centered expression is
used for the rhs of D,Jr, τ (15) as follows. For example,
the semi-discrete version of the evolution equation for the
cell-centered value of D is, from (20)

∂tD̄ = −
F̄D,HLLE

i+1/2 − F̄D,HLLE
i−1/2

∆r
,

which is the expression (B.3) for the derivative of the flu as-
sociated to the variable D, centered at the inter-cell boundary
located at ri with ∆r = ∆x/2. Similarly happens for Jr and
τ .

MoL for the geometry. The equations for the geometry
do not use a FV discretization, instead use finit differences,
which in practice translates into using expressions of deriva-
tives for rhs directly from (B.3-B.5), a discretization called
vertex-centered, as opposed to cell-centered used for matter.

We also use the stencil (B.3) for the firs order spa-
tial derivatives on the right hand sides of the equations for
γrr, γθθ,Krr,Kθθ and the Chistoffel symbols, unless we sus-
pect possible causal disconnection, which is a very important
issue in Numerical Relativity.

Causal disconnectionis related to advection terms in the
right hand sides of the equations. These are terms of the
type βr∂rg in (41-44), with βr the radial component of the
shift, that we know, represents a local velocity of coordinates,
from one spatial hypersurface to the next one. This define a
causality restriction on the time integration with MoL.

For illustration consider again the case (B.6) with a = βr

at a particular point of the domain, and x = r. The value of
βr can be positive and big enough that the point (tn, ri−1)
may be causally disconnected from (tn+1, ri) in the top plot

of Fig. B.1. This problem is solved using the one-sided ex-
pressions (B.4) for the spatial derivative that uses only points
to the right from (tn, ri). The oposite case of βr < 0 can
be solved using the one-sided formula (B.5) that uses only
points to the left from xi. The molecules illustrating these
two possibilities are shown in the middle and bottom panel
of Fig. B.1.

Summarizing, in practice the advection terms are handled
explicitly for this example as follows

βr ∂g

∂x

∣∣∣∣
(tn,xi)

=
−3gn

i + 4gn
i+1 − gn

i+2

2∆x
βr|(tn,xi), βr > 0,

βr ∂g

∂x

∣∣∣∣
(tn,xi)

=
gn

i+1 − gn
i−1

2∆x
βr|(tn,xi), βr = 0,

βr ∂g

∂x

∣∣∣∣
(tn,xi)

=
3gn

i − 4gn
i−1 + gn

i−2

2∆x
βr|(tn,xi), βr < 0,

We use the evolution equation for γrr (41) to illustrate
the semi-discrete version of one of the ADM equations that
reads:

∂γrr

∂t

∣∣∣∣
(tn,xi)

= −2αKrr|(tn,xi)

+ 2γrr|(tn,xi)

βrn
i+1 − βrn

i−1

2∆r
+ advec,

where

advec =





−3γrr
n
i +4γrr

n
i+1−γrr

n
i+2

2∆x
βr|(tn,xi), βr > 0,

γrr
n
i+1−γrr

n
i−1

2∆x
βr|(tn,xi), βr = 0,

3γrr
n
i −4γrr

n
i−1+γrr

n
i−2

2∆x
βr|(tn,xi), βr < 0.

.

The firs term in the rhs is a function, the second term in-
cludes a centered derivative of βr and the third term is an
advection term that uses one-sided molecules.

The implementation of derivatives in boundary condi-
tions for geometry (57) also uses the one-sided stencil (B.5)
for the right hand sides at rmax = Nr.

Finally, there are also second order spatial derivatives in
the right hand side of equations (41-44). Second order deriva-
tives are not used at the boundaries, then we only need the
centered expression, which for the generic function g reads

∂2g

∂x2

∣∣∣∣
(xi,tn)

=
gn

i+1 − 2gn
i + gn

i−1

∆x2
+O(∆x2) (B.7)

which completes the details of the MoL, needed to reproduce
the results in this paper.
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C. Units

In the calculations we use geometric units G = c = 1. In
these units, both space and time coordinates are in units of
M , which is the scale that fi es the units of a particular phys-
ical system.

In order for the results to be eventually compared with
observations, it is important to present the results using phys-
ical units. Following [6], conversion factors from geometric
units to cgs units for length, time, mass, velocity, density and
pressure are

rcgs = 1.47651× 105

(
M

M¯

)
rgeo,

tcgs = 4.92513× 10−6c

(
M

M¯

)
tgeo,

mcgs = 1.9884× 1033

(
G

c2

) (
M

M¯

)
mgeo,

vcgs = 2.99792458× 1010

(
1
c

)
vgeo,

ρcgs = 6.17714× 1017

(
G

c2

) (
M¯
M

)2

ρgeo,

pcgs = 5.55173× 1038

(
G

c4

) (
M¯
M

)2

pgeo, (C.1)

where the mass M has to be given in solar masses. In the ex-
amples of the text we set M = 106M¯ in the test fiel case
and M = 100 M¯ in the non-linear case.

D. Geometrical quantities of the EF space-time

The components of the extrinsic curvature for the EF met-
ric are useful and here we construct their values. Start-
ing from the fact that γij = diag(γrr, γθθ, sin2 θγθθ) with
γrr = (1 + [2M/r]) and γθθ = r2, and using (33) one has

Kij = − 1
2α

[∂tγij −Diβj −Djβi] ,

where the covariant derivative Di is consistent with the 3-
metric γij of Σt. That is, we have to use the symbols (46) in
what follows. Then

Krr− = − 1
2α

[»»»∂tγrr − 2Drβr] =
1
α

(∂rβr − Γr
rrβr)

= −2M

r2

1 + M
r√

1 + 2M
r

, (D.1)

Kθθ = − 1
2α

[»»»∂tγθθ − 2Dθβθ] =
1
α

(©©©∂θβθ − Γr
θθβr)

=
2M√
1 + 2M

r

, (D.2)

are the components of the extrinsic curvature of the EF met-
ric, useful in Eqs. (50) and (52).

E. Pseudocode

The implementation of a code with the methods described
for the test-fiel and non-linear regime has a very intuitive
flu diagram. The order of the implementation of each step
described in the paper can be summarized in the following
pseudocode.

E.1 Test fluid case

1. Defin numerical parameters for the numerical domain
Nr, Nt from Sec. 2.1.

2. Assign memory to one dimensional arrays of size
Nr for the radial coordinate r, primitive variables
ρ0, vr, e, and p, conservative variables D,Jr, τ and
their past values for the implementation of the MoL,
flu es and sources in the system (15), metric functions
α, βr, γrr, γθθ, non-zero stress-energy tensor compo-
nents (14), non-zero Christoffel symbols (29) and the
auxiliary functions W , h and γ.

! Initial conditions

3. Defin the Eddington-Finkelstein metric in terms of r
using formulas (28) and set Christoffel symbols (29).

4. Defin the adiabatic index Γ and set initial conditions
for the primitive variables of the fluid namely ρ0, v

r, p,
and through the equation of state (9) determine e =
p/(ρ0(Γ− 1)) and therefore h = 1 + e + p/ρ0.

5. Defin the initial conservative variables D, Jr, τ
through formulas (8).

6. Evolution loop to be executed Nt times.

6.1 !Runge-Kutta Loop.

Do for the three intermediate steps of the third
order Runge-Kutta

- Calculate the right hand sides for the evolu-
tion equations (15) following the recipe in
section II-A.

- Update the values of D, Jr, τ

6.2 Diagnostics, where the accretion rate is calcu-
lated using formula (32)

6.3 Save data

! Ends Evolution loop.

7. Ends program.
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E.2 Non-linear accretion case

In this case the number of evolution equations is bigger and
setting up initial conditions is more elaborate. The following
is the flu of instructions.

1. Defin numerical parameters for the numerical domain
Nr, Nt from Sec. 4.2.2.

2. Assign memory to one dimensional arrays of size Nr

for the radial coordinate r, primitive variables ρ0, vr, e,
p, conservative variables D,Jr, τ and their past values
for the implementation of the MoL, flu es and sources
in the system (15), metric gauge functions α and βr,
ADM variables γrr, γθθ,Krr,Kθθ and their past val-
ues for the use of the MoL, non-zero stress energy
components (13), non-zero Christoffel symbols (A.2),
auxiliary functions W , h and γ, diagnostics variables
H,Mr and all their terms in expressions (48,49), so
as the expansion function (61) and Misner-Sharp mass
MMS (66).

! Initial conditions

3. Defin the adiabatic index Γ and set initial condi-
tions for the primitive variables of the flui ρ0, v

r, p
in (53). With these calculate e = p/(ρ0(Γ − 1)) and
h = 1 + e + p/ρ0.

4. Defin initial values for the conservative variables
D, Jr, τ with formulas (8).

5. Implement initial conditions for the metric and ex-
trinsic curvature components consistent with the con-
straints following the recipe in Sec. 4.1

6. Evolution loop to be done Nt times.

6.1 !Runge-Kutta Loop

Do for the three intermediate steps of the third
order Runge-Kutta

- Calculate the right hand sides for geometry
according to expressions (41-44).

- Calculate the right hand sides for the con-
struction of null rays (65).

- Calculate the right hand sides for Euler equa-
tions (15).

- Update the values of hydrody-
namical and geometric variables
D, Jr, τ, γrr, γθθ,Krr,Kθθ

6.2 Diagnostics including location of the Apparent
Horizon radius, Misner-Sharp mass MMS , ap-
parent horizon mass MAH , violation of the con-
straintsH, Mr, and their L2 norm.

6.3 Save data

Ends Evolution loop.

7. Ends program.

We programmed our codes in Fortran 90.
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