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Some applications in classical mechanics of the double and the dual numbers
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We give some examples of the application of the double and dual numbers in classical mechanics, which are analogous to the complex
numbers.
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1. Introduction 2. Two simple applications in classical me-
chanics

The complex numbers are employed in classical physics asla this section we give two very simple examples related with
useful tool, usually taking advantage of their basic algebraiclassical mechanics, illustrating the application of the double
properties, but not as an essential ingredient; the objects @nd the dual numbers separately.

physical interest are real numbers or real-valued functions.

(By contrast, in quantum mechanics, the complex numberg 1. A bead in a rotating straight wire

have a more fundamental role.) Despite the existence of

many deep results in the theory of complex variables, mosthe standard Hamiltonian for a bead of mas# a straight
applications of the complex numbers in classical mechanicsyire which rotates about the-axis with a constant angular
electrodynamics, and special or general relativity rely on thevelocity w, forming a constant anglé, with the z-axis, is
fact that the complex numbers, apart from having all the al-given by

gebraic properties of the real numbers (such as associativity )

and commutativity of the sum and the product), possess an H=P" m oo 2

2 2
. X . ; = — — —wr?sin” Oy + mgr cos by,
imaginary uniti, characterized by the properify= —1. 2m 2 0 g 0

There exist other sets of “hypercomplex” numbers that in@SSuming that the-axis points upwards. Here,is the dis-
many respects imitate the complex numbers, and are chaf@nce from the origin to the beaglis the momentum canoni-
acterized by the presence of certain units, j andith the cally_conjugate _ton an_dg is the acceleratlon_of gravity. The
defining properties? = 1 (butj # +1) ande2 = 0 (but Hamilton equations yield the coupled equations
¢ # 0). The numbers of the form + jb, with a,b € R, are dr  p dp
called double (or split-complex) numbers, and the numbers i % mw?rsin® 0y — mg cos Oy
of the forma + b, with a,b € R, are called dual numbers.

Unlike the real and the complex numbers, the double and thand, making use of the hypercomplex unit j, we can write
dual numbers are not fields, but for many applications this ishese equations as the single equation
not a problem at all (see,g, Refs. [1-3]).

d . . - . .
The aim of this paper is to give some elementary appli- 3z (P +imwrsino) = jwsinbo(p + jmwr sin o)

cations of the double and the dual numbers in the solution of
the differential equations that appear in analytical mechan-
ics. In Sec. 2 we give two examples of mechanical SyStemﬁlhich, using the fact tha® = 1 and thatmg cot 6o /w is
with one degree of freedom, showing that in each case th@onstant, can also be written as

Hamilton equations are equivalent to a single first-order ordi-

— mg cos b,

nary differential equation. In Sec. 3, following [4], we con- d . ) .mg cos b ..
sider a family of Hamiltonians which includes those of the 9 \ P Himwrsinbo —j— b, ) U %o
two-dimensional isotropic harmonic oscillator, the repulsive

oscillator, and the free particle, and we find in a unified way % <p + jmwr sin 6 — jW) .
constants of motion and symmetry groups. wsin b
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The solution of this equation is given by

.mg cos b

P+ jmwrsinfy — j

w sin 6

.mg cos >
J— >
wherep, andry denote the values g@fandr, respectively, at

t = 0. Making use of the relatioexp j x = cosh z +j sinh x
(which follows from the series expansion of the exponential)

= exp(jwtsin by) <p0 + jmwrgsinfy — -
wsin B

and separating the “real” and “imaginary” parts of the pre-

ceding equation we obtain

p = po cosh(wt sin Oy)

6
+ <mwr0 sin 6y — W) sinh(wt sin )
w sin 6y
and
. mg cos 6y . mg cos 0y
mwrsinfy — ———— = [ mwrgsinfy — ———
wsin w sin O

x cosh(wt sin fy) + po sinh(wt sin Oy)

which constitute the solution of the equations of motion.
2.2. A point mass in a uniform gravitational field

The standard Hamiltonian for a particle of massn a uni-
form gravitational field is

2
H:p——i—mg:r

2m
and the corresponding Hamilton equations are
dz  p dp
—_— = — — = —mg.
dt m’ dt g

With the aid of the unit (which satisfieg? = 0), these two
equations can be merged into the linear first-order equation

K
d(p+6Kx): £

hl = Kz) —
” m(p+€ r) —myg,

whereK is a constant with dimensions of momentum/length.
The standard formula for the solution of a linear equation
given in the elementary textbooks on differential equations

yields

p+eKx = eKt/m (— / mge Kt/ mat 4 const.)

p—f—aKx:(

(o

and, using the fact thakpex = 1 + ex, we have
m
3

5Kt>
t
|

14+ —

K
)dt+cl+502>

m

eKt eKgt?
=14+ — —mgt + +c1 +€co
m
Kgt? Kceit
=-mgt+c +e|c2— R
2 m
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wherec; andc, are real constants. This last equation now
leads to the two separated expressions

at  gt?

m 2

C2
rT=—+

p = —mgt + ci, K

The constant terms; andce/K represent the initial values
of p andz, respectively.

3. Symmetries of the isotropic harmonic oscil-
lator and related problems

We shall consider a mechanical system with two degrees of
freedom, with Hamiltonian

2

1 h
H = (p:” +py%) = 5 me? (2 +97),

T )

where m and w are constants, and h may be the imagi-
nary unit,i (in which caseH corresponds to the usual two-

dimensional isotropic harmonic oscillator); the hypercom-
plex unit j (corresponding to a repulsive force); or the hy-
percomplex unit (corresponding to a free particle). (That s,

h? is equal to—1, +1, or 0, respectively, and in all casé®

is real.) This Hamiltonian can be expressed in the form

H:iqﬁ\y, ()
2m
whereV is the two-component vector [4]
_( %1\ _ [ px+hmwz
W: = 3
(B)=(htms) o

and the Hermitian adjoint of a matrix is defined as the trans-
pose of the conjugate matrix (in all cases, under conjugation,
h= —h).

Making use of the Hamilton equations we find that, for
example,

oOH
Ops

d(p, + hmwz)
dt

= h?mw?z + hwp, = hw(p, + hmwz),
with a similar result for the time derivative a@f;, thus

%:hwd%

A
dt (

=1,2).

The solution of these equations of motion is given by

Ya = (Pa)oexp hwt, (4)
where(y 4 )¢ is the initial value ofy 4 and
cosf +isinf ifh=1i,
exphf =< coshf +jsinhf if h=j, (5)
1+¢6 ifh=e.
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Equations (5) are obtained by means of the series expansidtor instance, it/ = (Ug) then
of the exponential.

Since we already have the solution of the equations of
motion, we can find all the constants of motion. In particu- {4,408} — {
lar, from Eq. (4) we see that the products of the fafmy 5
are constants of motion. In this way we obtain four (real)
constants of motion; two of them are =

M

2
Uacthe, Y UBDwD}

1 D=1

Q
Il

Uac Ugp {¥c,¥p}

C 1
Y1y = po” — WPmPw?a?, (6) -
_ = UAC UBD(—thw5CD)
Yathe = p,* — h¥m2w?y?, (7 C.D=1
o 2
and fromy1¢p = (py — hmwx)(py + hmwy) = PaDy — = —2hmw Z Uasc Upc = —2hmwdap
h?m2w?zy — hmw(zp, — yp,), separating the “real” and =1
“imaginary” parts, we obtain the two additional constants of —
motion = {Ya, ¥}
papy — h2m2w3ay, Py — YDa- 8) Recalling that theSU(2) matrices are of the form

s g ) with o, 8 € C, such thafa|? + |8> = 1,

These four constants of motion cannot be functionally i”dGWeT:onsider matrices of the form
pendent since, for a system with two degrees of freedom,

there exist three time-independent functionally independent a+hb c+hd
constants of motion only. In fact, they are related by —c+hd a—hdb )’ (10)
(pepy — W2m2wiry)? = (p.° — ®m?w?z?) with a,b,c,d € R, such thatz® + ¢2 — h?b? — h?d? = 1

2 12m2uR? and we find that the product of this matrix by its conjugate
X (py” —h*m wy”) transpose is given by

+ h2m2w2(3:py — ype)?.

< a+hb c+hd > ( a—hb —c—hd )
It may be noticed that the sum of the constants of motion (6) —c+hd a—hb c—hd a+hb
and (7), divided by2m, is the Hamiltonian (1).

% ¥ @) :(a2+02—h2b2—h2d2)<(1) (1))

3.1. Finite symmetries of the Hamiltonian which means that thzx 2 matrix (10) is unitary (and special,

in the sense that its determinant is equal to 1). One can ver-
The functions (6), (7) and (8), defined above, being constantsy that the matrices of the form (10) form a group with the
of motion, must be the infinitesimal generators of symmetriesisual matrix multiplication and, therefore, we have a group
of the Hamiltonian. However, the corresponding finite trans-of canonical transformations that leave invariant the Hamilto-
formations can be found directly noting that the expressiomian (1). This group possesses three (real) parameters owing
(2) is invariant under unitary transformatiols— UW¥. (As  to the conditiona? + ¢* — h?b? — h?d?> = 1. The genera-
usual, a matrixU is unitary if Ut = U~1.) In fact, under the tors of this group are the two constants of motion (8) together

transformationV +— UW, we havel ¥ — (U (U¥) =  with the difference between the functions (6) and (7). The
UiUtUw = ¥, Furthermore, the unitary transformation Hamiltonian, which is the sum of (6) and (7) divided Dy,
¥ — UV corresponds to a canonical transformation. generates the time evolution (4).
With the Poisson bracket defined in such a way that As pointed out above, the matrices of the form (10) with
{x,p,} = 1, from (3) one readily finds that h = ianda? + b? + ¢® + d? = 1, form the group usually de-
noted bySU(2), which is homomorphic to the rotation group
(Y4, 05} =0={¥A, U5} SO(3)_. As is_ well I_<n0wn,_SU(2) is asymmetry group for the
o two-dimensional isotropic harmonic oscillator (see [4] and
{Ya,¢B} = —2hmwiap. (9)  the references cited therein).

Whenh = j, the matrices of the form (10) with and
Then, in order to show that the mappidg — UV corre-  a? +c? —b? —d? = 1, form a group isomorphic to the group
sponds to a canonical transformation, we only have to prov€L(2,R), formed by the2 x 2 real matrices with determi-
that the Poisson brackets (9) are invariant under this mappingiant equal to 1. An isomorphism between these two groups
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is given by 4. Concluding remarks

( o g >_1 ( 1_ i > ( a Z > 1 ( 1 _1j > In one of the standard procedures employed in the solution
v V2 \ ¢ V2 \J of systems of coupled ordinary differential equations of the

1 a+d+jb+c) b—c+jd—a) form found in Secs. 2 and 3, as a first step, one obtains a de-
D) < —b+c+jd—a) a+d—jb+c) > coupled equation by raising the order of the equations. The
advantage of using the complex, double, or dual numbers is
b > belongs to that, in those special cases where they are useful, one is able
d to reduce the number of equations to solve or to obtain de-
SL(2,R), then a is of the form (10). The group coupled equations, without raising the order of the equations.

0 In the case of the Hamiltonians (1), thanks to the use of

SL(2,R) is homomorphic to the grou$O(2,1) of the  .,mpiey double and dual numbers, one is able to find, by
Lorentz transformations in a space-time with two spatial d"inspection a three-parameter symmetry group.

rections, In the examples presented above, the differential equa-
Finally, whenh = ¢, the matrices of the form (10) with . . pies p . . d
tions are linear and can be easily solved directly, but the com-

nda? + ¢? = 1, form a group homomorphi he gr f .
a Qa te » 1orm a group homomorp ctothe group o plex, double and dual numbers are also useful in other cases.
rigid motions of the Euclidean plane. ! . .
For instance, the nonlinear equations

The Hamiltonians (1) are also interesting because of their
relation with the Kepler problem. This connection is obtained da
by expressing the standard Hamiltonian for the Kepler prob-

This expression shows that i

—2a;x — ag + (13(:102 + h2y2)7

: X ; dt
lem in two-dimensions, q
Y
Pe + py k i —2a1y + 2a3zy, (12)

H, — —
Kepler om \/W’

wherek is a constant, in terms of the parabolic coordinate
(u,v), which can be defined by = 1(u? — v?), y = wv.

wherea,, as, as are real constants and = +1, arise in the
Ssearch for symmetries of certain two-dimensional Rieman-
nian manifolds [3]. Equations (12) also make sense when

The resultis h? = 0 and, with the definition: = z + hy, the system (12)
H . P’ + o’ 2k is given by the single equation
Kepler — 2m(u2 + U2) u2 + ’U2’ .
z
and therefore the conditioNkcpier = £, WhereE is the a azz® — 2a1z — az,

value of the energy, is equivalent to
which can be readily solved. In fact, in the three cases

2 2
P T Pv 2+ P B +0%) = 2k. (11) h=1,],e, its solution is given by
m
The left-hand side of (11) has the form (1), within place of az(0)+ 3
(1/2)h?mw?. Since the energyz, can be positive, negative, #(t) = 72(0) 446’ (13)
or zero, these three cases correspont émual toj, i, or ¢,
respectively. Among other things, this implies that the Kepler a f )
problem withE positive, negative, or zero admits a symme-" ~ 6 ) € SL(2,R). It turns out that, taking
try group homomorphic t8L(2,R), SU(2), or the group of h = i,j,¢, Eq. (13) represents all the three nonequivalent
rigid motions of the Euclidean plane, respectively. actions ofSL(2, R) on thexy-plane [2].
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