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Some applications in classical mechanics of the double and the dual numbers
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We give some examples of the application of the double and dual numbers in classical mechanics, which are analogous to the complex
numbers.
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1. Introduction

The complex numbers are employed in classical physics as a
useful tool, usually taking advantage of their basic algebraic
properties, but not as an essential ingredient; the objects of
physical interest are real numbers or real-valued functions.
(By contrast, in quantum mechanics, the complex numbers
have a more fundamental role.) Despite the existence of
many deep results in the theory of complex variables, most
applications of the complex numbers in classical mechanics,
electrodynamics, and special or general relativity rely on the
fact that the complex numbers, apart from having all the al-
gebraic properties of the real numbers (such as associativity
and commutativity of the sum and the product), possess an
imaginary unit,i, characterized by the propertyi2 = −1.

There exist other sets of “hypercomplex” numbers that in
many respects imitate the complex numbers, and are char-
acterized by the presence of certain units, j andε, with the
defining propertiesj2 = 1 (but j 6= ±1) andε2 = 0 (but
ε 6= 0). The numbers of the forma + jb, with a, b ∈ R, are
called double (or split-complex) numbers, and the numbers
of the forma + εb, with a, b ∈ R, are called dual numbers.
Unlike the real and the complex numbers, the double and the
dual numbers are not fields, but for many applications this is
not a problem at all (see,e.g., Refs. [1–3]).

The aim of this paper is to give some elementary appli-
cations of the double and the dual numbers in the solution of
the differential equations that appear in analytical mechan-
ics. In Sec. 2 we give two examples of mechanical systems
with one degree of freedom, showing that in each case the
Hamilton equations are equivalent to a single first-order ordi-
nary differential equation. In Sec. 3, following [4], we con-
sider a family of Hamiltonians which includes those of the
two-dimensional isotropic harmonic oscillator, the repulsive
oscillator, and the free particle, and we find in a unified way
constants of motion and symmetry groups.

2. Two simple applications in classical me-
chanics

In this section we give two very simple examples related with
classical mechanics, illustrating the application of the double
and the dual numbers separately.

2.1. A bead in a rotating straight wire

The standard Hamiltonian for a bead of massm in a straight
wire which rotates about thez-axis with a constant angular
velocity ω, forming a constant angleθ0 with the z-axis, is
given by

H =
p2

2m
− m

2
ω2r2 sin2 θ0 + mgr cos θ0,

assuming that thez-axis points upwards. Here,r is the dis-
tance from the origin to the bead,p is the momentum canoni-
cally conjugate tor, andg is the acceleration of gravity. The
Hamilton equations yield the coupled equations

dr

dt
=

p

m
,

dp

dt
= mω2r sin2 θ0 −mg cos θ0

and, making use of the hypercomplex unit j, we can write
these equations as the single equation

d
dt

(p + j mωr sin θ0) = jω sin θ0(p + j mωr sin θ0)

−mg cos θ0,

which, using the fact thatj2 = 1 and thatmg cot θ0/ω is
constant, can also be written as

d
dt

(
p + j mωr sin θ0 − j

mg cos θ0

ω sin θ0

)
= j ω sin θ0

×
(

p + jmωr sin θ0 − j
mg cos θ0

ω sin θ0

)
.
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The solution of this equation is given by

p + j mωr sin θ0 − j
mg cos θ0

ω sin θ0

= exp(j ωt sin θ0)
(

p0 + jmωr0 sin θ0 − j
mg cos θ0

ω sin θ0

)
,

wherep0 andr0 denote the values ofp andr, respectively, at
t = 0. Making use of the relationexp j x = cosh x+j sinhx
(which follows from the series expansion of the exponential),
and separating the “real” and “imaginary” parts of the pre-
ceding equation we obtain

p = p0 cosh(ωt sin θ0)

+
(

mωr0 sin θ0 − mg cos θ0

ω sin θ0

)
sinh(ωt sin θ0)

and

mωr sin θ0 − mg cos θ0

ω sin θ0
=

(
mωr0 sin θ0 − mg cos θ0

ω sin θ0

)

× cosh(ωt sin θ0) + p0 sinh(ωt sin θ0)

which constitute the solution of the equations of motion.

2.2. A point mass in a uniform gravitational field

The standard Hamiltonian for a particle of massm in a uni-
form gravitational field is

H =
p2

2m
+ mgx

and the corresponding Hamilton equations are

dx

dt
=

p

m
,

dp

dt
= −mg.

With the aid of the unitε (which satisfiesε2 = 0), these two
equations can be merged into the linear first-order equation

d
dt

(p + εKx) =
εK

m
(p + εKx)−mg,

whereK is a constant with dimensions of momentum/length.
The standard formula for the solution of a linear equation

given in the elementary textbooks on differential equations
yields

p + εKx = eεKt/m

(
−

∫
mge−εKt/mdt + const.

)

and, using the fact thatexp εx = 1 + εx, we have

p + εKx =
(

1 +
εKt

m

)

×
(
−

∫
mg

(
1− εKt

m

)
dt + c1 + εc2

)

=
(

1 +
εKt

m

)(
−mgt +

εKgt2

2
+ c1 + εc2

)

= −mgt + c1 + ε

(
c2 − Kgt2

2
+

Kc1t

m

)
,

wherec1 andc2 are real constants. This last equation now
leads to the two separated expressions

p = −mgt + c1, x =
c2

K
+

c1t

m
− gt2

2
.

The constant termsc1 andc2/K represent the initial values
of p andx, respectively.

3. Symmetries of the isotropic harmonic oscil-
lator and related problems

We shall consider a mechanical system with two degrees of
freedom, with Hamiltonian

H =
1

2m

(
px

2 + py
2
)− h2

2
mω2

(
x2 + y2

)
, (1)

where m and ω are constants, and h may be the imagi-
nary unit,i (in which caseH corresponds to the usual two-
dimensional isotropic harmonic oscillator); the hypercom-
plex unit j (corresponding to a repulsive force); or the hy-
percomplex unitε (corresponding to a free particle). (That is,
h2 is equal to−1, +1, or 0, respectively, and in all casesH
is real.) This Hamiltonian can be expressed in the form

H =
1

2m
Ψ†Ψ, (2)

whereΨ is the two-component vector [4]

Ψ ≡
(

ψ1

ψ2

)
≡

(
px + hmωx
py + hmωy

)
(3)

and the Hermitian adjoint of a matrix is defined as the trans-
pose of the conjugate matrix (in all cases, under conjugation,
h ≡ −h).

Making use of the Hamilton equations we find that, for
example,

d(px + hmωx)
dt

= −∂H

∂x
+ hmω

∂H

∂px

= h2mω2x + hωpx = hω(px + hmωx),

with a similar result for the time derivative ofψ2, thus

dψA

dt
= hωψA (A = 1, 2).

The solution of these equations of motion is given by

ψA = (ψA)0 exp hωt, (4)

where(ψA)0 is the initial value ofψA and

exp hθ =





cos θ + i sin θ if h = i,
cosh θ + j sinh θ if h = j,
1 + εθ if h = ε.

(5)
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Equations (5) are obtained by means of the series expansion
of the exponential.

Since we already have the solution of the equations of
motion, we can find all the constants of motion. In particu-
lar, from Eq. (4) we see that the products of the formψAψB

are constants of motion. In this way we obtain four (real)
constants of motion; two of them are

ψ1ψ1 = px
2 − h2m2ω2x2, (6)

ψ2ψ2 = py
2 − h2m2ω2y2, (7)

and fromψ1ψ2 = (px − hmωx)(py + hmωy) = pxpy −
h2m2ω2xy − hmω(xpy − ypx), separating the “real” and
“imaginary” parts, we obtain the two additional constants of
motion

pxpy − h2m2ω2xy, xpy − ypx. (8)

These four constants of motion cannot be functionally inde-
pendent since, for a system with two degrees of freedom,
there exist three time-independent functionally independent
constants of motion only. In fact, they are related by

(pxpy − h2m2ω2xy)2 = (px
2 − h2m2ω2x2)

× (py
2 − h2m2ω2y2)

+ h2m2ω2(xpy − ypx)2.

It may be noticed that the sum of the constants of motion (6)
and (7), divided by2m, is the Hamiltonian (1).

3.1. Finite symmetries of the Hamiltonian

The functions (6), (7) and (8), defined above, being constants
of motion, must be the infinitesimal generators of symmetries
of the Hamiltonian. However, the corresponding finite trans-
formations can be found directly noting that the expression
(2) is invariant under unitary transformationsΨ 7→ UΨ. (As
usual, a matrixU is unitary ifU† = U−1.) In fact, under the
transformationΨ 7→ UΨ, we haveΨ†Ψ 7→ (UΨ)†(UΨ) =
Ψ†U†UΨ = Ψ†Ψ. Furthermore, the unitary transformation
Ψ 7→ UΨ corresponds to a canonical transformation.

With the Poisson bracket defined in such a way that
{x, px} = 1, from (3) one readily finds that

{ψA, ψB} = 0 = {ψA, ψB},
{ψA, ψB} = −2hmωδAB . (9)

Then, in order to show that the mappingΨ 7→ UΨ corre-
sponds to a canonical transformation, we only have to prove
that the Poisson brackets (9) are invariant under this mapping.

For instance, ifU = (UAB) then

{ψA, ψB} 7→
{

2∑

C=1

UACψC ,

2∑

D=1

UBDψD

}

=
2∑

C,D=1

UAC UBD {ψC , ψD}

=
2∑

C,D=1

UAC UBD(−2hmωδCD)

= −2hmω

2∑

C=1

UAC UBC = −2hmωδAB

= {ψA, ψB}.

Recalling that theSU(2) matrices are of the form(
α β

−β α

)
, with α, β ∈ C, such that|α|2 + |β|2 = 1,

we consider matrices of the form

(
a + hb c + hd
−c + hd a− hb

)
, (10)

with a, b, c, d ∈ R, such thata2 + c2 − h2b2 − h2d2 = 1
and we find that the product of this matrix by its conjugate
transpose is given by

(
a + hb c + hd
−c + hd a− hb

)(
a− hb −c− hd
c− hd a + hb

)

= (a2 + c2 − h2b2 − h2d2)
(

1 0
0 1

)
,

which means that the2×2 matrix (10) is unitary (and special,
in the sense that its determinant is equal to 1). One can ver-
ify that the matrices of the form (10) form a group with the
usual matrix multiplication and, therefore, we have a group
of canonical transformations that leave invariant the Hamilto-
nian (1). This group possesses three (real) parameters owing
to the conditiona2 + c2 − h2b2 − h2d2 = 1. The genera-
tors of this group are the two constants of motion (8) together
with the difference between the functions (6) and (7). The
Hamiltonian, which is the sum of (6) and (7) divided by2m,
generates the time evolution (4).

As pointed out above, the matrices of the form (10) with
h = i anda2 + b2 + c2 + d2 = 1, form the group usually de-
noted bySU(2), which is homomorphic to the rotation group
SO(3). As is well known,SU(2) is a symmetry group for the
two-dimensional isotropic harmonic oscillator (see [4] and
the references cited therein).

When h = j, the matrices of the form (10) with and
a2 + c2− b2− d2 = 1, form a group isomorphic to the group
SL(2,R), formed by the2 × 2 real matrices with determi-
nant equal to 1. An isomorphism between these two groups
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is given by
(

α β
γ δ

)
=

1√
2

(
1 j
−j 1

)(
a b
c d

)
1√
2

(
1 −j
j 1

)

=
1
2

(
a + d + j(b + c) b− c + j(d− a)
−b + c + j(d− a) a + d− j(b + c)

)
.

This expression shows that if

(
a b
c d

)
belongs to

SL(2,R), then

(
α β
γ δ

)
is of the form (10). The group

SL(2,R) is homomorphic to the groupSO(2, 1) of the
Lorentz transformations in a space-time with two spatial di-
rections.

Finally, whenh = ε, the matrices of the form (10) with
anda2 + c2 = 1, form a group homomorphic to the group of
rigid motions of the Euclidean plane.

The Hamiltonians (1) are also interesting because of their
relation with the Kepler problem. This connection is obtained
by expressing the standard Hamiltonian for the Kepler prob-
lem in two-dimensions,

HKepler =
px

2 + py
2

2m
− k√

x2 + y2
,

wherek is a constant, in terms of the parabolic coordinates
(u, v), which can be defined byx = 1

2 (u2 − v2), y = uv.
The result is

HKepler =
pu

2 + pv
2

2m(u2 + v2)
− 2k

u2 + v2
,

and therefore the conditionHKepler = E, whereE is the
value of the energy, is equivalent to

pu
2 + pv

2

2m
− E(u2 + v2) = 2k. (11)

The left-hand side of (11) has the form (1), withE in place of
(1/2)h2mω2. Since the energy,E, can be positive, negative,
or zero, these three cases correspond toh equal toj, i, or ε,
respectively. Among other things, this implies that the Kepler
problem withE positive, negative, or zero admits a symme-
try group homomorphic toSL(2,R), SU(2), or the group of
rigid motions of the Euclidean plane, respectively.

4. Concluding remarks

In one of the standard procedures employed in the solution
of systems of coupled ordinary differential equations of the
form found in Secs. 2 and 3, as a first step, one obtains a de-
coupled equation by raising the order of the equations. The
advantage of using the complex, double, or dual numbers is
that, in those special cases where they are useful, one is able
to reduce the number of equations to solve or to obtain de-
coupled equations, without raising the order of the equations.

In the case of the Hamiltonians (1), thanks to the use of
complex, double and dual numbers, one is able to find, by
inspection, a three-parameter symmetry group.

In the examples presented above, the differential equa-
tions are linear and can be easily solved directly, but the com-
plex, double and dual numbers are also useful in other cases.
For instance, the nonlinear equations

dx

dt
= −2a1x− a2 + a3(x2 + h2y2),

dy

dt
= −2a1y + 2a3xy, (12)

wherea1, a2, a3 are real constants andh2 = ±1, arise in the
search for symmetries of certain two-dimensional Rieman-
nian manifolds [3]. Equations (12) also make sense when
h2 = 0 and, with the definitionz ≡ x + hy, the system (12)
is given by the single equation

dz

dt
= a3z

2 − 2a1z − a2,

which can be readily solved. In fact, in the three cases
h = i, j, ε, its solution is given by

z(t) =
αz(0) + β

γz(0) + δ
, (13)

where

(
α β
γ δ

)
∈ SL(2,R). It turns out that, taking

h = i, j, ε, Eq. (13) represents all the three nonequivalent
actions ofSL(2,R) on thexy-plane [2].
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