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In this article, we provide a pedagogical review of the Tolman-Oppenheimer-Volkoff (TOV) equation and its solutions which describe static,
spherically symmetric perfect fluid stars in general relativity. Our discussion starts with a systematic derivation of the TOV equation from
the Einstein field equations and the relativistic Euler equations. Next, we give a proof for the existence and uniqueness of solutions of the
TOV equation describing a star of finite radius, assuming suitable conditions on the equation of state characterizing the matter. We also prove
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the radius of the sphere. Further, we derive the equation of state for an ideal, classical monoatomic relativistic gas from statistical mechanics
considerations and show that it satisfies our assumptions for the existence of a unique solution describing a finite radius star. Although none
of the results discussed in this article are new, they are usually scattered in different articles and books in the literature; hence it is our hope
that this article will provide a self-contained and useful introduction to the topic of relativistic stellar models.

Keywords: Classical general relativity; numerical relativity; mathematical and relativistic aspects of cosmology.
PACS: 04.20.a-g; 04.25.Dm; 95.30.Sf; 98.80.Jk

DOI: https://doi.org/10.31349/RevMexFisE.18.020208

1. Introduction description clearly requires additional physical ingredients,
such as incorporating the effects of the rotation of the star,

The simplest model for describing a spherical star in equilibthe presence of magnetic fields, radiation processes etc. Fur-

rium is the well-known Lane-Emden equation (see Ref. [6lihermore, if the star is very compact, then general relativistic

and references therein) effects become important. For a star of radiisind mass
1d [ ,d® N M, the compactness is measured by the ragior where
il C el s Y =0, (1) 7, :=2GNM/c*is the Schwarzschild radius of the star (with

Gy andc denoting, respectively, Newton’s constant and the
where z represents a dimensionless radi@g) is propor-  speed of light). More generally, the compactness ratio at ra-
tional to the mass density and N is the polytropic in-  diusr is defined a2m(r)/r with m(r) = GNM(r)/c?,
dex characterizing the equation of state of the matter. ThisvhereM (r) denotes the mass contained in the sphere of ra-
model is based on the assumption of a static and sphericall§ius » centered at the origin. Relativistic corrections must
symmetric Newtonian perfect fluid with a polytropic equa- be taken into account whenever this ratio ceases to be much
tion of state in which the pressupeis related to the density smaller than one. This is the case for neutron stars or more
through the relatiom(p) = Kp?, K being a constant and exotic stars, like quark stars (see Refs. [9,22] for textbooks
v = 1+ (1/N) the adiabatic index. Under these assump-treating these subjects).
tions, Eq. L) easily follows from the condition of hydrostatic
equilibrium and the Poisson equation for the gravitational po-  In this article, we discuss the general relativistic general-
tential, and it yields a simple and successful model that is ablezation of the Lane-Emden equation, which is known as the
to describe (in first approximation) most of the stars in theTolman-Oppenheimer-Volkoff (TOV) equation [16,25] and
Universe and even other astrophysical objects like planetserves as a model for describing such compact stars, assum-
For example, our Sun can be described in first approximaing they can still be modeled by a static and spherically sym-
tion by the Lane-Emden equatiof) (with polytropic index  metric perfect fluid. The TOV equation is obtained by re-
N = 3 (v = 4/3), while low-mass white-dwarfs stars can be placing the Newtonian Euler-Poisson system by its relativis-
described by Eq!l) with index N = 3/2 (y = 5/3). Gi- tic generalization, the Euler-Einstein system of equations in
ant planets, like Jupiter and Saturn, can be approximated byhich the self-gravity of the matter is described according to
N =1 (y = 2) while the solution withNV = 0 (y = o) Einstein’s theory of general relativity. This leads to gener-
corresponds to a constant density, incompressible sphere aatizations of the hydrostatic equilibrium condition and Pois-
therefore serves as a simple model for rocky planets [6,24]. son’s equations which correctly take into account the effects

Although the Lane-Emden equatich) (provides a sim-  from general relativity and enhance the magnitude of the
ple model for most stars in our Universe, a more realistiqoressure gradient.
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While a detailed mathematical analysis of the Lane-ciple in order to prove the existence of a unique local so-
Emden equationl) has been known for a long time (see lution for the dimensionless TOV equation near the center
again [6] and references therein and also [21] for the case aif symmetryr = 0. It should be noted that this step does
more general equations of state), a rigorous analysis of its rekot follow in a straightforward way from the standard re-
ativistic counterpart has been completed only in more recergults of the theory of ordinary differential equations, since
years. Pioneering work in this direction has started with thehe TOV equation is nonlinear and singularat 0. Next, in
work by Rendall and Schmidt [19], where it is shown that un-Sec. 4 we prove that under the assumptions on the equation
der certain assumptions on the equation of state, there existé state given in Sec. 2 the local solution can be extended to
for each value of the central density a unique global solutioreither infinite radius or to a finite radius, and partly follow-
of the TOV equation in which the corresponding star eithering we prove that as long as the effective adiabatic ingdex
has a finite radius (and the solution being the Schwarzschilé strictly larger thant/3 for small densities, the radius must
solution in the exterior region) or has infinite radius with the be finite. Our proof also shows that the Buchdahl inequal-
energy density converging to zeromas- oo’. Some neces- ity 2m(r)/r < 8/9 must hold for all values of the radius
sary and sufficient conditions on the equation of state yield+ > 0. A numerical example is analyzed in Sec. 5 and a
ing a star with finite radius are also given in [19]. A different summary and conclusions are presented in Sec. 6. This ar-
proof for the existence of solutions describing a star with fi-ticle also contains several appendices which provide techni-
nite radius was given by Makino [15], under assumptions orcal details and some important examples. In Appendix A we
the equation of state which are similar to the one formulatedjive details on the computation of the Riemann, Einstein and
in the next section of the present article, with the effectiveRicci tensors which are used to derive the TOV equation. In
adiabatic indexy being restricted to the rangg'3 < v < 2 Appendix B we provide a derivation of the equation of state
for sufficiently small values of the density. The work in [15] describing a relativistic, ideal classical monoatomic gas from
also discusses the radial linearized perturbations of the statfmurely statistical physics considerations and mention the cor-
solutions, showing that they lead to a self-adjoint operatoresponding results for a completely degenerate ideal Fermi
with a purely discrete spectrum. For further work providing gas. In Appendix C we discuss some important properties of
conditions on the equation of state which yield a sphericathe modified Bessel functions of the second kind which are
star of finite (or infinite) extend see Refs. [11,23]. In partic-needed in Appendix B. In the final Appendix D we prove the
ular, the work by Simon [23] discusses the relation of theseeompleteness of the function spake which plays a funda-
conditions with the uniqueness property of the static sphermental role for the local existence proof in Sec. 3.
ical stars among all possible static, asymptotically flat solu- In most of the article, we work in geometrized units, for
tions of the Euler-Einstein equations. Other conditions thatvhichGy = ¢ = 1.
guarantee the finiteness of the star’'s radius have been pre-
sented by Ramming and Rein [17]. These conditions cove L .
perfect fluid stars as well as self-gravitating collisionless gaé' Denvat'on of the TOV_ equation and as-
configurations in both the Newtonian and relativistic regimes. ~ SUMptions on the equation of state
For a general study of the relativistic spherically symmetric

static perfect fluid models based on the theory of dynamic . . .
P y y OV equation. Then, we state the precise assumptions on

systems, see Ref. [12]. i . .
Coming back to the compactness ratio of the star (whichthe equation of state on which the results in the subsequent

. L ) sections are based on.
determines when the relativistic effects are important), Buch-

dahl showed [5] that if the pressure is isotropic and the energy ,
density does not increase outwards, then any static, spher-™"

ically symmetric relativistic star must satisfy the inequality

rs/R < 8/9. This inequalities was later generalized by The field equations describing a relativistic, self-gravitating
Andréasson [3] who provides anindependent bound on the perfect fluid configuration are given by the coupled system

compactness ratim(r) /r under purely algebraic inequali- ¢onsisting of thel0 independent components of Einstein’s
ties on the energy density and pressure, and hence removgsq equations,
the monotonicity assumption on the density profile. 8TG N

The goal of this article is to provide a self-contained ped- G = A Tow, ©)
agogical review of the most important aspects of the TOViggether with thel relativistic Euler equations
equation and its solutions. We start in Sec. 2 with a system-
atic deduction of the TOV equation from the Euler-Einstein VAT, = 0. ()
system of equations with a static, spherical ansatz, and we
specify our assumptions on the equation of state. MoreoveHlere and in the following, Greek indices v, ... denote
in order to facilitate the mathematical analysis that follows,spacetime indices which run overl, 2, 3, G,,,, are the com-
we rewrite the TOV equation in terms of dimensionless quanponents of the Einstein tensor associated with the spacetime
tities. Next, in Sec. 3 we use the contraction mapping prinmetric g,,, (which is symmetric, i.eGG,,, = G,,, and hence

n this section, we start with a review of the derivation of the

Field equations and static, spherically symmetric
ansatz
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has10 independent components like the metric componentsegular atr = 0 we require®(r) and ¥(r) to be smooth,
guw), andT,, = 1T, are the components of the energy- even functions of (i.e. all their derivatives of odd order van-
momentum-stress tensor which describes the sources of eish atr = 0). Asr — oo we require asymptotic flatness,
ergy and matter. For the perfect fluid case considered here,that is®, ¥ — 0. The perfect fluid configuration is also as-
et sumed to be static and spherically symmetric. This means
T = = Unt + PG, (4) thate =e(r) e_md_p = p(r) are functions of- only, and that
the four-velocity is of the form

wheree, p andu* = g"”u, refer, respectively, to the energy
density, pressure and the components of the four-velocity of u“i ——
the fluid, normalized such that,u” = —c*. In terms of Ozt
an orthonormal frameg, e;, e5, e5 of vector fields such that

e; = ¢ 'u"9,, the components of the energy-momentum-

stress tensor are

0
— 1

5 (10)

such that the fluid elements are at rest in the reference frame
defined by the coordinate systémr, 9, ).

(T,5) = diage, p, p,p), G o2 Explicit expressions for the Einstein tensor and ex-

and thuss andp represent the energy density and pressure terior solution

measured by an observer which is co-moving with the fluid
(i.e. an observer whose world line is tangent to the four-
velocity).

The Einstein tenso€,,, is obtained from the Riemann
curvature tensoR® g,,,, as follows:

In order to compute thé0 independent components of the
Einstein tensol7,,, appearing in Eq.2), one needs to cal-
culate first thet0 independent Christoffel symbol¥’ 3, as
explained in the previous subsection. To carry out this calcu-
lation, it is convenient to exploit the block-diagonal form of

R the metric and write it as follows:
Guy = R/LV - aguua (6)
.. _ gab 0
whereR,,, = R*,,, are the components of the Ricci tensor (uv) = 0 r24ap)’
and its traceR = ¢g""R,,, is the Ricci scalar. The compo- 1
. . . w ~ao O
nents of the Riemann curvature tensor, in turn, are given by (") = (90 r—2gA3> : (11)

Rul/aﬁ = 8aF#ﬁu+FaﬁuF#ao’_(a = 6) = _R'ul/[ﬁou (7)
wherea, b refer to the coordinatelsr and A, B to the coor-
wherel™ 5 denote the Christoffel symbols, which are deter-dinatesy, ¢. For the specific parametrizatiof)(relevant to
mined by the components of the metric tensor and their firsthis section, the two blocks are given by
derivatives,

~ a,3..b _ _ 2®(r) 342 2U(r) 7,.2
v _1 vo [ 0980 T 09ac _ 99ap (8) Gapde"dr” = —e e @,
8799 \oze T 928 910 ) (a,b=1t,7), (12)
Due to the contracted Bianchi identiti&g!'G ., = 0, Eq. B) Gapdz?de® = dv? + sin® 9de?,
is a consequence of Einstein’s field equati)s ¢o in prin-
ciple it is sufficient to solve Eq/2). However, as we will (4, B =19,0). (13)

see, it is simpler to solve instead the relativistic Euler equa- . . o )

tions [3) together with part of the components of the EinsteinF"0mM now on, we work in geometrized units in whiéh, =

equations. ¢ = 1, implying in particular that time and mass have units
For the remainder of this article, we focus on sphericaIIyOf length. The details of the calculations are presented in Ap-

symmetric and static configurations, in which the metric haf®@ndix A; here we directly present the resulting expressions
the form for the Christoffel symbols and the components of the Ein-

stein tensor. The non-vanishing Christoffel symbols are:

ds?® = Juvdxtdx’ = —e%g) Adt? + 2 gr?
2 2 . 9 2 Fttr = Ftrt = (blv Fr'rr = \Ijlv
+ 7% (d¥* + sin” ddy?), 9)
FTtt — @/62@1)—\11)7 (14)
where (z*) = (t,r,9,p) are spherical coordinates add
and ¥ are functions of the radius coordinateonly which 7,5 =0%, = I, =T%, = 17 (15)
will be determined by the field Eqs2,8). Note that when
® = ¥ = 0, the metric 9) reduces to the Minkowski met- Ty = —re™2¥, T, = —rsin®de 27, (16)
ric in spherical coordinates. In the solutions discussed below, _ )
the coordinate runs from0 to co. For the solution to be %4y = —sind cos v, [y =9, = cotd, (17)
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which give rise to the following expressions for the EinsteinWe see that for > M, 2M/r < 1, and in this limit the

tensor:
1, 20" _
Gtt:ﬁ(e 1) - —e v, (18)
1 29’
GT’T = 7«72 (672‘1’ — 1) + 7672‘1’, (19)

-
e 2¥  (20)

G’ y=G¥ .= |®"+'(®'—T')+

the off-diagonal components being zero.

metric can be considered to describe a small perturbation of
the flat Minkowski metric. Thus, in this case the Newtonian
limit is valid which allows one to identify the quantity M /r

with the Newtonian potentiab, that is,® = —M/r. In this
sense, the integration constant can be identified with the
total mass of the central object. The Schwarzschild metric
is an exact non-trivial (i.e. non-flat) solution of the Einstein
field equations. In the absence of matter, it describes a non-
rotating black hole (see, for instance, Ref. [26] for details).

Based on these expressions, it is a simple task to derive

the Schwarzschild metric, which describes the unique static-3:
spherically symmetric family of solutions in the exterior vac-
uum region. In vacuum, there are no energy sources and thu

T,., = 0 and Einstein’s field equations imply

1 20’
= (e2¥—1) - . e 2 =, (21)
1 20/
— (672\1} - 1) + e =, (22)
T T
I \y!
" 4+ @' (P — W) + Ll P Y (23)

r

The first equation only involve$(r) and can be rewritten as

G'y = —ii[r(l —e M) =0, (24)

r2 dr

and hence(1 — e~ 2¥

Interior region and TOV equations

la the interior region, the relevant field equations are ob-
tained by replacing the right-hand sides of Eq21){(23)
with the corresponding components&f times the energy-
momentum-stress tensérUsing the fact thal*, = —e,

T, = T = T%, = p, we obtain the following three
equations
1, 20" _
2 ( 2 1) - e 2 = _8re,  (30)
1, _ 20" _
= (e 2 1) + e 2 — 8mp, (31)
® — v’
"+ ®'(d' - ') + e 2V = 8mp. (32)

r

) = 2M for some integration constant As in the vacuum case, the left-hand side of E30) (only

M. For reasons which will become clear shortly, we assumenyolves the metric field¥(r), and it can be rewritten in the

M > 0to be positive. Therefore,

2M
2\11_1_7
r

e (25)

Moreover, subtracting Eq20) from (22) one obtains the re-

lation
=, (26)
which can be integrated to yield

d=—U 27)

)

form

%%[m — e )] = 8. (33)

Integrating both sides of this equation yields
e 20 =1 - 2 / )s2ds, (34)

where we have used the fact thir) is regular at- = 0 to

where without loss of generality we have set the integratiorfix the integration constant. Introducing the mass function

constant to zero, since otherwise it could be absorbed into
a redefinition of the time coordinate(which does not al-

ter the physics of the problem because of the general covari-
ance principle of General Relativity). Using this relation in

Eq. (25) one obtains

2M
—1_-=
r

which yields the Schwarzschild solution, given by the line

element

oM oM\
d32z—<1—)dt2+ (1_) i
T T

r2(d9? + sin® 9dp?). (29)

; (28)

r

m(r) = 47r/5(s)52ds, (35)

0

which measures the mass-energy contained in a sphere of ra-
diusr, Eq. 34) can be rewritten as

2m(r) '

eV =1 - (36)

Eliminating the factoe—2¥(") from Eq. 81) one obtains

m(r) + 4xr3p(r )

®'(r) = rr — 2m(r)]

(37)
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This is the relativistic generalization of the Newtonian equa-see Appendix B for the specific example of an ideal
tion ®'(r) = m(r)/r?, to which Eq. 87) reduces to in the monoatomic relativistic gas. For the following, we assume
limit p < e andm(r) < r. that the perfect fluid configuration is lacal thermodynamic
Next, one needs an equation for the presgure. Such  equilibrium, that is, each fluid (or gas) cell is in thermody-
an equation could be obtained by substituting E84) &and  namic equilibrium and thus the macroscopic quantities de-
(37) into the last Einstein equatiol32). However, a lot of  scribing the state of this cell satisfy the laws of thermody-
algebraic work can be saved by considering instead 8)g. ( hamics. Assuming that the cell contains a fixed humiger
from which one directly obtains the same result, whichis  of particles, the relevant macroscopic quantities characteriz-
, , ing the state of the cell are its volunié = N/n, its en-
p'=—(p+e)®. (38) tropy S = sN/n (with s the entropy density), its energy
U = eN/n, and other quantities such as its temperaffire

Finally, we may eliminated’ from this equation by using *~. S - SoIeEn
SinceN is fixed, the first law of thermodynamics implies that

Eq. (37), obtaining the well-known Tolman-Oppenheimer-

Volkoff (TOV) equation s
m(r) + 4nr3p(r) d (%) =Td (ﬁ) —rd <i) ' (42)

P (r) = —[p(r) + 5(T)]m (39)
In general, the energy densityis a function of the entropy

This generalizes the Newtonian condition for hydrostaticper particles/n andn; however, in this article we assume the
equilibriump’(r) = —p(r)(m(r)/r?) (with p the mass den- perfect fluid isisentropic that is, s/n is constant through-
sity) to the general relativistic case. Note that the relativisticout the fluid, such that the first term on the right-hand side of
correction terms tend to increase the pressure grafiédnt Eq. (42) can be ignored. In this casedepends only on and
yielding more compact objects. Note also that E2f) (is  given an equation of state in the foppn= p(n), integration
singular at- = 0 and2m(r) = r. The first one requires ap- of Eq. [42) yields
propriate regularity conditions at the center and will be dealt
with by replacing the mass function(r) with the mean den- dn
sity (see Secs. 2.5 and 3 below). Regarding the potential sin- e(p) =neo +n /p(ﬁ)?a p=p(n), (43)
gularity at2m(r) = r, we will prove in Sec. 4 that (under 0
the hypotheses made in this articl2y,(r) < r everywhere,
such that it does not occur. For now we note that BE) im-
plies thatm(r) ~ r near the center such trat(r) /r ~ r2.

In summary, the metric for a spherical, static, self-
gravitating perfect fluid configuration is given by

n

where ey denotes the rest mass energy of the particle and
where from now on, we regardas a function ofp instead

of n. More precisely, we assume: [0, c0) — R is a contin-
uously differentiable function of the particle densitysatis-
fying the following conditions:

-1
ds? = —e22(m g2 1 <1 - Zm(T)) dr? (2) p(n) > 0forn > 0 (positive pressure)
T

+r2(d9? + sin? 9dp?), (40) (#4) pis monotonously increasing
wherem(r) is given by Eq. 85), ®(r) is determined from (#i7) Introducing the effective adiabatic index
Eqg. 37), andp(r) must satisfy the TOV equatio39). The
latter can be integrated as soon as one specifies an equation Ologp n Op
of state which provides a relation between the pressiared ) = mogn(”) - m%(”)’
the energy density. In the next subsection we specify our
precise assumptions on the equations of state considered in ~ We assume there is a constant> 1 such that, for all
this article, while in the subsequent sections we provide a  small enough,
rigorous analysis for the existence of solutions of the TOV
equation.

n >0, (44)

y(n) >m (45)

2.4. The equation of state (iv) eg > 0 (positive rest mass energy)

In the following, we state our assumptions on the equation
of state, which provides a relation between the presgure
and the energy density Such a relation should be obtained
from a statistical mechanics model of the matter, which usu- p(ny) < <n1)71

The condition(iii) implies that for small enough, >
ny > 0,

ally provides the pressure and energy density as a function of (46)

. ! N2
the particle density. and the temperatufE of the system:

which implies thatp(n) converges to zero at least as fast as
p=pn,T), e=en,T), (41)  ymforn — 0. In particular, this assures that the integral
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in Eq. @43) is well-defined, and it follows from the condi- representing the ratio between the central pressure and en-

tions (i)—(iv) thate : [0,00) — R is a continuously dif- ergy density. Note that in the Newtonian limit— 0 since

ferentiable, monotonously increasing function which satisfiesn this case the energy density and pressure are dominated by

e(p)/n — eg asp — 0. the contribution from the rest mass. In this sense, the param-
For a discussion of realistic equations of state, includ-eter A\ measures how relativistic the resulting configuration

ing those describing phase transitions, we refer the reader will be. We see from Eq51) that it is convenient to choose

Ref. [9]. In this case, the function(p) might be discontin-  the length scale parametésuch that

uous; however, it seems that models for neutron star mat-

ter based on two conserved quantities (baryonic number and dnl?e,

electric charge) do yield a continuous relation betweep 3

ande, see chgpter 9in [9].. See also.Refs. [27-30] for re_cgnhlso introducing the functions(z) := ®(r)/A, our final

work and reviews on realistic equations of state describingy,m of the dimensionless field equations is

dense matter in neutron stars.

-\ (53)

d 1 d,
2.5. Dimensionless field equations and summary @) = " e(P(2)) + AP(z) dz (@)
For the analysis in the following sections it is useful to intro- _ (@) +3AP(z) (54)
duce the averaged energy dengity) contained in a sphere 1 —2Xz%w(x) ’
of radiusr: .
with
o _ml) 3 / 2 z
r) = = — [ e(p(s))s“ds, r >0, 47 3
P( ) 4?77743 r3 / (p( )) ( ) ’LU(L) — ;/G(P(y))zfdy (55)

0
which is regular at the center. In termsgfi-), Egs. 87,39)
can be rewritten as
) P(r) dmr p(r) +30(r) e gy =L 4
r=-———>-=————".

p(r) +e@(r) ~ 3 1- SEr2p(r) da ¢(P(e)) dv
Furthermore, it is also very convenient for the following to
work in terms of dimensionless quantities. For this reason,
we write the radius, pressure, energy density and average8l, Local existence near the center
energy density as follows:

Note that in the Newtonian limix — 0, Eq. 54) reduces to
P(z) = zw(z),  (56)

which are the correct Newtonian equations.

In this section we prove, for each valpg > 0 of the central

r=/r, p(r) = pP(x), pressure, the existence of a unique local solutipr) of the
B P N 49 TOV equation[B9) in the vicinity of the center of symmetry
e(p) =ece(P),  p(r) = ecw(x), (49) . — 0 such thatp(0) = p,. In the next section, this solu-

tion will be shown to possess a unique extension to a solution

wherep. = p(0) is the central pressure,. the central en- . o .
ergy density, and is a free parameter which will be chosen p: [0, B,] — R of Eq. 39) which is monotonically decreas-

later. Here, the functiom(P) represents the dimensionless ing and satisfies(R.) = 0, and hence describes a spherical

equation of state which satisfies the same properties as tl%at'c star of finite radiug..

functione(p) in Eq. 43). By definition, the functiond’(z), i Inf(zrr]de_lr_ct)?/demopstrate the gt>(|sée£:e of t?e Igcall SIOIU'
w(x) ande(P) satisfy the following conditions at the center, lon otthe equation, we rewrrte G )as.a xedpoint
problem and use the contraction mapping principle. For this,

P(0) = w(0) =1, e(l) = 1. (50) Wwe integrate both sides of
" ) . d w(z) + 3AP(x)
In terms of these quantities, the field equatiof®) @re —P(z) = — ; p— "
q quatiots) @ 1o T@) = ~[e(P@) + AP@)]e T =570 (57)
d (q)) L_dp over x, obtaining (taking into account the central condition
B e el x,
dw \ A e+ AP dz P(0) = 1 from Eqg. 60)) the integral equation
2 .
= 4W§ - IUL(Q;SAf(f))7 (51) .
gl P@) =1~ [ [elPw) + AP
where we have introduced the dimensionless parameter 0
_ Pe w(y) +3AP(y)
A= o (52) X T ()2 ydy =: TP(x), (58)
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STATIC SPHERICAL PERFECT FLUID STARS WITH FINITE RADIUS IN GENERAL RELATIVITY: A REVIEW 7

wherew(x) is given by [65). The problem now consists in for all P € Ag, such thatv(z) is bounded from above bl
finding a functionP(x) (in a suitable function space which Also, sinceP > 1/2for all P € Ag, it follows that
will be specified below) which satisfies the fixed point equa-

x

tion P = T'P. This can be achieved by means of the contrac- 3 ) 3 f )

tion mapping principle, which provides sufficient conditions w(z) = — /e(P(y))y dy > 5/6(1/2)y dy

for T to posses a unique fixed point. We recall this impor- 0 0

tant result which can be found in many textbooks (see, for — ¢(1/2) = wy > 0, (64)

instance [18]).

Theorem 1 (contraction mapping principle) Let(X, || - ||) which allows us to conclude thaty < w < 1 for all
be a Banach space, and ldét = A C X be aclosed, non- P € Ag. Moreover, since: and P are continuous, it fol-
empty subset oK. LetT : A — A be a mapping fromd  lows thatw is continuous and (using Lépital’s rule) that
to itself which constitutes a contraction, that is, there exists av(xz) — e(1) = 1 asz — 0. Thus, if the functionP lies in

constantl satisfyingd < L < 1 such that the setdg, then the functionv defined by Eqg.35) belongs
to the set
IT(w) = T ()| < L|ju— v forall u,v € A. (59)
Then,T has a unique fixed point* € A, that is, there exists Bpr = {w € Xg | lim w(z) =1
a uniqueu* € A such thatl'(u*) = u*.%
In order to apply this theorem to the fixed point prob- andwy < w(z) < 1forall0 <z < R}- (65)

lem (58) we introduce, for eaclR > 0, the spaceXy := o
Cy((0, R],R) of bounded, continuous real-valued functions  After these preliminary remarks, we are ready to show

on the interval0, R], equipped with the infinity norm: that the mapT” in Eq. (58) defines a contraction ol g,
provided R > 0 is small enough: first, we observe that
[Plloo == OEHERIP(I)I, P e Xg. (60) 1 —2xw(y)y? >1—2 R forall 0 < y < Rif w € Bg,

such that the denominator in the integrand of I5&) €annot

In Appendix D we show thaff - ||, defines a norm oXr  vanishif0 < z < RandR is chosen small enough, such that
and that( Xy, || - ||« ) defines a Banach space, that is, a com-2AR? < 1. Next, using again the continuity and boundedness
plete normed vector space. Next, we introduce the subseff the functions, P andw, it follows thatTP : (0, R] — R

Agr C Xg defined as is continuous and satisfigsP(z) — 1 forz — 0. Moreover,
_ because the integrand in E&S] is positive, it follows that
Ap = {P € Xp | lim P(z) = 1 TP is monotonously decreasing. To show tide € A it

1 thus remains to prove th@tP(R) > (1/2). For this, we use
and5 <P(z)<lforall0<z< R}. (61) theestimate® < 1,w <1,1—2\w(y)y?> >1 - 2)\y? and

the fact thak is an increasing function in order to estimate
Clearly, Ag is not empty since it contains the constant func-

tion P = 1. Furthermore, it is not difficult to verify that
Ag is closed: if P, is a sequence id g which converges to
P € Xp in the infinity norm, that is,

w(y) + 3AP(y) 143X

[(PW) + APW) T 55 s < L+ N5,

which implies
|Px — Plloo = sup |Pg(z) — P(z)| — 0,
0<z<R

o w(y) + P()
k — oo, 62) TP(x)=1 /[e(P(y)) +AP(y)] = )y ydy

0

then P, converges uniformly t& and it follows thatP(z) — ”

lasz — 0andi < P(z) < 1sinceP; € Ag. Therefore, - RS2

the limiting point P of the sequencé, also lies inAx, and = 1= /(1 + )1 “o2 Y

it follows that A is closed. 0

For the following, we show that the mdp defined in 1
g ap a0 2 01 - ana),

Eq. (58) is well-defined ond r, mapsAr, into itself and de-
fines a contraction provided th&t > 0 is small enough. For
this, first note that due to the fact th&tP) is an increasing for all 0 < = < R, and the required conditiof P(R) >
function and that? < 1 it follows from Eq. 55) and the  (1/2) is satisfied ifR > 0 is small enough, such that
normalizatiore(1) = 1 that N
) N 2AR% <1 — e TmFan | (66)
3 3

w(z) = E/G(P(y))?fdy = ;/e(l)yzdy: 1, (63)  which is slightly stronger than the previous requirement

0 0 2\R? < 1. Therefore, ifR satisfies the inequality66), the
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8 E. CHAVEZ NAMBO AND O. SARBACH

map T defined by Eq.%8) is a well-defined map fromi with F) : [(1/2),1] x [wo, 1] x [0, R] — R the continuously
into itself. To apply the contraction mapping principle, it re- differentiable function defined by
mains to prove thal’ defines a contraction oAy (for suf-

ficiently small R > 0), that is, there must exist a constant Fy(p,w,y) = [e(p) + AP]L?’M’Q’
0 < L < 1 such that 1= 2wy
1
TP, —TPi||oo < L||P> — Pi|oc, iﬁpﬁl’ wp<w<1 0<y<RA. (69)

forall P, P € Ag. (67)  According to the mean value theorem [4], one has for all

In order to verify this condition, we write the difference (1/2) < P, P, < 1,wg S wi,wp < 1and0 <y < R,
TP, — TP, in the following form:

oF
z F)\(P2vw27y)_F)\(Plvwlay):T;(P*vw*7y)(P2_Pl)
TPy(z) - TPi(z) = — | [F\(Po(y), ,
(@) = TP() == [ [B(Pa0),ws(w).0) L 0
0 ow
~ E\(Pi(y), (y),y)}ydy, (68) With P, = Pi+0p(P,—P1),0 < 0p < 1, lying betweenP;

and P, and likewisew, = wy + 0, (we —w1),0 < 0, < 1.
| Using this into Eq.§8) one obtains the estimate

Tr(0) = TR < [ || 53 P00 )(Palo) - PG| %(P*@),w*(y),y)(w(y)—m(y))”ydy
0
< [ [es®|Pt) - Pl + CalBluwaty) ~ wr )] (11)
0
with the constants OF OF
= s [T Pws)|. G = e [T P
GER GER

Taking the supremum overon both sides of the inequality 1) one obtains the estimate

R2
| TPy — TP < EX [C1(R)[| P2 — Pillco + Co(R)|lwz2 — wi|oo] , (72)

forall P, P, € Ar andwy,ws € Bgr. Furthermore, using the definitioB%), one obtains in a similar manner the estimate

3 xr
wa@) — wr ()] < 5 [ Je(Pa(w) — e(Pr)]o? dy < Call P2~ Pl (73
0
with the constant p
&
Cs = %?22(1 d?(P) ’

where we have used that fact that[1/2, 1] — R is a continuously differentiable function due to the properties of the function
¢(P) defined in/43). Combining the two estimate$2/73) one obtains, finally

R2
ITPy = TPilloo < LIR)|P2 = Prlloo,  L(R):= —-
for all Py, P, € Agr. SinceC;(R) andCy(R) decrease witlR, it is clear that one can choog&> 0 small enough such that

L(R) < 1landT : Ap — Apg describes a contraction otz. Now we can use the contraction mapping principle (Theatem
to show:

[C1(R) + C2(R)C5], (74)

Theorem 2 For small enoughR > 0, there exists a unique, continuously differentiable solutfon (0, R) — R of the
dimensionless TOV equatichi) satisfyinglirr%) P(z) =1.
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STATIC SPHERICAL PERFECT FLUID STARS WITH FINITE RADIUS IN GENERAL RELATIVITY: A REVIEW 9

Proof. Theoremnil and the previous observations guaranteeAccording to Theorer®2, x, > 0 is well-defined. There are
that for small enougl? > 0 the mapI’ has a unique fixed two alternatives. Either
point P in Ag. SinceTP : (0,R) — R is differentiable,

P = TP is differentiable as well and differentiating both (@) 2. < coisfinite, or

sides of the equatiof?(x) = T'P(x) with respect tar one (b) z, = oo is infinite.
finds that Eq.%7) is satisfied for al0 < =z < R, and hence
dP/dz is also continuous. Moreover, sincelP/dxz < 0, P(z) is a monotonously de-

Regarding the uniqueness propertyFif: (0,R) — R creasing function and case (a) occurs either if
was another continuously differentiable solution of E&¥)( (@1) lim [1—2\%w(z)] > 0and lim P(z) = 0, or if

such thatlim P(z) = 1, thenP would also be a fixed point Py G
of T'and arc]gnce would agree witR. (@2) lim [1— 2>\x2w(x)] —0.
Finally, ¢ is obtained by integrating both sides of T T
Eq. B4): The central result of this section is to show that under the
" conditions(i)—(iv) in Sec. 2.4, only the case (a.1) can occur
w 3\P if 1 > 4/3, which means that the local solution has a unique
¢(z) = ¢c /Wydy’ Osz <R, (79 exvténsioé describing a star of finite radis = ¢z, > 0. |
0

The strategy of the proof is the following: first, we eliminate
case (b), i.e. we exclude the possibility of a star with infinite
extension. Subsequently, we eliminate case (a.2) by proving
that the averaged density functiar{z) cannot grow too fast

to make the denominator in Ecb4) zero. As a by-product

of this result, we will also obtain a bound on the compactness

with a constant of integration. denoting the central value
of ¢. If the solution exists globally, one can adjust this con-
stant such thaty(z) — 0 for z — oo. Equivalently, if a
global solution with finite radiug:, > 0 exists (sufficient
conditions for this to occur will be discussed in the next sec

tion), one can choose the valueggfsuch thats(x.. ) matches ratio
its Schwarzschild value(z..) = (1/2)log (1 — (2M /¢x..)), 2m(r) .
with M := (A x3w(z,) the total mass of the configuration. ro 2Az"w(x), (76)

In this way, one obtains a unique, continuously dncferen'Which shows that it is, in fact, not only smaller than one (as

tiable solutiohn(gb(:c), P(x,)a] 0:] Egs. 5,4)52 a sr;all inter(jya_l required to eliminate case (a.2)) but even smaller gyarfor
(0, R) near the center with the required boundary conditions,; 5, . |n particular, this implies that the compact-

¢(0) = ¢ andP(0) = L. Mqreover, with.som.e algebrg WOrk e ratio at the surface of the star R, is bounded from
one can show that the original Euler-Einstein equations (3Oébove by the well-known Buchdahl valggo.

32) are satisfied. We start with the following theorem which eliminates

case (b):
4. Global existence of finite radius solutions Theorem 3 Suppose the conditior($)—(iv) in Sec. 2.4 are
and Buchdahl bound satisfied with the lower adiabatic bound > 4/3. Then

T, < oo Is finite.

In the previous section we proved the existence of a uniqueroof. We suppose that, = oo is infinite and show that
solutionP : (0, R) — R of the dimensionless TOV EC57)  this leads to a contradiction. Sineg = oo implies thatP is
on a smallinterval0, 1?), which satisfies the required bound- hounded, and since is monotonously decreasing, the limit
ary conditionlim P(x) = 1 at the center, see Theor&nln

this section, we show that under suitable hypotheses on the P := lim P(z) >0 (77)

equation of state, this solution can be extended to an inter- . ] )
val (0,2.,) with =, > R describing the surface of the star exists. The remainder of the proof is based on the following

which is characterized by the conditioim P(z) = 0 of two simple lemmas whose proofs will be given further below.

L T T The first lemma shows thdt., must be zero:
vanishing pressure.
To prove this result, we define Lemma 1 Supposer. = co. ThenP,, = 0.
The second lemma provides a lower bound on the energy
Ty 1= SUp {xl >0 ’ P:(0,7;) — Ris a continuously density which will be key in the proof of the theorem:
) _ ) o Lemma 2 Any equation of state fulfilling the conditiofg—

differentiable solution of EqiY7) satisfying (iv) in Sec. 2.4 satisfies the following estimate: there are
,1.irrg P(z) = 1 and such that0 < P(z) < 1 constant” > 0 and P; > 0 such that

e(P) > CPY™, (78)
and 1 — 2\z?w(x) > 0 forall z € (O,ml)}.
foral0 < P < Py.
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We now return to the proof of Theore@and show that
xz, = oo and P, = 0 leads to a contradiction if; > 4/3.
To this purpose, we use E@&7) to estimate

_ ! &
e(P(z)) + AP(z) dx

(79)

P(z) > zw(x)

for all z > 0. Integrating both sides of this inequality yields

[ 1 dp 7
_! e(P(y))+AP(y)cTy(y)dyZ ! w(y)ydy.  (80)

Using the variable substitutio® P(y) and the esti-

E. CHAVEZ NAMBO AND O. SARBACH

It remains to analyze the cag¢3 < v, < 2. For
this, we use again the key estimat) and the fact that
e(P(z)) < w(z), obtainingP(x)'/7 < C~'w(z), or

{w(c‘”)} " P (86)

forall x > x;. Combining this with the inequaliti8d) yields
w(z) ™2 > Cya? (87)

for all x > 2; with the positive constanf’; = C;C" 1,
Sincew(z) = m(x)/z3 andy; — 2 < 0 this can be rewritten

mate [78), the integral on the left-hand side can be rewritten

and estimated according to

00 P(z)
1 dP ' dP
! PG+ APG) dy / oP) AP
" ap P(z)t=Ym
< | e - o
0

for all large enough: > x4, such thatP(z;) < P;. This
yields the following lower bound of:

o0

P(x)l_l/’h > _Cl/

x

1 dP
(P()) + APy dy W B2

with ¢y := C(1 — 1/~1) > 0 a constant. Next, we estimate
the integral on the right-hand side of EQQJ. Recalling that
m(x) := 23w(z) is proportional to the mass function, which
is an increasing function af, we obtain

/ w(y)ydy = / ””;(f)dwm(x) %

x

8

T

(83)

for all z > 0. The three estimate8(,82/83) imply the fol-
lowing inequality betweer® andw:

P(z) Y > Crzw(x) (84)
for all z > x;. Combining this with the estimate(z) >
e(P(z)) (which follows directly from the definition55) of
w(x) and the monotonicity properties efand P) and the
key estimate{8) yields

P(ﬂc)l_z/"*1 > Cha? (85)

for all z > =z, with the new constant, cCcy

C?(1 — 1/v;) > 0. This already yields a contradiction for

~1 > 2, since in this case the left-hand side converges to zereliminate case (a.2).

(or stays constant if; = 2) while the right-hand side goes
to infinity asx — oo. This proves the theorem fgg > 2.

m(x)Q—‘Yl < 1

= Wv (88)

for z > x;. However, sincel/3 < v; < 2 this leads to a
contradiction since in the limit — oo the right-hand side
converges td while the mass functiom(x) is positive and
increasing. This concludes the proof of the theorem.

Proof of Lemmd! Again, the proof is by contradiction. If
P, # 0, then the functior? would satisfyP(z) > Py, > 0
for all z > 0, and sincee(P) is monotonously increas-
ing, this would imply thate(P(z)) > e(Px) =: €xo > 0
for all x > 0. According to Eq. %5 this would yield
w(x) > ex > 0 forall z > 0, which in turn would im-
ply that

1 -2 zw(z) <1 -2 z%eq (89)

for all z > 0. However, this would contradict the assumption
z, = oo which requiresl — 2\z2w(z) > 0 for all z > 0.
Therefore, we must have,, = 0 as claimed.

Proof of Lemm& For the proof of this lemma, we use
the inequalityl46) from Sec. 2.4, which implies

wemlH3]”

for all small enoughy > n > 0. Using the assumptions)
and (iv) from Sec. 2.4 and the estimai@(f in the expres-
sion 43) for (p) one obtains,

(90)

e(p) = ney > naeg [;9((71))} 1/m |

(91)

for all small enough) < n < ny. SettingCy = naeo/py’ ™
with po := p(n2) it follows from this that

e(p) = Cop'/™ (92)
forall 0 < p < py. Sincee(p) = e.e(P) andp = p.P the
lemma follows.

To conclude the global existence proof, it remains to
In fact, we obtain a stronger result
which shows that for ald < z < =z., one must have
1 -2 \22w(x) =1 —2m(r)/r < 1/9:
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STATIC SPHERICAL PERFECT FLUID STARS WITH FINITE RADIUS IN GENERAL RELATIVITY: A REVIEW 11

Theorem4 Let P : (0,z,) — R be the maximally ex- To estimate the integral on the right-hand side, we use again
tended continuously differentiable solution of the dimensionthe fact thatn(r) /73 is a non-increasing function, such that
less TOV Eq.87) such thatlim P(z) =1,0 < P(x) <1  2m(r) > 2m(ra)r3/r3 forall 0 < r < ry, and obtain

and 1 — 2 \z?w(z) > O forall 0 < z < =z, Then, v
2m(r)/r = 2)\$QW($) < 8/9 forall 0 < z < z,. e@(”) _ e(b(o) > e(b(m)—"_\ll(m) m(gz) / rdr

Proof. The proof is a straightforward generalization to ar- 2 RYE %ﬁ
bitrary radiusr € (0, R.) of standard arguments used to ’
establish the Buchdahl bound, see for instance Sec. 6.2 in - leé(rz) [e\P(m) _ 1} , (100)
Ref. [26]. For this, we set = flx, m(r) = z3w(z), 2

U(r) := —(1/2)log[l — 2m(r)/r)] and use the fact that the \yhere we have used E@7) again. Eq.100) implies that
Einstein equations (30-32) are satisfied. Subtracting Ej. (

from Eq. B2) yields 0 < 2e%(0) < 2(r2) [3 - e‘I'(”)} : (101)

1 ! / ! Ql + \I]/ —20¥ . . . . .

T+ (P W) - —— e which immediately yields the desired result:
L 2w 2m(ra) _ _ow(r) 1
i 1) = -2 2> 2 102

= (e 1) =0. (93) s e >3 (102)
Dividing both sides by one can rewrite this as the following _
identity: 5. A numerical example

o= ()= ¥(r) D' (r) B (r)—(r) ' _ [m(r) ' (94) In the previous _s«_actions we hg\_/e shown that fora given_ equa-
r - 3| tion of state fulfilling the conditiong:)—(iv) in Sec. 2.4 with

the lower adiabatic bound; > 4/3, there exists for each
Sincem(r)/r® is proportional to the mean density, which value ofp./c. > 0 a unique solution of the TOV equation

is by itself proportional tow(z), and sincex(dw/dx) =  which describes a relativistic, spherical and static star of fi-
3[e(P(x)) —w(z)] < 0, the mean density is a non-increasing nite radiusk and mass$\/. In this section, we show by means
function. Therefore, it follows from Eq94) that of numerical calculation how to obtain the quantitative prop-
, , erties of the star, including the values ®fand M/, the com-
{Meﬂr)?(r)] <0. (95)  bpactness rati@) /R and the pressure profile. For the sake
r B of illustration we focus on the specific case of a polytropic

Next, let0 < r < ro < R, = fz,. Then, it follows that equation of state of the form

®'(r) RICE 10BN q)/(r2)e<1>(r2)—qz(r2) p(n) = Kn” (103)
T I
32 with K a positive constant ang the adiabatic index which,
_ m(r) + 4mryp(ra) ¢2(2)=%(r2)  (gg) inthe results shown below, is fixed to the valiyg. As ex-
rs [1 - 2"37(2’”2)} plained in Appendix B, this value corresponds to the low tem-

perature and density limit of a monoatomic ideal gas. Inte-
where we have used Ed3¥) to eliminate®’(r;). Since grating the first law for an isentropic fluid yields the corre-

p(r2) > 0and sponding expression for the energy density
2m(r2) _ _ow(ry) K pPN\YY b
1 —_ = T2 7 = il = —_— _—
7“2 e , 97) e(p) = neo + o [ = eo (K) + po— (104)
this inequality leads to Rewritten in terms of the dimensionless quantities defined in
Eq. 49) and using the fact that{1) = 1, this yields
(I)/(T)eé(r) > ,re\I/(r) m(22)€{>(7’2)+‘l/(r2). (98)
T o(P) = (y—1—=XPY7 + AP
Integrating both sides from = 0 to 5 yields v—1 ’

0<a=Pe oy (105)

O(r2) _ ,2(0) 5 €<I>(T2)+\Il(r2)m(r2) .

e
3
T3

(Note that for the case of a monoatomic gas one should also
(99) havep./e. < 1 in the low temperature limit, so that the ex-

T2
rdr
x / ﬁ 2m(r) ample studied in this section is most probably not physically
0 T realistic for values of lying close toy — 1).
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To perform the numerical integration of the TOV equa- maximum at abouk ~ (.12 after which it starts decaying as
tion, we convert the integral Ed5%) for the dimensionless A continues to grow until it reaches a local minimum around

mean density fieldv into the differential equation A =~ 0.5 and starts growing again until reaching another lo-
d 3 cal maximum. Similarly, the radiug/¢, decreases until it
%w(:c) = [w(z) —e(P(x))], (106)  reaches a local minimum at about= 0.4 after which it in-

creases until reaching a local maximum. This behavior gives
which is numerically integrated along with the dimensionlesssise to the spiral structure shown in Fig. 2.

TOV Eg. 57) using a standard fourth-order accurate Runge- |4 the Newtonian limit\ — 0. one may compare our
Kutta scheme (see, for instance, Sec. 7.5 in Ref. [20] anggyits with the corresponding results from the Lane-Emden
references therein). The integration is started at the Cem%rquation (see for instance Sec. 3.3 in [22])

x = 0, where the right-hand side of EdLQg€) is replaced

with 0, owing to the fact that both functions(z) and P(z) R a M ad .,
behave ag + O(z?) nearz = 0. (This can be inferred from 7 =78 = 3EAle&)l
the local existence theorem in Sec. 3, the fixed point for- > 4

a Y

mula 68) and the definition ofv in Eq. (65).) The integra- i —
tion is stopped as soon @&becomes negative, which yields ¢z 3v-1
the dimensionless radiug/¢ = x, and the dimensionless
total massM /¢ = Ax3w(z.) of the star, up to a numerical
error. (This error is monitored by varying the stepsixe of

the integrator.) Using Eqs58) and (L04) one finds that the

(108)

For the present example = 5/3 one finds¢; =~ 3.65,
£210'(&)| ~ 2.71 anda/¢ = 1/5/6, which yields

R M
length scale is given by 7 ~ 3.33, i ~ 6.18), (209)
i
(= eo)ﬁ% <1 _ )‘) o 7 and compares well with the corresponding values in Table |
y-1 for small .
3 /K PlcE] Einal!y, we notg aggin from the plots in Fig. 3 that the
by = i (67> , (207)  relativistic stars with high\ are much more compact than
0

their Newtonian counterparts. We also note that although the
and hence we shall specify the results in terms of the alternaompactness rati®)M /R at the surface reaches a maximum
tive length scalé, which is independent of. at abouth ~ 0.3, the maximum of the local compactness ra-

The results of the numerical integration for different val- tio 2m(r) /r occurs inside (and not at the surface of) the star,
ues of\ in the admissible rangeé < A < v — 1 are shown and this maximum seems to be growing monotonously with
in Table | and in Figs. 1, 2 and 3. Note that for small valuesA. In all cases this maximum is less thay9, as predicted
of A the mass increases while the radius of the star decreasbyg the local Buchdahl bound proven in Theorem 4. (Note
as\ grows, giving rise to more compact stars. However, aghat the Newtonian equations predict a compactness ratio of
A continues to grow this trend is halted anfl/¢, reaches a 2M /R =~ 3.71) which can be larger than one).

TABLE |. Results for the dimensionless radi®g¢ = x.., dimensionless total mase//¢ = \z3w(x.) and compactness ratit\//R =

2 \z2w(z.) at the surface of the star for the polytropic equation of stab&€)(and different values ok. Also shown are the radi /¢, and
masses\!/{, in terms of the physical scal defined in Eq..107) which is independent of. The stepsize used to produce these results is
Ax = 0.005, and three significant figures are shown.

A R/t M/¢ R/t M/t 2M/R

0.001 3.33 0.0615 18.7 0.0345 0.00370
0.01 3.29 0.0582 10.2 0.181 0.0353
0.05 3.16 0.232 6.06 0.446 0.147
0.1 3.08 0.368 4.47 0.535 0.239
0.2 3.16 0.524 3.03 0.502 0.331
0.3 3.68 0.640 2.36 0.410 0.348
0.4 5.24 0.812 2.10 0.325 0.310
0.5 11.3 1.34 2.37 0.282 0.238
0.6 42.8 5.12 2.74 0.327 0.239
0.65 234 28.9 2.59 0.320 0.246
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FIGURE 1. Plots of the total masa/ /¢, (left panel) and the compactness reib// R at the surface of the star (right panel) as a function

of \.
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FIGURE 2. The total mass\{/¢, vs. radiusR/{, for different

values of\.

6. Summary and conclusions

In this article, we have given a systematic derivation of the
TOV equation, starting from the most general static and
spherically symmetric ansatz for the metric and fluid fields
which allows one to reduce the Euler-Einstein system to a set
of ordinary differential equations. Under the assumptions on
the equation of state discussed in Sec. 2.4 and the additional
assumption that the effective adiabatic indéx) (defined in

Eq. 44)) satisfies the bound(n) > 4/3 + ¢ (with ¢ > 0)

for small enough values of the particle densitywe have
provided a rigorous proof for the existence and uniqueness
of global solutions of the TOV equations describing a static,
spherical star of finite radius and mass. Furthermore, we have
shown that the familiar Buchdahl bourtdn(r)/r < 8/9
holds for any radius > 0 (smaller than or equal to the radius
of the surface of the star).

1.0

p/p:

—0.2

a)

' ! ' ‘ A5 ! ! ! ‘

1\ ! — 1=0.01 ! ! ! — A=0.01

|\ — A=01 — A=01
11— A=02 1— A=02 H

— A=04 — x=04

— A=06 — A=06

// B B e e 3

; ; ; i 0.0 — H ; i i

4 6 8 10 0 2 4 6 8 10

b) e

FIGURE 3. Plots of the dimensionless presspy@. = P (left panel) and the local compactness r&io(r)/r = 2 z>w(x) (right panel) as
a function of the dimensionless radiuglo = 2:¢/¢, for different values of\. As is visible from these plots the stars become more compact
as)\ increases, with the maximum of the local compactness ratio lying inside the star.
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14 E. CHAVEZ NAMBO AND O. SARBACH

In particular, the results presented in this article applymetric metric of the formX1). The following presentation
to any perfect fluid with positive baryonic rest mass and aand notation follows the work in [7]. We assume a metric of
polytropic equation of statg(n) = Kn? with adiabatic the form
indexy > 4/3. This includes the equation of state de- — 5412 (A1)
scribing an ideal nonrelativistic monoatomic gas, for which g=gT7r4 '

v = 5/3. Interestingly, the ultrarelativistic counterpart, for with § = g.,dz®dz® a two-dimensional Lorentzian metric
whichy = 4/3, is not included in our analysis. However, andg = gagdz4dz® = d¥? + sin® ¥dp? the standard met-
as discussed in detail in Appendix B, an ideal, relativisticric on the two-sphere, and the radius function. For the
monoatomic gas has an equation of state whose effective aditatic metric 9) considered in the body of this article, the
abatic indexy(n) interpolates between the two valu¢s3  two-dimensional metrig is of the formg = —e2®( g2 4
and5/3 in the limitsn — oo andn — 0, respectively. Since 2" dr? (see Eq.12)) and its components only depend on
our assumption ory(n) is only needed for small values of the radius coordinate. However, for the following calcu-

n (and not in the ultrarelativistic limit. — oc), our results lations, nothing is lost by assuming a generic two-mejric
fully cover the case of the ideal relativistic monoatomic gaswhich depends on arbitrary coordinate$) = (2%, 2') and

It is only near the surface of the star (wherdés small and  to consider the radius = r(z°, z') to be a positive function
thus the gas is practically Newtonian) that the assumptio®f these coordinates. Such a generalization is useful, for in-
~v(n) > 4/3 + ¢ is required. stance, when considering time-dependent (non-static) spheri-

For a given equation of state fulfilling our assumptions,cally symmetric spacetimes or when discussing more general
the quantitative properties of the star, like its radius, massspacetimes in which cannot be used as a global coordinate
density profile etc. can be obtained from numerical calcula{such as occurs in wormhole spacetimes, for instance).
tions. We have provided an example in Sec. 5 for a polytropic ~ Using the definition'8) for the Christoffel symbols, one
equation of state with adiabatic index= 5/3, although the ~ finds

method described in that section can be adapted to more gen- rd,, =4, (A.2)
eral equations of state in a straightforward way. The mostim-

portant feature found from the numerical calculations is the Ird,p =0, (A.3)
spiral-type behavior (see Fig. 2) in the mass-versus-radius re- o _ AL
lation for the resulting family of static, spherical stars and the ab =0, (A4)
existence of a maximum mass configuration in this family, I5 = —rr%gap, (A.5)
which is important because it indicates a change in behavior .

for the stability of the star (see chapter 6 in Ref. [22]). Further I'Pap =17 4B, (A.6)
numerical examples based on a dynamical system approach I Ta p

can be found in Ref. [12]. For numerical time evolutions of ap = 75 B> (A7)

(numerically perturbed) TOV stars, see for instance [10]. wherel',, y ', ; are the Christoffel symbols associated

d'O ur proof fOII the gllobgl beX|tshtence I?fbstags W'th finite OIwith Jap @and gap, respectively, and where we recall that
radius was mostly inspired by the work by Ramming an a,b = 0,1 and A, B = 2,3 refer to the coordinates on the

Rein [17] and the proof for the Buchdahl bound is a straight- nit sphere. Also we introduced the notations :—= 9,

forward generalization of the arguments presented in S€c. 6.4y . iy, Now using these expressions and the for-
! - 126] U9 esulls presented in thi ! mula (7) for the Riemann curvature tensor, we obtain
not new and have been widely studied in the literature, they : R
are scattered in different articles and books. Therefore, we R°qap = R gas, (A.8)

hope that our self-contained review regarding the most im-

portant results of the TOV equation and its solutions may R pabr =0, (A-9)
serve as a useful pedagogical introduction to the topic and R¢ ,,, = 0, (A.10)
motivate research on more realistic star models including ro- .

tation and magnetic fields, for which rigorous mathematical R'pap =0, (A11)
results are still scarce. Repap = —1(V°Var)inD, (A.12)

Rpap = Rpap —r°r(6 adp — 0“Bgap), (A.13)
where R¢;,;, and RC pap refer to the components of the

A. Computation of the curvature and Einstein Riemann tensor associated with the metfiand g respec-
tively. In two dimensions the curvature tensor has the follow-

Appendix

tensors ing form (see, for instance exercise 4, chapter 3 in [26])
In this appendix, for completeness, we present details regard- RC 4 = R(0%Gba — 0°b0ad), (A.14)
ing the computation of the Riemann curvature, Ricci and Ein- . o c .

stein tensors associated with an arbitrary, spherically sym- R pap = k(6" agBp — 0" BJaD), (A.15)
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STATIC SPHERICAL PERFECT FLUID STARS WITH FINITE RADIUS IN GENERAL RELATIVITY: A REVIEW 15

wherei and & are the Gaussian curvatures associated witiBased on these assumptions, we compute the thermodynam-

the metricg andg respectively. Therefore, ics of the gas using the canonical ensemble. The correspond-
. e . - ing partition function is
RC4ab = F(6aGbd — 0“bGad), (A.16)
- 1 BH(z.2) -
R pa = =1(VVar)jnp, (1) ZTVN) = gy [P ENaay, @2)

c 1 e C . O 4
Rpap = (1=7rre)(07agsp = 0" pJap)- (A18)  \peren is Planck's constant and=1/(kgT), kp denoting
With these expressions we can calculate the components §0ltzmann's constant. Since the gas is non-interacting, the

the Ricci tensor partition function factorizes:
e o~ 2 ¢ 1
Rab =R “aeb T REaEb = RGab — ;vaVb’f', (Alg) Z(T‘7 ‘/7 N) = ﬁZl (T7 V)N, (BB)
Rup = Rep+ RPapp =0, (A-20)  with
RAB = (1 - reTe - TAT)QAB7 (A21) Zl (T7 V) _ }KB /e—c[j’ |ﬁ|2+7n2c2d3p. (B4)
~ S - = . . l
whereAr = VPV, = §%°V, V,r is the covariant Laplacian
of ». The Ricci scalar is given by The integral can be computed using spherical coordinates,
9 ~ such that
R=R% + R4 =2k + 7(1 —rre — 2rAr). (A.22) -
T
4V —eBr/Dp24+m2c2
Finally, the components of the Einstein tensor are given by Z(TV) =5 [e OVPHTEE 2 dp, (B.5)
the following expressions 0

2= 1 X i ituti
Gy = — 2T, — 72(1 —r, — 2rAr)6Y,, (A23) Subsequently, one performs the variable substitutios
T T

mesinh y which yields

G%p =0, (A.24) 0o
4TV —zcosh x o:..1,2
Ar Z(T,V) = 5 /€ sinh® y cosh xdx, (B.6)
Glp=|—=——-k| 5. (A.25) )

r

Specializing to the case of the static two-metfi2)( one ob- where we have introduced the Compton wavelength

tains from this the Christoffel symbols listed in Eq$4€17) h

and the components of the Einstein tensor in Egs. (18-20). A= me (B.7)

. . L of the particles, as well as the dimensionless quantity
B. Equation of state for a monoatomic, relativis-

tic ideal gas (B.8)

z = fmc? = —,
kT

In this appendix we offer a derivation for the equation of state )

describing a classical (i.e. non-quantum) monoatomic, ideahich is the ratio between the rest mass and thermal

gas, and towards the end of this appendix we also make sonf&i€rdy of the particles.  Rewritinginh™x coshx =

comments regarding the complete degenerate, ideal Ferrh}/3)(d/dx)sinh” x in Eq. B.6) and using integration by

gas. To this purpose, we consider a fixed box of volume Parts leads to the final expression for the partition function:

containing a large numbé¥ of particles, but still assume that N

: i : : 1 [47V K3(z)
V is small enough such that the metric is well-described (in a Z(T,V,N) = { ] 7 (B.9)

local inertial frame) by the Minkowski metric insidé, such NUL A3 2

that a special relativistic treatment insitfeis sufficient. We wherek, (=) denotes the modified Bessel function of the sec-

cpns@er a system in wh|ch th? tempergtiﬂe;ould be ar ond kind of order, see Ref. [1] and Appendix C for further
bitrarily high, such that a significant fraction of the particles . . S
dFtaHS and its definition.

(r:(glglt(ijvizz\éeH:frlnailt;\éﬁig% speeds, and thus we use the specia Using Stirling’s approximatiotog N! = Nlog N — N +
O(log N), the free energy of the system is found to be

N
H(z,p) = ¢ _\/IFj|? +m2e2, (B.1)  F(T,V,N)=—kgTlog Z(T,V,N) = —NkgT
. 47V K log N
with p = (1,72, ...,pn) € R3*Y the momenta andh the X {1 + log {)\ZFN 2(2)] +0 ( O;gv ) },
mass of the particles, to describe the systenVgbarticles. z
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16 E. CHAVEZ NAMBO AND O. SARBACH

from which one can easily compute the relevant thermodyand thus provingF’ < 0 is equivalent to showing that
namic quantities like pressure, entropy and internal energy:(z) > 0 for all z > 0. This in turn requires an upper bound

using the well-known formulae (see, for instance [13]) for K, /K,. We first analyze the situation for small values of
z > 0. In this case, one can use the estimate
(8F> g <6F)
P=—\57 ) ==\ 5 ) K
oV )rn T )y n KIEZ; < z/2, z >0, (B.17)
202
U=F+TS. (B.10)

which follows from the recurrence relatio€.2) with n = 1
Dividing S andU by V and taking the thermodynamic limit and the fact that(, > 0. Using this into the definition of
N — oo holding the particle density := N/V constant, in Eq. (B.1€) yields
one obtains from this the following expressions for pressure, 2

entropy density and energy density as function&ofl’): G(z) > -5 -7 +3= i [13 - (22 + 1)2} , (B.18)

p(n,T) = nkgT, (B-11)  \which proves the3(z) > 0 for all 2% < VI3 — 1 ~ 2.6.

A Ky (z) K1 (2) To prove thai is positive for larger values of, we use
s(n, T)=nkp {4+ log [A?’n > } +z Ka(2) [ (B-12)  jnstead the expansior€{L1C.12) obtaining
Ki(2) Ki(z) 3 15
= =1 - =4+ =
e(n,T) = nkgT {3 + ZKQ(Z)] . (B.13) Kol2) 2 T 32

2
In deriving these equations we have used the relation (C3)to 1+ = + 35 [r12(2) — r2.2(2)] + £7r2,2(2)

eliminate the derivative of{»,. Eq. B.11) is the ideal gas 14+ 154 205 4o (2)
. . . 8z 128z )
equation, while from Eq/B.13) we see that(n,T)/n is a . _ .
function of 7" only which converges to the rest mass energyJsing the estimates for the remainder termsg andr,, be-
of the particles;nc?, in the limit T — 0 (see Egs. (C11- low Egs. C.11,C.12) yields the alternative estimate
C12)). By construction, the first lawd®) is satisfied.
) . . . . - Ki(z) 3 15

For an isentropic configuration, for which the specific en- Kals) = 5 + 352
tropy s/n is constant, the second equation yields the follow- 2
ing relation between andT" which is better tharnB.17) for large values of. Combining
this estimate with the definition @ in Eq. (B.1€) gives

. (B.19)

z> 0. (B.20)

K K (2) 2
n(T) = n 2B o3 o e (B.14)

z kel G(z) > % <1 - 752) , (B.21)
with ng a constant. The next lemma shows that this de- 322

fines a smooth, strictly monotonously increasing functionwhich is positive for alk? > 75/32 = 2.34375. This proves
n : (0,00) — (0, 00) which can hence be inverted to yi€ld  that( is positive and hence that'(z) < 0 for all z > 0.

as a function ofn. This allows one to eliminate the tem- The claimed asymptotic behavior fer— 0 andz — oo

perature in the expressionB.L1B.13) and describe pres- follow easily from Egs./C.7/C.13).

sure and energy density as functionsobnly. The formu- It follows from the previous lemma that in the low tem-

lae (B.11-B.14) were already derived over 100 years ago bperature limitz — oo (the symbol~ indicating proportion-

F. Jittner [8]. ality)

Lemma 3 The functionF : (0,00) — (0, cc0) defined by n(T) ~ 23/2 o T3/2, (B.22)

KQ(Z) 2 Ki1(2) 5/3 . . .

F(z) = ——=e Rk z >0, (B.15) and thusp ~ n®/3, whereas in the high temperature limit

z — 0 (i.e. kgT > mc?),
such thatn(T") = noF(z), is smooth and satisfids’(z) < 0 L .
forall z > 0, 2°F(z) — 2for z — 0 andz%/2?F(z) — n(T)~z"~T (B.23)

/7 /(2e3) in the limitz — oo. 4/ . N

_ o _ _ such thatp ~ n*/3. In particular, the assumptioris)—(iv)
Proof. Differentiating the functiont” and using the rela-  regarding the equation of state in Sec. 2.4 are fulfilled and the
tions (C.J) yields effective adiabatic index defined in E44) yields

Ko(z) K1) 1
R, M =1+ gy
, (B.16) with G defined in Eq.B.1€). From the asymptotic properties
Ks(2) K(z)? in the low temperature limit it follows that/n — mc? > 0

(B.24)
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LT T T T T 1 ' terestingly, the effective adiabatic index(n) has the same
N s et N N L _ (:i) | qualitative properties as the one of the classical isentropic gas
3 : : ‘ ‘ | == ) =1.3333333 (see Eq.B.24)), and interpolates between the valig8 and
S 4/3 asn increases frond to infinity. Its behaviour is also
shown in Fig. 4. In particular, the assumptiofi$ — (iv)
regarding the equation of state in Sec. 2.4 are fulfilled.
The expressiond3(25/B.2€) are relevant for the descrip-
tion of isolated white dwarfs and neutron stars, since these

objects ultimately cool down to zero temperature.

FIY:1) M S

G -1o] IS S
: ‘

C. Definition and main properties of the modi-
fied Bessel functions of the second kind

i i i i i i i i i i
10* 10° 10?7 10" 10° 100 102 10® 10* 10° 10°

n/ny

In this appendix we briefly review the definition of the modi-
F 4. The effective adiabatic ind func £t fied Bessel functions of the second kiAg,, » = 0,1,2, ...,

IGURE 4. The efiective adiabalic Index as a unction of n 107 54 some of their properties that are used in the previous ap-
an ideal, relativistic monoatomic gas (blue curve) and for a com-

pletely degenerate Fermi gas (green curve). For the Fermi gas, Wgendlx. .We start with the following integral representation
have definedso := (372\%) 1. (see [1]):

and~(n) — 5/3 for n — 0, and thus assumptiq(iii) is sat- ) z"

isfied for any4/3 < v; < 5/3, which is sufficient to guaran- Kn(2) := (2n — 1!

tee the existence of finite radius stars. A plot of the function

~(n) is shown in Fig. 4. 2> 0, (C.1)
We end this appendix with a few remarks regarding the

quantum analogue of the description we have given so fawhere(2n —1)!! = (2n —1)(2n—3) --- 3- 1. Using integra-

assuming that the particles are fermions. For such a gasion by parts and the identiyosh? y — sinh? y = 1, it is not

the results we have discussed so far are only valid for highiifficult to prove the following recurrence relations:

temperatures or low densities, such thgtn < 1, with

oo
/ e ? cosh x sinhzn Xan
0

Ar = h//2mmkpT the thermal wavelength. For low tem- Kpi1(2) = %Kn(z) + Kp_1(2), (C.2)
peratures and high densities, quantum mechanical effects z

need to be taken into account. This can be easily understood K'(2) = EKn(z) — Kp(2)

by noticing that the classical expressions for the pressure and " z

energy density (see EqB.01) and B.13)) converge to zero _ —EK"(Z) —Koa(2), (C.3)

asT — 0, while for a gas consisting of fermions these quanti-
ties cannot be zero due to Pauli's exclusion principle. A con-

) o . which are valid for allh = 1,2,3,... andz > 0. Next, we
sistent generalization of the expressiaBsld-B.13) for an . . . . :
. . . L are interested in the asymptotic behavior (with correspond-
ideal fermion gas should be based on quantum statistics (see

. . .-~ Tng error estimates) for — oo. For this, we first perform
for instance chapter 8 in [13] for the case of non-relativistic ; - 9 . ;

. . the variable substitutiososh x = 1 + n?/(2z) in Eq. (C.1),
particles). Here, we only give the results for a completely :

degenerate Fermi gas, that is, a gas of fermions at zero terW-hICh yields
perature: ) Lo
e 1,2
3 Kn(2) = o——5; /6’5” U
x 2n — DI /=
nr(r) = 353 (B.25) ( Mz
mc? 222 7’ T
_ V/ 22 |27 14+ — d 0. (OF)
pF(l')* 87T2A3 (.’K 1+=L |: 3 ].:| X ( +4z) 7, z > ( )
Next, we use the Taylor expansion of the functibfx) :=
+ log [w +Vv1+ xQ} , (B.26) (1 + z)> about the point = 0.

N
wherex = Ak is the dimensionless Fermi momentum (see fla) = Z (a> 2k
for instance chapter 2 in Ref. [22]). Eliminating from
these expressions one obtajns as a function ofnr, and
the expression forz can be obtained by integrating the first + ( a )(1 ) NN 450 (C.5)
law (42) with T = 0 and settingzy = mc? in Eq. 43). In- N+1

k=0
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18 E. CHAVEZ NAMBO AND O. SARBACH

with some0 < 6 < 1 depending orz and (}) = a(a —  D. Completeness of the function spac&’r

1)+ (e — k + 1)/k!. Applying this to the integrand in ) )

Eq. [C.4) with = = 112/ (4z) and using the Gaussian integral N this appendix we demonstrate that the sef :=
Cy»((0, R],R) of bounded, continuous, real-value functions

00 on the interval(0, R], equipped with the nornfj - o, de-
/e—%nzn%dn - \/?(gn — D, (C.6) fined in Eq. 60) forms a Banach space, that is, a complete

2 normed space. For this, we first observe that is a real
vector space. Next, we check tHat || satisfied the three
one obtains the following expansion: postulates defining a norm, which are:

1) [|P|loc > 0and||P|loc = 0ifand only if P =0,

T . ax(n)
Kn(z) =4[5 ¢ [Z o +7‘n’N(Z)1 : 2) AP|lwc = |\l - | Plloc forall A € R andP € Xg,
k=0

0

3) HP]_ +P2||oo < ||P1HOO+HPQHOOfOI'a”PhPQ € Xg.

To this purpose, notice first the ()| > 0forall z € (0, R,
with the coefficientsiy(n) := 1, hence itis clear thdtP| .. = supy.,<r |P(z)| > 0 and that
IP]lcc = 0ifand only if P(x) = 0 forall z € (0, R]. Hence,

ax(n) = [4n? — 1][4n* — 9] - - - [4n® — (2k — 1)?] the first condition is satisfied. Next, we have

SkE!
APlloc = sup |[AP(x)|= sup |\ |P(x
k=1,2,3,..., (C.8) IMPlloc = sup [AP(@)| = sup [Al|P(z)]

= Al sup [P(z)| = [ | Plloo, (D.1)
<R

<z

z >0, (C.7)

and the remainder term

o w(2) = ant1(n) 1 \/5 which shows that the second condition is also satisfied. Fi-
N TNR nteN+ 00V 7 nally,

0 0 2 n—N—% “P1+P2“oo sup ‘P1($)+P2(5L')|
% /67%n2n2n+2N+2 <1+77> d77» 0<z<R

4z sup (|Pi(x)| + [Pa(x)])
0<z<R

IA

z>0. (C.9)

IN

sup |Pi(z)[+ sup [P(z)]
0<z<R 0<z<R

For N > n — 1 the exponent in the integrand on the right-
1P1lloo + (1Pl oo (D.2)

hand side is negative and one obtains the estimate

which shows that the third condition is also satisfied and leads

n 1 . .
0< .y (2) < 71 z> 0. (C.10)  tothe conclusion thdt - || defines a norm oX .
an+1(n) = 2 It remains to prove thatXr, || - [|-) is a Banach space.
Therefore, again provided that > n—1, the remainder term  F©F this we must show that any Cauchy seque(igg con-
verges in(Xg, | - ||s), that is there exists a limit point

has the same sign as the first neglected texm; (n)/zV*!
in the expansion@.7) and it is bounded by it in absolute © € Xr such thaf|F, — Pl — 0 for k — co. There-

value. The examples of relevance for the previous appendit®'®: et(£) be a Cauchy sequence (X g, || - [|o). This
are: means that for any > 0 there exists: € N such that

sup |Py(z) — Pj(z)| = [|Px — Pjllc <& (D.3)
+—Z+T1’2(2):| , (C.11) O<z<R
forall k, 5 > n. In particular
[T _, 151 105 1

_ forall k,j > nandallz € (0, R]. Thus(Py(z)) is a Cauchy
with 0 < 2% 5(2) < 105/1024 and —315/1024 <  sequence in the complete spd@& |- |), which implies that

23r9.9(2) < 0. the limit
Finally, we note that by pulling a factgtz)~"+(1/2) out .
of the integral/C.4) one can also understand the asymptotic P(z) = khj{}o Pi(z) €R (D-5)

limit of K,(z) for z — 0. For example, one has . .
exists for allx € (0, R]. It remains to show that the func-

lim 2" K, (2) = 2" Y(n — 1)! . c.13 tion P : (0, R] — R defined in this way is continuous and
lig 2" Kn(2) (n=1) €13 ounded and tha, — Pin (Xs, | - [l).

Rev. Mex. 5. E18, 020208



STATIC SPHERICAL PERFECT FLUID STARS WITH FINITE RADIUS IN GENERAL RELATIVITY: A REVIEW 19

Lemma 4 The functionP : (0, R] — R defined by Eq/[.5)
is continuous and bounded aritf — P with respect to the
norm||- || so-

Therefore, we find for alin > ns,
|P($m) - ( )‘ ‘P(Tm) - (xm) + P (xm)

= Pj(z) + Pj(z) — P(x)|
< |P(zm) = Pj(zm)| + |Pj(zm) —

Proof. Recall that continuity o at a point: € (0, R] means
that if we take any sequen¢e,,,) in (0, R] which converges
to z € (0, R}, then we must hav®(x,,) — P(x). Thus we
need to prove that for all > 0 there exists a natural number € € €
Pij(z)— P <-4+-+-=c¢
no € N such that FIF ) = Pa)l< gt gty =c

(D.6) Thus, we conclude tha? is a continuous function. The in-
equality D.8) implies thatP — P; is bounded for alj > n1,

for all m > n. Lete > 0. Since(P;) is a Cauchy sequence, and hence® = P — P; + P; is also bounded, implying that

there exists:; € N such that P € Xg. Moreover, the same inequalitid(8) implies that

Pj(z)|
(D.10)

|P(zm) — P(z)| <e,

forall k, 7 > n; and allz € (0, R]. Taking the limitk — oo
on both sides of the inequality and taking the supremum ov
x, one obtains

[Pule) = Pya)] < 3, (D.7)

|P — Pj||os < ¢ forall j > ny, which shows thaP; — P
in (Xg, | - |l)- This concludes the proof of the lemma.

JAcknowledgments

It is a pleasure to thank Emilio Tejeda and Thomas Zannias
for useful comments on a previous version of this article and

9
sup |P(z)— P, < - D.8 -
0<a:I§)R| (z) i@l < 3’ (D-8) an anonymous referee for pointing out to us the relevant refer-
) . , ences concerning realistic equations of state for neutron stars.
forall j > n;. Fix j = ny + 1. Due to the fact thaP; is

continuous, there exists, € N such that for alin > ns,

Pi(xy) — P, .
Pi(om) - Pi(a)| <

ECN was supported by the CONACYT project “Ayudante de

investigador” No. 17840 and by a postgraduate CONACYT

()] < 3 (D.9) fellowship. OS was partially supported by a CIC grant to
Universidad Michoacana de San Niaslde Hidalgo.

Stars with infinite radius are relevant as well, as long as their 5.

density decays sufficiently fast to zero wher- oo such that
their total mass is finite. In particular, this is the case for boson
stars, where the perfect fluid source of matter is replaced by ag
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