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In this article, we provide a pedagogical review of the Tolman-Oppenheimer-Volkoff (TOV) equation and its solutions which describe static,
spherically symmetric perfect fluid stars in general relativity. Our discussion starts with a systematic derivation of the TOV equation from
the Einstein field equations and the relativistic Euler equations. Next, we give a proof for the existence and uniqueness of solutions of the
TOV equation describing a star of finite radius, assuming suitable conditions on the equation of state characterizing the matter. We also prove
that the compactness of the matter contained inside a sphere centered at the origin satisfies the well-known Buchdahl bound, independent of
the radius of the sphere. Further, we derive the equation of state for an ideal, classical monoatomic relativistic gas from statistical mechanics
considerations and show that it satisfies our assumptions for the existence of a unique solution describing a finite radius star. Although none
of the results discussed in this article are new, they are usually scattered in different articles and books in the literature; hence it is our hope
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1. Introduction

The simplest model for describing a spherical star in equilib-
rium is the well-known Lane-Emden equation (see Ref. [6]
and references therein)

1
x2

d

dx

(
x2 dΘ

dx

)
+ ΘN = 0, (1)

wherex represents a dimensionless radius,ΘN is propor-
tional to the mass densityρ and N is the polytropic in-
dex characterizing the equation of state of the matter. This
model is based on the assumption of a static and spherically
symmetric Newtonian perfect fluid with a polytropic equa-
tion of state in which the pressurep is related to the density
through the relationp(ρ) = Kργ , K being a constant and
γ = 1 + (1/N) the adiabatic index. Under these assump-
tions, Eq. (1) easily follows from the condition of hydrostatic
equilibrium and the Poisson equation for the gravitational po-
tential, and it yields a simple and successful model that is able
to describe (in first approximation) most of the stars in the
Universe and even other astrophysical objects like planets.
For example, our Sun can be described in first approxima-
tion by the Lane-Emden equation (1) with polytropic index
N = 3 (γ = 4/3), while low-mass white-dwarfs stars can be
described by Eq. (1) with index N = 3/2 (γ = 5/3). Gi-
ant planets, like Jupiter and Saturn, can be approximated by
N = 1 (γ = 2) while the solution withN = 0 (γ = ∞)
corresponds to a constant density, incompressible sphere and
therefore serves as a simple model for rocky planets [6,24].

Although the Lane-Emden equation (1) provides a sim-
ple model for most stars in our Universe, a more realistic

description clearly requires additional physical ingredients,
such as incorporating the effects of the rotation of the star,
the presence of magnetic fields, radiation processes etc. Fur-
thermore, if the star is very compact, then general relativistic
effects become important. For a star of radiusR and mass
M , the compactness is measured by the ratiors/R where
rs := 2GNM/c2 is the Schwarzschild radius of the star (with
GN andc denoting, respectively, Newton’s constant and the
speed of light). More generally, the compactness ratio at ra-
dius r is defined as2m(r)/r with m(r) := GNM(r)/c2,
whereM(r) denotes the mass contained in the sphere of ra-
dius r centered at the origin. Relativistic corrections must
be taken into account whenever this ratio ceases to be much
smaller than one. This is the case for neutron stars or more
exotic stars, like quark stars (see Refs. [9,22] for textbooks
treating these subjects).

In this article, we discuss the general relativistic general-
ization of the Lane-Emden equation, which is known as the
Tolman-Oppenheimer-Volkoff (TOV) equation [16,25] and
serves as a model for describing such compact stars, assum-
ing they can still be modeled by a static and spherically sym-
metric perfect fluid. The TOV equation is obtained by re-
placing the Newtonian Euler-Poisson system by its relativis-
tic generalization, the Euler-Einstein system of equations in
which the self-gravity of the matter is described according to
Einstein’s theory of general relativity. This leads to gener-
alizations of the hydrostatic equilibrium condition and Pois-
son’s equations which correctly take into account the effects
from general relativity and enhance the magnitude of the
pressure gradient.
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While a detailed mathematical analysis of the Lane-
Emden equation (1) has been known for a long time (see
again [6] and references therein and also [21] for the case of
more general equations of state), a rigorous analysis of its rel-
ativistic counterpart has been completed only in more recent
years. Pioneering work in this direction has started with the
work by Rendall and Schmidt [19], where it is shown that un-
der certain assumptions on the equation of state, there exists
for each value of the central density a unique global solution
of the TOV equation in which the corresponding star either
has a finite radius (and the solution being the Schwarzschild
solution in the exterior region) or has infinite radius with the
energy density converging to zero asr → ∞i. Some neces-
sary and sufficient conditions on the equation of state yield-
ing a star with finite radius are also given in [19]. A different
proof for the existence of solutions describing a star with fi-
nite radius was given by Makino [15], under assumptions on
the equation of state which are similar to the one formulated
in the next section of the present article, with the effective
adiabatic indexγ being restricted to the range4/3 < γ < 2
for sufficiently small values of the density. The work in [15]
also discusses the radial linearized perturbations of the static
solutions, showing that they lead to a self-adjoint operator
with a purely discrete spectrum. For further work providing
conditions on the equation of state which yield a spherical
star of finite (or infinite) extend see Refs. [11,23]. In partic-
ular, the work by Simon [23] discusses the relation of these
conditions with the uniqueness property of the static spher-
ical stars among all possible static, asymptotically flat solu-
tions of the Euler-Einstein equations. Other conditions that
guarantee the finiteness of the star’s radius have been pre-
sented by Ramming and Rein [17]. These conditions cover
perfect fluid stars as well as self-gravitating collisionless gas
configurations in both the Newtonian and relativistic regimes.
For a general study of the relativistic spherically symmetric
static perfect fluid models based on the theory of dynamical
systems, see Ref. [12].

Coming back to the compactness ratio of the star (which
determines when the relativistic effects are important), Buch-
dahl showed [5] that if the pressure is isotropic and the energy
density does not increase outwards, then any static, spher-
ically symmetric relativistic star must satisfy the inequality
rs/R < 8/9. This inequalities was later generalized by
Andréasson [3] who provides anr-independent bound on the
compactness ratio2m(r)/r under purely algebraic inequali-
ties on the energy density and pressure, and hence removes
the monotonicity assumption on the density profile.

The goal of this article is to provide a self-contained ped-
agogical review of the most important aspects of the TOV
equation and its solutions. We start in Sec. 2 with a system-
atic deduction of the TOV equation from the Euler-Einstein
system of equations with a static, spherical ansatz, and we
specify our assumptions on the equation of state. Moreover,
in order to facilitate the mathematical analysis that follows,
we rewrite the TOV equation in terms of dimensionless quan-
tities. Next, in Sec. 3 we use the contraction mapping prin-

ciple in order to prove the existence of a unique local so-
lution for the dimensionless TOV equation near the center
of symmetryr = 0. It should be noted that this step does
not follow in a straightforward way from the standard re-
sults of the theory of ordinary differential equations, since
the TOV equation is nonlinear and singular atr = 0. Next, in
Sec. 4 we prove that under the assumptions on the equation
of state given in Sec. 2 the local solution can be extended to
either infinite radius or to a finite radius, and partly follow-
ing we prove that as long as the effective adiabatic indexγ
is strictly larger than4/3 for small densities, the radius must
be finite. Our proof also shows that the Buchdahl inequal-
ity 2m(r)/r < 8/9 must hold for all values of the radius
r > 0. A numerical example is analyzed in Sec. 5 and a
summary and conclusions are presented in Sec. 6. This ar-
ticle also contains several appendices which provide techni-
cal details and some important examples. In Appendix A we
give details on the computation of the Riemann, Einstein and
Ricci tensors which are used to derive the TOV equation. In
Appendix B we provide a derivation of the equation of state
describing a relativistic, ideal classical monoatomic gas from
purely statistical physics considerations and mention the cor-
responding results for a completely degenerate ideal Fermi
gas. In Appendix C we discuss some important properties of
the modified Bessel functions of the second kind which are
needed in Appendix B. In the final Appendix D we prove the
completeness of the function spaceXR which plays a funda-
mental role for the local existence proof in Sec. 3.

In most of the article, we work in geometrized units, for
whichGN = c = 1.

2. Derivation of the TOV equation and as-
sumptions on the equation of state

In this section, we start with a review of the derivation of the
TOV equation. Then, we state the precise assumptions on
the equation of state on which the results in the subsequent
sections are based on.

2.1. Field equations and static, spherically symmetric
ansatz

The field equations describing a relativistic, self-gravitating
perfect fluid configuration are given by the coupled system
consisting of the10 independent components of Einstein’s
field equations,

Gµν =
8πGN

c4
Tµν , (2)

together with the4 relativistic Euler equations

∇µTµν = 0. (3)

Here and in the following, Greek indicesµ, ν, . . . denote
spacetime indices which run over0, 1, 2, 3, Gµν are the com-
ponents of the Einstein tensor associated with the spacetime
metricgµν (which is symmetric, i.e.Gµν = Gνµ and hence
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has10 independent components like the metric components
gµν), and Tµν = Tνµ are the components of the energy-
momentum-stress tensor which describes the sources of en-
ergy and matter. For the perfect fluid case considered here,

Tµν =
ε + p

c2
uµuν + pgµν , (4)

whereε, p anduµ = gµνuν refer, respectively, to the energy
density, pressure and the components of the four-velocity of
the fluid, normalized such thatuµuµ = −c2. In terms of
an orthonormal framee0̂, e1̂, e2̂, e3̂ of vector fields such that
e0̂ = c−1uµ∂µ, the components of the energy-momentum-
stress tensor are

(Tα̂β̂) = diag(ε, p, p, p), (5)

and thusε andp represent the energy density and pressure
measured by an observer which is co-moving with the fluid
(i.e. an observer whose world line is tangent to the four-
velocity).

The Einstein tensorGµν is obtained from the Riemann
curvature tensorRα

βµν as follows:

Gµν = Rµν − R

2
gµν , (6)

whereRµν = Rα
µαν are the components of the Ricci tensor

and its traceR = gµνRµν is the Ricci scalar. The compo-
nents of the Riemann curvature tensor, in turn, are given by

Rµ
ναβ = ∂αΓµ

βν+Γσ
βνΓµ

ασ−(α ↔ β) = −Rµ
νβα, (7)

whereΓν
αβ denote the Christoffel symbols, which are deter-

mined by the components of the metric tensor and their first
derivatives,

Γν
αβ =

1
2
gνσ

(
∂gβσ

∂xα
+

∂gασ

∂xβ
− ∂gαβ

∂xσ

)
. (8)

Due to the contracted Bianchi identities,∇µGµν = 0, Eq. (3)
is a consequence of Einstein’s field equations (2), so in prin-
ciple it is sufficient to solve Eq. (2). However, as we will
see, it is simpler to solve instead the relativistic Euler equa-
tions (3) together with part of the components of the Einstein
equations.

For the remainder of this article, we focus on spherically
symmetric and static configurations, in which the metric has
the form

ds2 = gµνdxµdxν = −e
2Φ(r)

c2 c2dt2 + e2Ψ(r)dr2

+ r2(dϑ2 + sin2 ϑdϕ2), (9)

where(xµ) = (t, r, ϑ, ϕ) are spherical coordinates andΦ
andΨ are functions of the radius coordinater only which
will be determined by the field Eqs. (2,3). Note that when
Φ = Ψ = 0, the metric (9) reduces to the Minkowski met-
ric in spherical coordinates. In the solutions discussed below,
the coordinater runs from0 to ∞. For the solution to be

regular atr = 0 we requireΦ(r) andΨ(r) to be smooth,
even functions ofr (i.e. all their derivatives of odd order van-
ish atr = 0). As r → ∞ we require asymptotic flatness,
that isΦ,Ψ → 0. The perfect fluid configuration is also as-
sumed to be static and spherically symmetric. This means
thatε = ε(r) andp = p(r) are functions ofr only, and that
the four-velocity is of the form

uµ ∂

∂xµ
= e−

Φ
c2

∂

∂t
, (10)

such that the fluid elements are at rest in the reference frame
defined by the coordinate system(t, r, ϑ, ϕ).

2.2. Explicit expressions for the Einstein tensor and ex-
terior solution

In order to compute the10 independent components of the
Einstein tensorGµν appearing in Eq. (2), one needs to cal-
culate first the40 independent Christoffel symbolsΓν

αβ , as
explained in the previous subsection. To carry out this calcu-
lation, it is convenient to exploit the block-diagonal form of
the metric and write it as follows:

(gµν) =
(

g̃ab 0
0 r2ĝAB

)
,

(gµν) =
(

g̃ab 0
0 r−2ĝAB

)
, (11)

wherea, b refer to the coordinatest, r andA, B to the coor-
dinatesϑ, ϕ. For the specific parametrization (9) relevant to
this section, the two blocks are given by

g̃abdxadxb = −e2Φ(r)dt2 + e2Ψ(r)dr2,

(a, b = t, r), (12)

ĝABdxAdxB = dϑ2 + sin2 ϑdϕ2,

(A, B = ϑ, ϕ). (13)

From now on, we work in geometrized units in whichGN =
c = 1, implying in particular that time and mass have units
of length. The details of the calculations are presented in Ap-
pendix A; here we directly present the resulting expressions
for the Christoffel symbols and the components of the Ein-
stein tensor. The non-vanishing Christoffel symbols are:

Γt
tr = Γt

rt = Φ′, Γr
rr = Ψ′,

Γr
tt = Φ′e2(Φ−Ψ), (14)

Γϑ
rϑ = Γϑ

ϑr = Γϕ
rϕ = Γϕ

ϕr =
1
r
, (15)

Γr
ϑϑ = −re−2Ψ, Γr

ϕϕ = −r sin2 ϑe−2Ψ, (16)

Γϑ
ϕϕ = − sinϑ cos ϑ, Γϕ

ϕϑ = Γϕ
ϑϕ = cot ϑ, (17)
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4 E. CHÁVEZ NAMBO AND O. SARBACH

which give rise to the following expressions for the Einstein
tensor:

Gt
t =

1
r2

(
e−2Ψ − 1

)− 2Ψ′

r
e−2Ψ, (18)

Gr
r =

1
r2

(
e−2Ψ − 1

)
+

2Φ′

r
e−2Ψ, (19)

Gϑ
ϑ=Gϕ

ϕ=
[
Φ′′+Φ′(Φ′−Ψ′)+

Φ′−Ψ′

r

]
e−2Ψ, (20)

the off-diagonal components being zero.
Based on these expressions, it is a simple task to derive

the Schwarzschild metric, which describes the unique static,
spherically symmetric family of solutions in the exterior vac-
uum region. In vacuum, there are no energy sources and thus
Tµν = 0 and Einstein’s field equations imply

1
r2

(
e−2Ψ − 1

)− 2Ψ′

r
e−2Ψ = 0, (21)

1
r2

(
e−2Ψ − 1

)
+

2Φ′

r
e−2Ψ = 0, (22)

[
Φ′′ + Φ′(Φ′ −Ψ′) +

Φ′ −Ψ′

r

]
e−2Ψ = 0. (23)

The first equation only involvesΨ(r) and can be rewritten as

Gt
t = − 1

r2

d

dr
[r(1− e−2Ψ)] = 0, (24)

and hencer(1− e−2Ψ) = 2M for some integration constant
M . For reasons which will become clear shortly, we assume
M > 0 to be positive. Therefore,

e−2Ψ = 1− 2M

r
. (25)

Moreover, subtracting Eq. (21) from (22) one obtains the re-
lation

Φ′ = −Ψ′, (26)

which can be integrated to yield

Φ = −Ψ, (27)

where without loss of generality we have set the integration
constant to zero, since otherwise it could be absorbed into
a redefinition of the time coordinatet (which does not al-
ter the physics of the problem because of the general covari-
ance principle of General Relativity). Using this relation in
Eq. (25) one obtains

e2Φ = 1− 2M

r
, (28)

which yields the Schwarzschild solution, given by the line
element

ds2 = −
(

1− 2M

r

)
dt2 +

(
1− 2M

r

)−1

dr2

+ r2(dϑ2 + sin2 ϑdϕ2). (29)

We see that forr À M , 2M/r ¿ 1, and in this limit the
metric can be considered to describe a small perturbation of
the flat Minkowski metric. Thus, in this case the Newtonian
limit is valid which allows one to identify the quantity−M/r
with the Newtonian potentialΦ, that is,Φ = −M/r. In this
sense, the integration constantM can be identified with the
total mass of the central object. The Schwarzschild metric
is an exact non-trivial (i.e. non-flat) solution of the Einstein
field equations. In the absence of matter, it describes a non-
rotating black hole (see, for instance, Ref. [26] for details).

2.3. Interior region and TOV equations

In the interior region, the relevant field equations are ob-
tained by replacing the right-hand sides of Eqs. (21)-(23)
with the corresponding components of8π times the energy-
momentum-stress tensor.ii Using the fact thatT t

t = −ε,
T r

r = Tϑ
ϑ = Tϕ

ϕ = p, we obtain the following three
equations

1
r2

(
e−2Ψ − 1

)− 2Ψ′

r
e−2Ψ = −8πε, (30)

1
r2

(
e−2Ψ − 1

)
+

2Φ′

r
e−2Ψ = 8πp, (31)

[
Φ′′ + Φ′(Φ′ −Ψ′) +

Φ′ −Ψ′

r

]
e−2Ψ = 8πp. (32)

As in the vacuum case, the left-hand side of Eq. (30) only
involves the metric fieldΨ(r), and it can be rewritten in the
form

1
r2

d

dr
[r(1− e−2Ψ)] = 8πε. (33)

Integrating both sides of this equation yields

e−2Ψ(r) = 1− 8π

r

r∫

0

ε(s)s2ds, (34)

where we have used the fact thatΨ(r) is regular atr = 0 to
fix the integration constant. Introducing the mass function

m(r) := 4π

r∫

0

ε(s)s2ds, (35)

which measures the mass-energy contained in a sphere of ra-
diusr, Eq. (34) can be rewritten as

e−2Ψ(r) = 1− 2m(r)
r

. (36)

Eliminating the factore−2Ψ(r) from Eq. (31) one obtains

Φ′(r) =
m(r) + 4πr3p(r)

r[r − 2m(r)]
. (37)

Rev. Mex. F́ıs. E18, 020208



STATIC SPHERICAL PERFECT FLUID STARS WITH FINITE RADIUS IN GENERAL RELATIVITY: A REVIEW 5

This is the relativistic generalization of the Newtonian equa-
tion Φ′(r) = m(r)/r2, to which Eq. (37) reduces to in the
limit p ¿ ε andm(r) ¿ r.

Next, one needs an equation for the pressurep(r). Such
an equation could be obtained by substituting Eqs. (34) and
(37) into the last Einstein equation (32). However, a lot of
algebraic work can be saved by considering instead Eq. (3),
from which one directly obtains the same result, which is

p′ = −(p + ε)Φ′. (38)

Finally, we may eliminateΦ′ from this equation by using
Eq. (37), obtaining the well-known Tolman-Oppenheimer-
Volkoff (TOV) equation

p′(r) = −[p(r) + ε(r)]
m(r) + 4πr3p(r)

r[r − 2m(r)]
. (39)

This generalizes the Newtonian condition for hydrostatic
equilibriump′(r) = −ρ(r)(m(r)/r2) (with ρ the mass den-
sity) to the general relativistic case. Note that the relativistic
correction terms tend to increase the pressure gradient|p′|,
yielding more compact objects. Note also that Eq. (39) is
singular atr = 0 and2m(r) = r. The first one requires ap-
propriate regularity conditions at the center and will be dealt
with by replacing the mass functionm(r) with the mean den-
sity (see Secs. 2.5 and 3 below). Regarding the potential sin-
gularity at2m(r) = r, we will prove in Sec. 4 that (under
the hypotheses made in this article),2m(r) < r everywhere,
such that it does not occur. For now we note that Eq. (35) im-
plies thatm(r) ' r3 near the center such that2m(r)/r ' r2.

In summary, the metric for a spherical, static, self-
gravitating perfect fluid configuration is given by

ds2 = −e2Φ(r)dt2 +
(

1− 2m(r)
r

)−1

dr2

+ r2(dϑ2 + sin2 ϑdϕ2), (40)

wherem(r) is given by Eq. (35), Φ(r) is determined from
Eq. (37), andp(r) must satisfy the TOV equation (39). The
latter can be integrated as soon as one specifies an equation
of state which provides a relation between the pressurep and
the energy densityε. In the next subsection we specify our
precise assumptions on the equations of state considered in
this article, while in the subsequent sections we provide a
rigorous analysis for the existence of solutions of the TOV
equation.

2.4. The equation of state

In the following, we state our assumptions on the equation
of state, which provides a relation between the pressurep
and the energy densityε. Such a relation should be obtained
from a statistical mechanics model of the matter, which usu-
ally provides the pressure and energy density as a function of
the particle densityn and the temperatureT of the system:

p = p(n, T ), ε = ε(n, T ), (41)

see Appendix B for the specific example of an ideal
monoatomic relativistic gas. For the following, we assume
that the perfect fluid configuration is inlocal thermodynamic
equilibrium, that is, each fluid (or gas) cell is in thermody-
namic equilibrium and thus the macroscopic quantities de-
scribing the state of this cell satisfy the laws of thermody-
namics. Assuming that the cell contains a fixed numberN
of particles, the relevant macroscopic quantities characteriz-
ing the state of the cell are its volumeV = N/n, its en-
tropy S = sN/n (with s the entropy density), its energy
U = εN/n, and other quantities such as its temperatureT .
SinceN is fixed, the first law of thermodynamics implies that

d
( ε

n

)
= Td

( s

n

)
− pd

(
1
n

)
. (42)

In general, the energy densityε is a function of the entropy
per particles/n andn; however, in this article we assume the
perfect fluid isisentropic, that is,s/n is constant through-
out the fluid, such that the first term on the right-hand side of
Eq. (42) can be ignored. In this case,ε depends only onn and
given an equation of state in the formp = p(n), integration
of Eq. (42) yields

ε(p) = ne0 + n

n∫

0

p(n)
dn

n2 , p = p(n), (43)

wheree0 denotes the rest mass energy of the particle and
where from now on, we regardε as a function ofp instead
of n. More precisely, we assumep : [0,∞) → R is a contin-
uously differentiable function of the particle densityn, satis-
fying the following conditions:

(i) p(n) > 0 for n > 0 (positive pressure)

(ii) p is monotonously increasing

(iii) Introducing the effective adiabatic index

γ(n) :=
∂ log p

∂ log n
(n) =

n

p(n)
∂p

∂n
(n), n > 0, (44)

we assume there is a constantγ1 > 1 such that, for all
small enoughn,

γ(n) ≥ γ1 (45)

(iv) e0 > 0 (positive rest mass energy)

The condition(iii) implies that for small enoughn2 ≥
n1 > 0,

p(n1)
p(n2)

≤
(

n1

n2

)γ1

, (46)

which implies thatp(n) converges to zero at least as fast as
nγ1 for n → 0. In particular, this assures that the integral
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in Eq. (43) is well-defined, and it follows from the condi-
tions (i)–(iv) that ε : [0,∞) → R is a continuously dif-
ferentiable, monotonously increasing function which satisfies
ε(p)/n → e0 asp → 0.

For a discussion of realistic equations of state, includ-
ing those describing phase transitions, we refer the reader to
Ref. [9]. In this case, the functionε(p) might be discontin-
uous; however, it seems that models for neutron star mat-
ter based on two conserved quantities (baryonic number and
electric charge) do yield a continuous relation betweenn, p
andε, see chapter 9 in [9]. See also Refs. [27-30] for recent
work and reviews on realistic equations of state describing
dense matter in neutron stars.

2.5. Dimensionless field equations and summary

For the analysis in the following sections it is useful to intro-
duce the averaged energy densityρ(r) contained in a sphere
of radiusr:

ρ(r) :=
m(r)
4π
3 r3

=
3
r3

r∫

0

ε(p(s))s2ds, r > 0, (47)

which is regular at the center. In terms ofρ(r), Eqs. (37,39)
can be rewritten as

Φ′(r) = − p′(r)
p(r) + ε(p(r))

=
4πr

3
ρ(r) + 3p(r)
1− 8π

3 r2ρ(r)
. (48)

Furthermore, it is also very convenient for the following to
work in terms of dimensionless quantities. For this reason,
we write the radius, pressure, energy density and averaged
energy density as follows:

r = `x, p(r) = pcP (x),

ε(p) = εce(P ), ρ(r) = εcw(x), (49)

wherepc = p(0) is the central pressure,εc the central en-
ergy density, and̀ is a free parameter which will be chosen
later. Here, the functione(P ) represents the dimensionless
equation of state which satisfies the same properties as the
functionε(p) in Eq. (43). By definition, the functionsP (x),
w(x) ande(P ) satisfy the following conditions at the center,

P (0) = w(0) = 1, e(1) = 1. (50)

In terms of these quantities, the field equations (48) are

d

dx

(
Φ
λ

)
= − 1

e + λP

dP

dx

=
4π`2εcx

3λ

w(x) + 3λP (x)
1− 8π`2εc

3 x2w(x)
, (51)

where we have introduced the dimensionless parameter

λ :=
pc

εc
, (52)

representing the ratio between the central pressure and en-
ergy density. Note that in the Newtonian limitλ → 0 since
in this case the energy density and pressure are dominated by
the contribution from the rest mass. In this sense, the param-
eterλ measures how relativistic the resulting configuration
will be. We see from Eq. (51) that it is convenient to choose
the length scale parameter` such that

4π`2εc

3
= λ. (53)

Also introducing the functionφ(x) := Φ(r)/λ, our final
form of the dimensionless field equations is

d

dx
φ(x) = − 1

e(P (x)) + λP (x)
d

dx
P (x)

= x
w(x) + 3λP (x)
1− 2λx2w(x)

, (54)

with

w(x) =
3
x3

x∫

0

e(P (y))y2dy. (55)

Note that in the Newtonian limitλ → 0, Eq. (54) reduces to

d

dx
φ(x) = − 1

e(P (x))
d

dx
P (x) = xw(x), (56)

which are the correct Newtonian equations.

3. Local existence near the center

In this section we prove, for each valuepc > 0 of the central
pressure, the existence of a unique local solutionp(r) of the
TOV equation (39) in the vicinity of the center of symmetry
r = 0 such thatp(0) = pc. In the next section, this solu-
tion will be shown to possess a unique extension to a solution
p : [0, R∗] → R of Eq. (39) which is monotonically decreas-
ing and satisfiesp(R∗) = 0, and hence describes a spherical
static star of finite radiusR∗.

In order to demonstrate the existence of the local solu-
tion of the TOV equation, we rewrite Eq. (54) as a fixed point
problem and use the contraction mapping principle. For this,
we integrate both sides of

d

dx
P (x) = −[e(P (x)) + λP (x)]x

w(x) + 3λP (x)
1− 2λx2w(x)

, (57)

over x, obtaining (taking into account the central condition
P (0) = 1 from Eq. (50)) the integral equation

P (x) = 1−
x∫

0

[e(P (y)) + λP (y)]

× w(y) + 3λP (y)
1− 2λw(y)y2

ydy =: TP (x), (58)
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wherew(x) is given by (55). The problem now consists in
finding a functionP (x) (in a suitable function space which
will be specified below) which satisfies the fixed point equa-
tion P = TP . This can be achieved by means of the contrac-
tion mapping principle, which provides sufficient conditions
for T to posses a unique fixed point. We recall this impor-
tant result which can be found in many textbooks (see, for
instance [18]).

Theorem 1 (contraction mapping principle) Let(X, ‖ · ‖)
be a Banach space, and letA = A ⊂ X be a closed, non-
empty subset ofX. Let T : A → A be a mapping fromA
to itself which constitutes a contraction, that is, there exists a
constantL satisfying0 ≤ L < 1 such that

‖T (u)− T (v)‖ ≤ L‖u− v‖ for all u, v ∈ A. (59)

Then,T has a unique fixed pointu∗ ∈ A, that is, there exists
a uniqueu∗ ∈ A such thatT (u∗) = u∗.iii

In order to apply this theorem to the fixed point prob-
lem (58) we introduce, for eachR > 0, the spaceXR :=
Cb((0, R],R) of bounded, continuous real-valued functions
on the interval(0, R], equipped with the infinity norm:

‖P‖∞ := sup
0<x≤R

|P (x)|, P ∈ XR. (60)

In Appendix D we show that‖ · ‖∞ defines a norm onXR

and that(XR, ‖ · ‖∞) defines a Banach space, that is, a com-
plete normed vector space. Next, we introduce the subset
AR ⊂ XR defined as

AR :=
{

P ∈ XR

∣∣ lim
x→0

P (x) = 1

and
1
2
≤ P (x) ≤ 1 for all 0 < x ≤ R

}
. (61)

Clearly,AR is not empty since it contains the constant func-
tion P = 1. Furthermore, it is not difficult to verify that
AR is closed: ifPk is a sequence inAR which converges to
P ∈ XR in the infinity norm, that is,

‖Pk − P‖∞ = sup
0<x≤R

|Pk(x)− P (x)| → 0,

k →∞, (62)

thenPk converges uniformly toP and it follows thatP (x) →
1 asx → 0 and 1

2 ≤ P (x) ≤ 1 sincePk ∈ AR. Therefore,
the limiting pointP of the sequencePk also lies inAR, and
it follows thatAR is closed.

For the following, we show that the mapT defined in
Eq. (58) is well-defined onAR, mapsAR into itself and de-
fines a contraction provided thatR > 0 is small enough. For
this, first note that due to the fact thate(P ) is an increasing
function and thatP ≤ 1 it follows from Eq. (55) and the
normalizatione(1) = 1 that

w(x) =
3
x3

x∫

0

e(P (y))y2dy ≤ 3
x3

x∫

0

e(1)y2dy = 1, (63)

for all P ∈ AR, such thatw(x) is bounded from above by1.
Also, sinceP ≥ 1/2 for all P ∈ AR, it follows that

w(x) =
3
x3

x∫

0

e(P (y))y2dy ≥ 3
x3

x∫

0

e(1/2)y2dy

= e(1/2) =: w0 > 0, (64)

which allows us to conclude thatw0 ≤ w ≤ 1 for all
P ∈ AR. Moreover, sincee andP are continuous, it fol-
lows thatw is continuous and (using L’Ĥopital’s rule) that
w(x) → e(1) = 1 asx → 0. Thus, if the functionP lies in
the setAR, then the functionw defined by Eq. (55) belongs
to the set

BR :=
{

w ∈ XR

∣∣∣∣ lim
x→0

w(x) = 1

andw0 ≤ w(x) ≤ 1 for all 0 < x ≤ R
}

. (65)

After these preliminary remarks, we are ready to show
that the mapT in Eq. (58) defines a contraction onAR,
provided R > 0 is small enough: first, we observe that
1 − 2λw(y)y2 ≥ 1 − 2λR2 for all 0 < y ≤ R if w ∈ BR,
such that the denominator in the integrand of Eq. (58) cannot
vanish if0 < x ≤ R andR is chosen small enough, such that
2λR2 < 1. Next, using again the continuity and boundedness
of the functionse, P andw, it follows thatTP : (0, R] → R
is continuous and satisfiesTP (x) → 1 for x → 0. Moreover,
because the integrand in Eq. (58) is positive, it follows that
TP is monotonously decreasing. To show thatTP ∈ AR it
thus remains to prove thatTP (R) ≥ (1/2). For this, we use
the estimatesP ≤ 1, w ≤ 1, 1− 2λw(y)y2 ≥ 1− 2λy2 and
the fact thate is an increasing function in order to estimate

[e(P (y)) + λP (y)]
w(y) + 3λP (y)
1− 2λw(y)y2

≤ (1 + λ)
1 + 3λ

1− 2λy2
,

which implies

TP (x) = 1−
x∫

0

[e(P (y)) + λP (y)]
w(y) + 3λP (y)
1− 2λw(y)y2

ydy

≥ 1−
x∫

0

(1 + λ)
1 + 3λ

1− 2λy2
ydy

= 1 + (1 + λ)
1 + 3λ

4λ
log(1− 2λx2),

for all 0 < x ≤ R, and the required conditionTP (R) ≥
(1/2) is satisfied ifR > 0 is small enough, such that

2λR2 ≤ 1− e−
2λ

(1+λ)(1+3λ) , (66)

which is slightly stronger than the previous requirement
2λR2 < 1. Therefore, ifR satisfies the inequality (66), the
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mapT defined by Eq. (58) is a well-defined map fromAR

into itself. To apply the contraction mapping principle, it re-
mains to prove thatT defines a contraction onAR (for suf-
ficiently smallR > 0), that is, there must exist a constant
0 ≤ L < 1 such that

‖TP2 − TP1‖∞ ≤ L‖P2 − P1‖∞,

for all P1, P2 ∈ AR. (67)

In order to verify this condition, we write the difference
TP2 − TP1 in the following form:

TP2(x)− TP1(x) = −
x∫

0

[
Fλ(P2(y), w2(y), y)

− Fλ(P1(y), w1(y), y)
]
ydy, (68)

with Fλ : [(1/2), 1]× [w0, 1]× [0, R] → R the continuously
differentiable function defined by

Fλ(p, w, y) := [e(p) + λp]
w + 3λp

1− 2λwy2
,

1
2
≤ p ≤ 1, w0 ≤ w ≤ 1, 0 ≤ y ≤ R. (69)

According to the mean value theorem [4], one has for all
(1/2) ≤ P1, P2 ≤ 1, w0 ≤ w1, w2 ≤ 1 and0 ≤ y ≤ R,

Fλ(P2, w2, y)− Fλ(P1, w1, y) =
∂Fλ

∂P
(P∗, w∗, y)(P2 − P1)

+
∂Fλ

∂w
(P∗, w∗, y)(w2 − w1), (70)

with P∗ = P1 +θP (P2−P1), 0 < θP < 1, lying betweenP1

andP2 and likewise,w∗ = w1 + θw(w2 −w1), 0 < θw < 1.
Using this into Eq. (68) one obtains the estimate

|TP2(x)− TP1(x)| ≤
x∫

0

[∣∣∣∣
∂Fλ

∂P
(P∗(y), w∗(y), y)(P2(y)− P1(y))

∣∣∣∣ +
∣∣∣∣
∂Fλ

∂w
(P∗(y), w∗(y), y)(w2(y)− w1(y))

∣∣∣∣
]
ydy

≤
x∫

0

[
C1(R)

∣∣P2(y)− P1(y)|+ C2(R)|w2(y)− w1(y)
∣∣
]
ydy, (71)

with the constants

C1(R) := max
1
2≤P≤1

w0≤w≤1
0≤y≤R

∣∣∣∣
∂Fλ

∂P
(P,w, y)

∣∣∣∣ , C2(R) := max
1
2≤P≤1

w0≤w≤1
0≤y≤R

∣∣∣∣
∂Fλ

∂w
(P, w, y)

∣∣∣∣ .

Taking the supremum overx on both sides of the inequality (71) one obtains the estimate

‖TP2 − TP1‖∞ ≤ R2

2
[C1(R)‖P2 − P1‖∞ + C2(R)‖w2 − w1‖∞] , (72)

for all P1, P2 ∈ AR andw1, w2 ∈ BR. Furthermore, using the definition (55), one obtains in a similar manner the estimate

|w2(x)− w1(x)| ≤ 3
x3

x∫

0

|e(P2(y))− e(P1(y))|y2 dy ≤ C3‖P2 − P1‖∞, (73)

with the constant

C3 := max
1
2≤P≤1

∣∣∣∣
de

dP
(P )

∣∣∣∣ ,

where we have used that fact thate : [1/2, 1] → R is a continuously differentiable function due to the properties of the function
ε(P ) defined in (43). Combining the two estimates (72,73) one obtains, finally

‖TP2 − TP1‖∞ ≤ L(R)‖P2 − P1‖∞, L(R) :=
R2

2
[C1(R) + C2(R)C3] , (74)

for all P1, P2 ∈ AR. SinceC1(R) andC2(R) decrease withR, it is clear that one can chooseR > 0 small enough such that
L(R) < 1 andT : AR → AR describes a contraction onAR. Now we can use the contraction mapping principle (Theorem1)
to show:

Theorem 2 For small enoughR > 0, there exists a unique, continuously differentiable solutionP : (0, R) → R of the
dimensionless TOV equation (57) satisfyinglim

x→0
P (x) = 1.
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Proof. Theorem1 and the previous observations guarantee
that for small enoughR > 0 the mapT has a unique fixed
point P in AR. SinceTP : (0, R) → R is differentiable,
P = TP is differentiable as well and differentiating both
sides of the equationP (x) = TP (x) with respect tox one
finds that Eq. (57) is satisfied for all0 < x < R, and hence
dP/dx is also continuous.

Regarding the uniqueness property, ifP̃ : (0, R) → R
was another continuously differentiable solution of Eq. (57)
such thatlim

x→0
P̃ (x) = 1, thenP̃ would also be a fixed point

of T and hence would agree withP .
Finally, φ is obtained by integrating both sides of

Eq. (54):

φ(x) = φc +

x∫

0

w(y) + 3λP (y)
1− 2λy2w(y)

ydy, 0 ≤ x < R, (75)

with a constant of integrationφc denoting the central value
of φ. If the solution exists globally, one can adjust this con-
stant such thatφ(x) → 0 for x → ∞. Equivalently, if a
global solution with finite radiusx∗ > 0 exists (sufficient
conditions for this to occur will be discussed in the next sec-
tion), one can choose the value ofφc such thatφ(x∗) matches
its Schwarzschild valueφ(x∗) = (1/2) log (1− (2M/`x∗)),
with M := `λx3

∗w(x∗) the total mass of the configuration.
In this way, one obtains a unique, continuously differen-

tiable solution(φ(x), P (x)) of Eqs. (54) on a small interval
(0, R) near the center with the required boundary conditions
φ(0) = φc andP (0) = 1. Moreover, with some algebra work
one can show that the original Euler-Einstein equations (30-
32) are satisfied.

4. Global existence of finite radius solutions
and Buchdahl bound

In the previous section we proved the existence of a unique
solutionP : (0, R) → R of the dimensionless TOV Eq. (57)
on a small interval(0, R), which satisfies the required bound-
ary conditionlim

x→0
P (x) = 1 at the center, see Theorem2. In

this section, we show that under suitable hypotheses on the
equation of state, this solution can be extended to an inter-
val (0, x∗) with x∗ > R describing the surface of the star,
which is characterized by the conditionlim

x→x∗
P (x) = 0 of

vanishing pressure.
To prove this result, we define

x∗ := sup
{

x1 > 0
∣∣∣∣ P : (0, x1) → R is a continuously

differentiable solution of Eq. (57) satisfying

lim
x→0

P (x) = 1 and such that0 < P (x) ≤ 1

and 1− 2λx2w(x) > 0 for all x ∈ (0, x1)
}

.

According to Theorem2, x∗ > 0 is well-defined. There are
two alternatives. Either

(a) x∗ < ∞ is finite, or

(b) x∗ = ∞ is infinite.

Moreover, sincedP/dx < 0, P (x) is a monotonously de-
creasing function and case (a) occurs either if

(a.1) lim
x→x∗

[1− 2λx2w(x)] > 0 and lim
x→x∗

P (x) = 0, or if

(a.2) lim
x→x∗

[1− 2λx2w(x)] = 0.

The central result of this section is to show that under the
conditions(i)–(iv) in Sec. 2.4, only the case (a.1) can occur
if γ1 > 4/3, which means that the local solution has a unique
extension describing a star of finite radiusR∗ = `x∗ > 0.
The strategy of the proof is the following: first, we eliminate
case (b), i.e. we exclude the possibility of a star with infinite
extension. Subsequently, we eliminate case (a.2) by proving
that the averaged density functionw(x) cannot grow too fast
to make the denominator in Eq. (57) zero. As a by-product
of this result, we will also obtain a bound on the compactness
ratio

2m(r)
r

= 2λx2w(x), (76)

which shows that it is, in fact, not only smaller than one (as
required to eliminate case (a.2)) but even smaller than8/9 for
all 0 < x < x∗. In particular, this implies that the compact-
ness ratio at the surface of the starr → R∗ is bounded from
above by the well-known Buchdahl value8/9.

We start with the following theorem which eliminates
case (b):

Theorem 3 Suppose the conditions(i)–(iv) in Sec. 2.4 are
satisfied with the lower adiabatic boundγ1 > 4/3. Then
x∗ < ∞ is finite.

Proof. We suppose thatx∗ = ∞ is infinite and show that
this leads to a contradiction. Sincex∗ = ∞ implies thatP is
bounded, and sinceP is monotonously decreasing, the limit

P∞ := lim
x→∞

P (x) ≥ 0 (77)

exists. The remainder of the proof is based on the following
two simple lemmas whose proofs will be given further below.
The first lemma shows thatP∞ must be zero:

Lemma 1 Supposex∗ = ∞. ThenP∞ = 0.

The second lemma provides a lower bound on the energy
density which will be key in the proof of the theorem:

Lemma 2 Any equation of state fulfilling the conditions(i)–
(iv) in Sec. 2.4 satisfies the following estimate: there are
constantC > 0 andP1 > 0 such that

e(P ) ≥ CP 1/γ1 , (78)

for all 0 ≤ P ≤ P1.
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We now return to the proof of Theorem3 and show that
x∗ = ∞ andP∞ = 0 leads to a contradiction ifγ1 > 4/3.
To this purpose, we use Eq. (57) to estimate

− 1
e(P (x)) + λP (x)

d

dx
P (x) ≥ xw(x) (79)

for all x > 0. Integrating both sides of this inequality yields

−
∞∫

x

1
e(P (y)) + λP (y)

dP

dy
(y)dy ≥

∞∫

x

w(y)ydy. (80)

Using the variable substitutionP = P (y) and the esti-
mate (78), the integral on the left-hand side can be rewritten
and estimated according to

−
∞∫

x

1
e(P (y)) + λP (y)

dP

dy
(y)dy =

P (x)∫

0

dP

e(P ) + λP

≤
P (x)∫

0

dP

CP 1/γ1
=

P (x)1−1/γ1

C(1− 1/γ1)
, (81)

for all large enoughx ≥ x1, such thatP (x1) ≤ P1. This
yields the following lower bound onP :

P (x)1−1/γ1 ≥ −C1

∞∫

x

1
e(P (y)) + λP (y)

dP

dy
(y)dy, (82)

with C1 := C(1 − 1/γ1) > 0 a constant. Next, we estimate
the integral on the right-hand side of Eq. (80). Recalling that
m(x) := x3w(x) is proportional to the mass function, which
is an increasing function ofx, we obtain

∞∫

x

w(y)ydy =

∞∫

x

m(y)
y2

dy ≥ m(x)

∞∫

x

dy

y2

=
m(x)

x
= x2w(x), (83)

for all x > 0. The three estimates (80,82,83) imply the fol-
lowing inequality betweenP andw:

P (x)1−1/γ1 ≥ C1x
2w(x) (84)

for all x ≥ x1. Combining this with the estimatew(x) ≥
e(P (x)) (which follows directly from the definition (55) of
w(x) and the monotonicity properties ofe andP ) and the
key estimate (78) yields

P (x)1−2/γ1 ≥ C2x
2 (85)

for all x ≥ x1, with the new constantC2 := CC1 =
C2(1 − 1/γ1) > 0. This already yields a contradiction for
γ1 ≥ 2, since in this case the left-hand side converges to zero
(or stays constant ifγ1 = 2) while the right-hand side goes
to infinity asx →∞. This proves the theorem forγ1 ≥ 2.

It remains to analyze the case4/3 < γ1 < 2. For
this, we use again the key estimate (78) and the fact that
e(P (x)) ≤ w(x), obtainingP (x)1/γ1 ≤ C−1w(x), or

[
w(x)
C

]γ1

≥ P (x) (86)

for all x ≥ x1. Combining this with the inequality (84) yields

w(x)γ1−2 ≥ C3x
2 (87)

for all x ≥ x1 with the positive constantC3 = C1C
γ1−1.

Sincew(x) = m(x)/x3 andγ1− 2 < 0 this can be rewritten
as

m(x)2−γ1 ≤ 1
C3x3γ1−4

, (88)

for x ≥ x1. However, since4/3 < γ1 < 2 this leads to a
contradiction since in the limitx → ∞ the right-hand side
converges to0 while the mass functionm(x) is positive and
increasing. This concludes the proof of the theorem.

Proof of Lemma1 Again, the proof is by contradiction. If
P∞ 6= 0, then the functionP would satisfyP (x) ≥ P∞ > 0
for all x > 0, and sincee(P ) is monotonously increas-
ing, this would imply thate(P (x)) ≥ e(P∞) =: e∞ > 0
for all x > 0. According to Eq. (55) this would yield
w(x) ≥ e∞ > 0 for all x > 0, which in turn would im-
ply that

1− 2λx2w(x) ≤ 1− 2λx2e∞ (89)

for all x > 0. However, this would contradict the assumption
x∗ = ∞ which requires1 − 2λx2w(x) > 0 for all x > 0.
Therefore, we must haveP∞ = 0 as claimed.

Proof of Lemma2 For the proof of this lemma, we use
the inequality (46) from Sec. 2.4, which implies

n ≥ n2

[
p(n)
p(n2)

]1/γ1

(90)

for all small enoughn2 ≥ n > 0. Using the assumptions(i)
and(iv) from Sec. 2.4 and the estimate (90) in the expres-
sion (43) for ε(p) one obtains,

ε(p) ≥ ne0 ≥ n2e0

[
p(n)
p(n2)

]1/γ1

, (91)

for all small enough0 < n ≤ n2. SettingC2 := n2e0/p
1/γ1
2

with p2 := p(n2) it follows from this that

ε(p) ≥ C2p
1/γ1 (92)

for all 0 < p ≤ p2. Sinceε(p) = εce(P ) andp = pcP the
lemma follows.

To conclude the global existence proof, it remains to
eliminate case (a.2). In fact, we obtain a stronger result
which shows that for all0 < x < x∗, one must have
1− 2λx2w(x) = 1− 2m(r)/r < 1/9:
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Theorem 4 Let P : (0, x∗) → R be the maximally ex-
tended continuously differentiable solution of the dimension-
less TOV Eq. (57) such thatlim

x→0
P (x) = 1, 0 < P (x) < 1

and 1 − 2λx2w(x) > 0 for all 0 < x < x∗. Then,
2m(r)/r = 2λx2w(x) < 8/9 for all 0 < x < x∗.

Proof. The proof is a straightforward generalization to ar-
bitrary radiusr ∈ (0, R∗) of standard arguments used to
establish the Buchdahl bound, see for instance Sec. 6.2 in
Ref. [26]. For this, we setr = `x, m(r) := `λx3w(x),
Ψ(r) := −(1/2) log[1− 2m(r)/r)] and use the fact that the
Einstein equations (30-32) are satisfied. Subtracting Eq. (31)
from Eq. (32) yields

[
Φ′′ + Φ′(Φ′ −Ψ′)− Φ′ + Ψ′

r

]
e−2Ψ

− 1
r2

(
e−2Ψ − 1

)
= 0. (93)

Dividing both sides byr one can rewrite this as the following
identity:

e−Φ(r)−Ψ(r)

[
Φ′(r)

r
eΦ(r)−Ψ(r)

]′
=

[
m(r)
r3

]′
. (94)

Sincem(r)/r3 is proportional to the mean density, which
is by itself proportional tow(x), and sincex(dw/dx) =
3[e(P (x))−w(x)] ≤ 0, the mean density is a non-increasing
function. Therefore, it follows from Eq. (94) that

[
Φ′(r)

r
eΦ(r)−Ψ(r)

]′
≤ 0. (95)

Next, let0 < r < r2 < R∗ = `x∗. Then, it follows that

Φ′(r)
r

eΦ(r)−Ψ(r) ≥ Φ′(r2)
r2

eΦ(r2)−Ψ(r2)

=
m(r2) + 4πr3

2p(r2)

r3
2

[
1− 2m(r2)

r2

] eΦ(r2)−Ψ(r2), (96)

where we have used Eq. (37) to eliminateΦ′(r2). Since
p(r2) ≥ 0 and

1− 2m(r2)
r2

= e−2Ψ(r2), (97)

this inequality leads to

Φ′(r)eΦ(r) ≥ reΨ(r) m(r2)
r3
2

eΦ(r2)+Ψ(r2). (98)

Integrating both sides fromr = 0 to r2 yields

eΦ(r2) − eΦ(0) ≥ eΦ(r2)+Ψ(r2)
m(r2)

r3
2

×
r2∫

0

rdr√
1− 2m(r)

r

. (99)

To estimate the integral on the right-hand side, we use again
the fact thatm(r)/r3 is a non-increasing function, such that
2m(r) ≥ 2m(r2)r3/r3

2 for all 0 ≤ r ≤ r2, and obtain

eΦ(r2) − eΦ(0) ≥ eΦ(r2)+Ψ(r2)
m(r2)

r3
2

r2∫

0

rdr√
1− 2m(r2)

r3
2

r2

=
1
2
eΦ(r2)

[
eΨ(r2) − 1

]
, (100)

where we have used Eq. (97) again. Eq. (100) implies that

0 < 2eΦ(0) ≤ eΦ(r2)
[
3− eΨ(r2)

]
, (101)

which immediately yields the desired result:

1− 2m(r2)
r2

= e−2Ψ(r2) >
1
9
. (102)

5. A numerical example

In the previous sections we have shown that for a given equa-
tion of state fulfilling the conditions(i)–(iv) in Sec. 2.4 with
the lower adiabatic boundγ1 > 4/3, there exists for each
value ofpc/εc > 0 a unique solution of the TOV equation
which describes a relativistic, spherical and static star of fi-
nite radiusR and massM . In this section, we show by means
of numerical calculation how to obtain the quantitative prop-
erties of the star, including the values ofR andM , the com-
pactness ratio2M/R and the pressure profile. For the sake
of illustration we focus on the specific case of a polytropic
equation of state of the form

p(n) = Knγ (103)

with K a positive constant andγ the adiabatic index which,
in the results shown below, is fixed to the value5/3. As ex-
plained in Appendix B, this value corresponds to the low tem-
perature and density limit of a monoatomic ideal gas. Inte-
grating the first law for an isentropic fluid yields the corre-
sponding expression for the energy density

ε(p) = ne0 +
K

γ − 1
nγ = e0

( p

K

)1/γ

+
p

γ − 1
. (104)

Rewritten in terms of the dimensionless quantities defined in
Eq. (49) and using the fact thate(1) = 1, this yields

e(P ) =
(γ − 1− λ)P 1/γ + λP

γ − 1
,

0 < λ =
pc

εc
< γ − 1. (105)

(Note that for the case of a monoatomic gas one should also
havepc/εc ¿ 1 in the low temperature limit, so that the ex-
ample studied in this section is most probably not physically
realistic for values ofλ lying close toγ − 1).
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12 E. CHÁVEZ NAMBO AND O. SARBACH

To perform the numerical integration of the TOV equa-
tion, we convert the integral Eq. (55) for the dimensionless
mean density fieldw into the differential equation

d

dx
w(x) = − 3

x
[w(x)− e(P (x))] , (106)

which is numerically integrated along with the dimensionless
TOV Eq. (57) using a standard fourth-order accurate Runge-
Kutta scheme (see, for instance, Sec. 7.5 in Ref. [20] and
references therein). The integration is started at the center
x = 0, where the right-hand side of Eq. (106) is replaced
with 0, owing to the fact that both functionsw(x) andP (x)
behave as1 +O(x2) nearx = 0. (This can be inferred from
the local existence theorem in Sec. 3, the fixed point for-
mula (58) and the definition ofw in Eq. (55).) The integra-
tion is stopped as soon asP becomes negative, which yields
the dimensionless radiusR/` = x∗ and the dimensionless
total massM/` = λx3

∗w(x∗) of the star, up to a numerical
error. (This error is monitored by varying the stepsize∆x of
the integrator.) Using Eqs. (53) and (104) one finds that the
length scalè is given by

` = `0λ
− 2−γ

2(γ−1)

(
1− λ

γ − 1

) γ
2(γ−1)

,

`0 :=

√
3
4π

(
K

eγ
0

) 1
2(γ−1)

, (107)

and hence we shall specify the results in terms of the alterna-
tive length scalè0 which is independent ofλ.

The results of the numerical integration for different val-
ues ofλ in the admissible range0 < λ < γ − 1 are shown
in Table I and in Figs. 1, 2 and 3. Note that for small values
of λ the mass increases while the radius of the star decreases
asλ grows, giving rise to more compact stars. However, as
λ continues to grow this trend is halted andM/`0 reaches a

maximum at aboutλ ≈ 0.12 after which it starts decaying as
λ continues to grow until it reaches a local minimum around
λ ≈ 0.5 and starts growing again until reaching another lo-
cal maximum. Similarly, the radiusR/`0 decreases until it
reaches a local minimum at aboutλ ≈ 0.4 after which it in-
creases until reaching a local maximum. This behavior gives
rise to the spiral structure shown in Fig. 2.

In the Newtonian limitλ → 0, one may compare our
results with the corresponding results from the Lane-Emden
equation (see for instance Sec. 3.3 in [22])

R

`
=

a

`
ξ1,

M

`
= 3

a3

`3
λξ2

1 |Θ′(ξ1)|,

a2

`2
=

1
3

γ

γ − 1
. (108)

For the present exampleγ = 5/3 one findsξ1 ≈ 3.65,
ξ2
1 |Θ′(ξ1)| ≈ 2.71 anda/` =

√
5/6, which yields

R

`
≈ 3.33,

M

`
≈ 6.18λ, (109)

and compares well with the corresponding values in Table I
for smallλ.

Finally, we note again from the plots in Fig. 3 that the
relativistic stars with highλ are much more compact than
their Newtonian counterparts. We also note that although the
compactness ratio2M/R at the surface reaches a maximum
at aboutλ ≈ 0.3, the maximum of the local compactness ra-
tio 2m(r)/r occurs inside (and not at the surface of) the star,
and this maximum seems to be growing monotonously with
λ. In all cases this maximum is less than8/9, as predicted
by the local Buchdahl bound proven in Theorem 4. (Note
that the Newtonian equations predict a compactness ratio of
2M/R ≈ 3.71λ which can be larger than one).

TABLE I. Results for the dimensionless radiusR/` = x∗, dimensionless total massM/` = λx3
∗w(x∗) and compactness ratio2M/R =

2λx2
∗w(x∗) at the surface of the star for the polytropic equation of state (103) and different values ofλ. Also shown are the radiiR/`0 and

massesM/`0 in terms of the physical scalè0 defined in Eq. (107) which is independent ofλ. The stepsize used to produce these results is
∆x = 0.005, and three significant figures are shown.

λ R/` M/` R/`0 M/`0 2M/R

0.001 3.33 0.0615 18.7 0.0345 0.00370

0.01 3.29 0.0582 10.2 0.181 0.0353

0.05 3.16 0.232 6.06 0.446 0.147

0.1 3.08 0.368 4.47 0.535 0.239

0.2 3.16 0.524 3.03 0.502 0.331

0.3 3.68 0.640 2.36 0.410 0.348

0.4 5.24 0.812 2.10 0.325 0.310

0.5 11.3 1.34 2.37 0.282 0.238

0.6 42.8 5.12 2.74 0.327 0.239

0.65 234 28.9 2.59 0.320 0.246
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FIGURE 1. Plots of the total massM/`0 (left panel) and the compactness ratio2M/R at the surface of the star (right panel) as a function
of λ.

FIGURE 2. The total massM/`0 vs. radiusR/`0 for different
values ofλ.

6. Summary and conclusions

In this article, we have given a systematic derivation of the
TOV equation, starting from the most general static and
spherically symmetric ansatz for the metric and fluid fields
which allows one to reduce the Euler-Einstein system to a set
of ordinary differential equations. Under the assumptions on
the equation of state discussed in Sec. 2.4 and the additional
assumption that the effective adiabatic indexγ(n) (defined in
Eq. (44)) satisfies the boundγ(n) ≥ 4/3 + ε (with ε > 0)
for small enough values of the particle densityn, we have
provided a rigorous proof for the existence and uniqueness
of global solutions of the TOV equations describing a static,
spherical star of finite radius and mass. Furthermore, we have
shown that the familiar Buchdahl bound2m(r)/r < 8/9
holds for any radiusr > 0 (smaller than or equal to the radius
of the surface of the star).

FIGURE 3. Plots of the dimensionless pressurep/pc = P (left panel) and the local compactness ratio2m(r)/r = 2λx2ω(x) (right panel) as
a function of the dimensionless radiusr/`0 = x`/`0 for different values ofλ. As is visible from these plots the stars become more compact
asλ increases, with the maximum of the local compactness ratio lying inside the star.
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14 E. CHÁVEZ NAMBO AND O. SARBACH

In particular, the results presented in this article apply
to any perfect fluid with positive baryonic rest mass and a
polytropic equation of statep(n) = Knγ with adiabatic
index γ > 4/3. This includes the equation of state de-
scribing an ideal nonrelativistic monoatomic gas, for which
γ = 5/3. Interestingly, the ultrarelativistic counterpart, for
which γ = 4/3, is not included in our analysis. However,
as discussed in detail in Appendix B, an ideal, relativistic
monoatomic gas has an equation of state whose effective adi-
abatic indexγ(n) interpolates between the two values4/3
and5/3 in the limitsn →∞ andn → 0, respectively. Since
our assumption onγ(n) is only needed for small values of
n (and not in the ultrarelativistic limitn → ∞), our results
fully cover the case of the ideal relativistic monoatomic gas.
It is only near the surface of the star (wheren is small and
thus the gas is practically Newtonian) that the assumption
γ(n) ≥ 4/3 + ε is required.

For a given equation of state fulfilling our assumptions,
the quantitative properties of the star, like its radius, mass,
density profile etc. can be obtained from numerical calcula-
tions. We have provided an example in Sec. 5 for a polytropic
equation of state with adiabatic indexγ = 5/3, although the
method described in that section can be adapted to more gen-
eral equations of state in a straightforward way. The most im-
portant feature found from the numerical calculations is the
spiral-type behavior (see Fig. 2) in the mass-versus-radius re-
lation for the resulting family of static, spherical stars and the
existence of a maximum mass configuration in this family,
which is important because it indicates a change in behavior
for the stability of the star (see chapter 6 in Ref. [22]). Further
numerical examples based on a dynamical system approach
can be found in Ref. [12]. For numerical time evolutions of
(numerically perturbed) TOV stars, see for instance [10].

Our proof for the global existence of stars with finite
radius was mostly inspired by the work by Ramming and
Rein [17] and the proof for the Buchdahl bound is a straight-
forward generalization of the arguments presented in Sec. 6.2
in Ref. [26]. Although the results presented in this article are
not new and have been widely studied in the literature, they
are scattered in different articles and books. Therefore, we
hope that our self-contained review regarding the most im-
portant results of the TOV equation and its solutions may
serve as a useful pedagogical introduction to the topic and
motivate research on more realistic star models including ro-
tation and magnetic fields, for which rigorous mathematical
results are still scarce.

Appendix

A. Computation of the curvature and Einstein
tensors

In this appendix, for completeness, we present details regard-
ing the computation of the Riemann curvature, Ricci and Ein-
stein tensors associated with an arbitrary, spherically sym-

metric metric of the form (11). The following presentation
and notation follows the work in [7]. We assume a metric of
the form

g = g̃ + r2ĝ, (A.1)

with g̃ = g̃abdxadxb a two-dimensional Lorentzian metric
andĝ = ĝABdxAdxB = dϑ2 + sin2 ϑdϕ2 the standard met-
ric on the two-sphere, andr the radius function. For the
static metric (9) considered in the body of this article, the
two-dimensional metric̃g is of the formg̃ = −e2Φ(r)dt2 +
e2Ψ(r)dr2 (see Eq. (12)) and its components only depend on
the radius coordinater. However, for the following calcu-
lations, nothing is lost by assuming a generic two-metricg̃
which depends on arbitrary coordinates(xa) = (x0, x1) and
to consider the radiusr = r(x0, x1) to be a positive function
of these coordinates. Such a generalization is useful, for in-
stance, when considering time-dependent (non-static) spheri-
cally symmetric spacetimes or when discussing more general
spacetimes in whichr cannot be used as a global coordinate
(such as occurs in wormhole spacetimes, for instance).

Using the definition (8) for the Christoffel symbols, one
finds

Γd
ab = Γ̃d

ab, (A.2)

Γd
aB = 0, (A.3)

ΓD
ab = 0, (A.4)

Γd
AB = −rrdĝAB , (A.5)

ΓD
AB = Γ̂D

AB , (A.6)

ΓD
aB =

ra

r
δD

B , (A.7)

whereΓ̃d
ab y Γ̂D

AB are the Christoffel symbols associated
with g̃ab and ĝAB , respectively, and where we recall that
a, b = 0, 1 andA,B = 2, 3 refer to the coordinates on the
unit sphere. Also we introduced the notationsra := ∂ar
andrd := g̃dara. Now using these expressions and the for-
mula (7) for the Riemann curvature tensor, we obtain

Rc
dab = R̃c

dab, (A.8)

Rc
Dab = 0, (A.9)

RC
Dab = 0, (A.10)

Rc
DAB = 0, (A.11)

Rc
DaB = −r(∇̃c∇̃ar)ĝBD, (A.12)

RC
DAB = R̂C

DAB − rere(δC
AĝBD − δC

B ĝAD), (A.13)

where R̃c
dab and R̂C

DAB refer to the components of the
Riemann tensor associated with the metricsg̃ and ĝ respec-
tively. In two dimensions the curvature tensor has the follow-
ing form (see, for instance exercise 4, chapter 3 in [26])

R̃c
dab = κ̃(δc

ag̃bd − δc
bg̃ad), (A.14)

R̂C
DAB = κ̂(δC

AĝBD − δC
B ĝAD), (A.15)
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whereκ̃ and κ̂ are the Gaussian curvatures associated with
the metricg̃ andĝ respectively. Therefore,

Rc
dab = κ̃(δc

ag̃bd − δc
bg̃ad), (A.16)

Rc
DaB = −r(∇̃c∇̃ar)ĝBD, (A.17)

RC
DAB = (1− rere)(δC

AĝBD − δC
B ĝAD). (A.18)

With these expressions we can calculate the components of
the Ricci tensor

Rab = Re
aeb + RE

aEb = κ̃g̃ab − 2
r
∇̃a∇̃br, (A.19)

RaB = Re
aeB + RE

aEB = 0, (A.20)

RAB = (1− rere − r∆̃r)ĝAB , (A.21)

where∆̃r = ∇̃b∇̃br = g̃ab∇̃a∇̃br is the covariant Laplacian
of r. The Ricci scalar is given by

R = Ra
a + RA

A = 2κ̃ +
2
r2

(1− rere − 2r∆̃r). (A.22)

Finally, the components of the Einstein tensor are given by
the following expressions

Ga
b = −2

r
∇̃a∇̃br − 1

r2
(1− rere − 2r∆̃r)δa

b, (A.23)

Ga
B = 0, (A.24)

GA
B =

(
∆̃r

r
− κ̃

)
δA

B . (A.25)

Specializing to the case of the static two-metric (12), one ob-
tains from this the Christoffel symbols listed in Eqs. (14–17)
and the components of the Einstein tensor in Eqs. (18-20).

B. Equation of state for a monoatomic, relativis-
tic ideal gas

In this appendix we offer a derivation for the equation of state
describing a classical (i.e. non-quantum) monoatomic, ideal
gas, and towards the end of this appendix we also make some
comments regarding the complete degenerate, ideal Fermi
gas. To this purpose, we consider a fixed box of volumeV
containing a large numberN of particles, but still assume that
V is small enough such that the metric is well-described (in a
local inertial frame) by the Minkowski metric insideV , such
that a special relativistic treatment insideV is sufficient. We
consider a system in which the temperatureT could be ar-
bitrarily high, such that a significant fraction of the particles
could have relativistic speeds, and thus we use the special
relativistic Hamiltonian

H(x, p) = c

N∑

j=1

√
|~pj |2 + m2c2, (B.1)

with p = (~p1, ~p2, . . . , ~pN ) ∈ R3N the momenta andm the
mass of the particles, to describe the system ofN particles.

Based on these assumptions, we compute the thermodynam-
ics of the gas using the canonical ensemble. The correspond-
ing partition function is

Z(T, V, N) =
1

N !h3N

∫
e−βH(x,p)d3Nx d3Np, (B.2)

whereh is Planck’s constant andβ = 1/(kBT ), kB denoting
Boltzmann’s constant. Since the gas is non-interacting, the
partition function factorizes:

Z(T, V,N) =
1

N !
Z1(T, V )N , (B.3)

with

Z1(T, V ) =
V

h3

∫
e−cβ

√
|~p|2+m2c2

d3p. (B.4)

The integral can be computed using spherical coordinates,
such that

Z1(T, V ) =
4πV

h3

∞∫

0

e−cβ
√

p2+m2c2
p2dp. (B.5)

Subsequently, one performs the variable substitutionp =
mc sinhχ which yields

Z1(T, V ) =
4πV

λ3

∞∫

0

e−z cosh χ sinh2 χ cosh χdχ, (B.6)

where we have introduced the Compton wavelength

λ :=
h

mc
(B.7)

of the particles, as well as the dimensionless quantity

z := βmc2 =
mc2

kBT
, (B.8)

which is the ratio between the rest mass and thermal
energy of the particles. Rewritingsinh2 χ coshχ =
(1/3)(d/dχ) sinh3 χ in Eq. (B.6) and using integration by
parts leads to the final expression for the partition function:

Z(T, V, N) =
1

N !

[
4πV

λ3

K2(z)
z

]N

, (B.9)

whereK2(z) denotes the modified Bessel function of the sec-
ond kind of order2, see Ref. [1] and Appendix C for further
details and its definition.

Using Stirling’s approximationlog N ! = N log N−N +
O(log N), the free energy of the system is found to be

F (T, V,N) = −kBT log Z(T, V,N) = −NkBT

×
{

1 + log
[
4πV

λ3N

K2(z)
z

]
+O

(
log N

N

) }
,
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from which one can easily compute the relevant thermody-
namic quantities like pressure, entropy and internal energy
using the well-known formulae (see, for instance [13])

p = −
(

∂F

∂V

)

T,N

, S = −
(

∂F

∂T

)

V,N

,

U = F + TS. (B.10)

Dividing S andU by V and taking the thermodynamic limit
N → ∞ holding the particle densityn := N/V constant,
one obtains from this the following expressions for pressure,
entropy density and energy density as functions of(n, T ):

p(n, T ) = nkBT, (B.11)

s(n, T )=nkB

{
4+ log

[
4π

λ3n

K2(z)
z

]
+z

K1(z)
K2(z)

}
, (B.12)

ε(n, T ) = nkBT

[
3 + z

K1(z)
K2(z)

]
. (B.13)

In deriving these equations we have used the relation (C3) to
eliminate the derivative ofK2. Eq. (B.11) is the ideal gas
equation, while from Eq. (B.13) we see thatε(n, T )/n is a
function ofT only which converges to the rest mass energy
of the particles,mc2, in the limit T → 0 (see Eqs. (C11-
C12)). By construction, the first law (42) is satisfied.

For an isentropic configuration, for which the specific en-
tropy s/n is constant, the second equation yields the follow-
ing relation betweenn andT :

n(T ) = n0
K2(z)

z
e
z

K1(z)
K2(z) , z :=

mc2

kBT
, (B.14)

with n0 a constant. The next lemma shows that this de-
fines a smooth, strictly monotonously increasing function
n : (0,∞) → (0,∞) which can hence be inverted to yieldT
as a function ofn. This allows one to eliminate the tem-
perature in the expressions (B.11,B.13) and describe pres-
sure and energy density as function ofn only. The formu-
lae (B.11-B.14) were already derived over 100 years ago by
F. J̈uttner [8].

Lemma 3 The functionF : (0,∞) → (0,∞) defined by

F (z) :=
K2(z)

z
e
z

K1(z)
K2(z) , z > 0, (B.15)

such thatn(T ) = n0F (z), is smooth and satisfiesF ′(z) < 0
for all z > 0, z3F (z) → 2 for z → 0 and z3/2F (z) →√

π/(2e3) in the limitz →∞.

Proof. Differentiating the functionF and using the rela-
tions (C.3) yields

F ′(z) = −G(z)
K2(z)

z2
e
z

K1(z)
K2(z) ,

G(z) := z2 + 3− 3z
K1(z)
K2(z)

− z2 K1(z)2

K2(z)2
, (B.16)

and thus provingF ′ < 0 is equivalent to showing that
G(z) > 0 for all z > 0. This in turn requires an upper bound
for K1/K2. We first analyze the situation for small values of
z > 0. In this case, one can use the estimate

K1(z)
K2(z)

≤ z/2, z > 0, (B.17)

which follows from the recurrence relation (C.2) with n = 1
and the fact thatK0 > 0. Using this into the definition ofG
in Eq. (B.16) yields

G(z) ≥ −z2

2
− z4

4
+ 3 =

1
4

[
13− (z2 + 1)2

]
, (B.18)

which proves theG(z) > 0 for all z2 <
√

13− 1 ≈ 2.6.
To prove thatG is positive for larger values ofz, we use

instead the expansions (C.11,C.12) obtaining

K1(z)
K2(z)

= 1− 3
2z

+
15
8z2

× 1 + 21
32z + 8z2

15 [r1,2(z)− r2,2(z)] + 4z
5 r2,2(z)

1 + 15
8z + 105

128z2 + r2,2(z)
. (B.19)

Using the estimates for the remainder termsr1,2 andr2,2 be-
low Eqs. (C.11,C.12) yields the alternative estimate

K1(z)
K2(z)

≤ 1− 3
2z

+
15
8z2

, z > 0. (B.20)

which is better than (B.17) for large values ofz. Combining
this estimate with the definition ofG in Eq. (B.16) gives

G(z) ≥ 3
2

(
1− 75

32z2

)
, (B.21)

which is positive for allz2 > 75/32 = 2.34375. This proves
thatG is positive and hence thatF ′(z) < 0 for all z > 0.

The claimed asymptotic behavior forz → 0 andz → ∞
follow easily from Eqs. (C.7,C.13).

It follows from the previous lemma that in the low tem-
perature limitz → ∞ (the symbol∼ indicating proportion-
ality)

n(T ) ∼ z−3/2 ∼ T 3/2, (B.22)

and thusp ∼ n5/3, whereas in the high temperature limit
z → 0 (i.e. kBT À mc2),

n(T ) ∼ z−3 ∼ T 3 (B.23)

such thatp ∼ n4/3. In particular, the assumptions(i)–(iv)
regarding the equation of state in Sec. 2.4 are fulfilled and the
effective adiabatic index defined in Eq. (44) yields

γ(n) = 1 +
1

G(z)
, (B.24)

with G defined in Eq. (B.16). From the asymptotic properties
in the low temperature limit it follows thatε/n → mc2 > 0
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FIGURE 4. The effective adiabatic index as a function of n for
an ideal, relativistic monoatomic gas (blue curve) and for a com-
pletely degenerate Fermi gas (green curve). For the Fermi gas, we
have definedn0 := (3π2λ3)−1.

andγ(n) → 5/3 for n → 0, and thus assumption(iii) is sat-
isfied for any4/3 < γ1 < 5/3, which is sufficient to guaran-
tee the existence of finite radius stars. A plot of the function
γ(n) is shown in Fig. 4.

We end this appendix with a few remarks regarding the
quantum analogue of the description we have given so far,
assuming that the particles are fermions. For such a gas,
the results we have discussed so far are only valid for high
temperatures or low densities, such thatλ3

T n ¿ 1, with
λT = h/

√
2πmkBT the thermal wavelength. For low tem-

peratures and high densities, quantum mechanical effects
need to be taken into account. This can be easily understood
by noticing that the classical expressions for the pressure and
energy density (see Eqs. (B.11) and (B.13)) converge to zero
asT → 0, while for a gas consisting of fermions these quanti-
ties cannot be zero due to Pauli’s exclusion principle. A con-
sistent generalization of the expressions (B.11–B.13) for an
ideal fermion gas should be based on quantum statistics (see
for instance chapter 8 in [13] for the case of non-relativistic
particles). Here, we only give the results for a completely
degenerate Fermi gas, that is, a gas of fermions at zero tem-
perature:

nF (x) =
x3

3π2λ3
, (B.25)

pF (x) =
mc2

8π2λ3

(
x
√

1 + x2

[
2x2

3
− 1

]

+ log
[
x +

√
1 + x2

] )
, (B.26)

wherex = λkF is the dimensionless Fermi momentum (see
for instance chapter 2 in Ref. [22]). Eliminatingx from
these expressions one obtainspF as a function ofnF , and
the expression forεF can be obtained by integrating the first
law (42) with T = 0 and settinge0 = mc2 in Eq. (43). In-

terestingly, the effective adiabatic indexγF (n) has the same
qualitative properties as the one of the classical isentropic gas
(see Eq. (B.24)), and interpolates between the values5/3 and
4/3 asn increases from0 to infinity. Its behaviour is also
shown in Fig. 4. In particular, the assumptions(i) − (iv)
regarding the equation of state in Sec. 2.4 are fulfilled.

The expressions (B.25,B.26) are relevant for the descrip-
tion of isolated white dwarfs and neutron stars, since these
objects ultimately cool down to zero temperature.

C. Definition and main properties of the modi-
fied Bessel functions of the second kind

In this appendix we briefly review the definition of the modi-
fied Bessel functions of the second kindKn, n = 0, 1, 2, . . .,
and some of their properties that are used in the previous ap-
pendix. We start with the following integral representation
(see [1]):

Kn(z) :=
zn

(2n− 1)!!

∞∫

0

e−z cosh χ sinh2n χdχ,

z > 0, (C.1)

where(2n− 1)!! = (2n− 1)(2n− 3) · · · 3 · 1. Using integra-
tion by parts and the identitycosh2 χ− sinh2 χ = 1, it is not
difficult to prove the following recurrence relations:

Kn+1(z) =
2n

z
Kn(z) + Kn−1(z), (C.2)

K ′
n(z) =

n

z
Kn(z)−Kn+1(z)

= −n

z
Kn(z)−Kn−1(z), (C.3)

which are valid for alln = 1, 2, 3, . . . andz > 0. Next, we
are interested in the asymptotic behavior (with correspond-
ing error estimates) forz → ∞. For this, we first perform
the variable substitutioncosh χ = 1 + η2/(2z) in Eq. (C.1),
which yields

Kn(z) =
1

(2n− 1)!!
e−z

√
z

∞∫

0

e−
1
2 η2

η2n

×
(

1 +
η2

4z

)n− 1
2

dη, z > 0. (C.4)

Next, we use the Taylor expansion of the functionf(x) :=
(1 + x)α about the pointx = 0.

f(x) =
N∑

k=0

(
α

k

)
xk

+
(

α

N + 1

)
(1 + θx)α−N−1xN+1, x > 0 (C.5)
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with some0 < θ < 1 depending onx and
(
α
k

)
= α(α −

1) · · · (α − k + 1)/k!. Applying this to the integrand in
Eq. (C.4) with x = η2/(4z) and using the Gaussian integral

∞∫

0

e−
1
2 η2

η2ndη =
√

π

2
(2n− 1)!! , (C.6)

one obtains the following expansion:

Kn(z) =
√

π

2z
e−z

[
N∑

k=0

ak(n)
zk

+ rn,N (z)

]
,

z > 0, (C.7)

with the coefficientsa0(n) := 1,

ak(n) =
[4n2 − 1][4n2 − 9] · · · [4n2 − (2k − 1)2]

8kk!
,

k = 1, 2, 3, . . . , (C.8)

and the remainder term

rn,N (z) =
aN+1(n)

zN+1

1
(2n + 2N + 1)!!

√
2
π

×
∞∫

0

e−
1
2 η2

η2n+2N+2

(
1 +

θη2

4z

)n−N− 3
2

dη,

z > 0. (C.9)

For N > n − 1 the exponent in the integrand on the right-
hand side is negative and one obtains the estimate

0 ≤ rn,N (z)
aN+1(n)

≤ 1
zN+1

, z > 0. (C.10)

Therefore, again provided thatN > n−1, the remainder term
has the same sign as the first neglected termaN+1(n)/zN+1

in the expansion (C.7) and it is bounded by it in absolute
value. The examples of relevance for the previous appendix
are:

K1(z)=
√

π

2z
e−z

[
1+

3
8

1
z
− 15

128
1
z2

+r1,2(z)
]

, (C.11)

K2(z)=
√

π

2z
e−z

[
1+

15
8

1
z
+

105
128

1
z2

+r2,2(z)
]

, (C.12)

with 0 ≤ z3r1,2(z) ≤ 105/1024 and −315/1024 ≤
z3r2,2(z) ≤ 0.

Finally, we note that by pulling a factor(4z)−n+(1/2) out
of the integral (C.4) one can also understand the asymptotic
limit of Kn(z) for z → 0. For example, one has

lim
z→0

znKn(z) = 2n−1(n− 1)! . (C.13)

D. Completeness of the function spaceXR

In this appendix we demonstrate that the setXR :=
Cb((0, R],R) of bounded, continuous, real-value functions
on the interval(0, R], equipped with the norm‖ · ‖∞ de-
fined in Eq. (60) forms a Banach space, that is, a complete
normed space. For this, we first observe thatXR is a real
vector space. Next, we check that‖ · ‖∞ satisfied the three
postulates defining a norm, which are:

1) ‖P‖∞ ≥ 0 and‖P‖∞ = 0 if and only if P = 0,

2) ‖λP‖∞ = |λ| · ‖P‖∞ for all λ ∈ R andP ∈ XR,

3) ‖P1 +P2‖∞ ≤ ‖P1‖∞+‖P2‖∞ for all P1, P2 ∈ XR.

To this purpose, notice first that|P (x)| ≥ 0 for all x ∈ (0, R],
hence it is clear that‖P‖∞ = sup0<x≤R |P (x)| ≥ 0 and that
‖P‖∞ = 0 if and only if P (x) = 0 for all x ∈ (0, R]. Hence,
the first condition is satisfied. Next, we have

‖λP‖∞ = sup
0<x≤R

|λP (x)| = sup
0<x≤R

|λ|· |P (x)|

= |λ| sup
0<x≤R

|P (x)| = |λ|· ‖P‖∞, (D.1)

which shows that the second condition is also satisfied. Fi-
nally,

‖P1 + P2‖∞ = sup
0<x≤R

|P1(x) + P2(x)|

≤ sup
0<x≤R

(|P1(x)|+ |P2(x)|)

≤ sup
0<x≤R

|P1(x)|+ sup
0<x≤R

|P2(x)|

= ‖P1‖∞ + ‖P2‖∞, (D.2)

which shows that the third condition is also satisfied and leads
to the conclusion that‖ · ‖∞ defines a norm onXR.

It remains to prove that(XR, ‖ · ‖∞) is a Banach space.
For this we must show that any Cauchy sequence(Pk) con-
verges in(XR, ‖ · ‖∞), that is there exists a limit point
P ∈ XR such that‖Pk − P‖∞ → 0 for k → ∞. There-
fore, let (Pk) be a Cauchy sequence in(XR, ‖ · ‖∞). This
means that for anyε > 0 there existsn ∈ N such that

sup
0<x≤R

|Pk(x)− Pj(x)| = ‖Pk − Pj‖∞ < ε (D.3)

for all k, j > n. In particular

|Pk(x)− Pj(x)| < ε (D.4)

for all k, j > n and allx ∈ (0, R]. Thus(Pk(x)) is a Cauchy
sequence in the complete space(R, |· |), which implies that
the limit

P (x) := lim
k→∞

Pk(x) ∈ R (D.5)

exists for allx ∈ (0, R]. It remains to show that the func-
tion P : (0, R] → R defined in this way is continuous and
bounded and thatPk → P in (XR, ‖ · ‖∞).
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Lemma 4 The functionP : (0, R] → R defined by Eq. (D.5)
is continuous and bounded andPk → P with respect to the
norm‖· ‖∞.

Proof. Recall that continuity ofP at a pointx ∈ (0, R] means
that if we take any sequence(xm) in (0, R] which converges
to x ∈ (0, R], then we must haveP (xm) → P (x). Thus we
need to prove that for allε > 0 there exists a natural number
n0 ∈ N such that

|P (xm)− P (x)| < ε, (D.6)

for all m > n0. Let ε > 0. Since(Pk) is a Cauchy sequence,
there existsn1 ∈ N such that

|Pk(x)− Pj(x)| < ε

3
, (D.7)

for all k, j > n1 and allx ∈ (0, R]. Taking the limitk →∞
on both sides of the inequality and taking the supremum over
x, one obtains

sup
0<x≤R

|P (x)− Pj(x)| ≤ ε

3
, (D.8)

for all j > n1. Fix j = n1 + 1. Due to the fact thatPj is
continuous, there existsn2 ∈ N such that for allm > n2,

|Pj(xm)− Pj(x)| < ε

3
. (D.9)

Therefore, we find for allm > n2,

|P (xm)− P (x)| = |P (xm)− Pj(xm) + Pj(xm)

− Pj(x) + Pj(x)− P (x)|
≤ |P (xm)− Pj(xm)|+ |Pj(xm)− Pj(x)|

+ |Pj(x)− P (x)| < ε

3
+

ε

3
+

ε

3
= ε. (D.10)

Thus, we conclude thatP is a continuous function. The in-
equality (D.8) implies thatP −Pj is bounded for allj > n1,
and henceP = P − Pj + Pj is also bounded, implying that
P ∈ XR. Moreover, the same inequality (D.8) implies that
‖P − Pj‖∞ < ε for all j > n1, which shows thatPj → P
in (XR, ‖ · ‖∞). This concludes the proof of the lemma.
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i. Stars with infinite radius are relevant as well, as long as their
density decays sufficiently fast to zero whenr → ∞ such that
their total mass is finite. In particular, this is the case for boson
stars, where the perfect fluid source of matter is replaced by a
massive scalar field, see Ref. [14] for a recent review. For a re-
cent study regarding the asymptotic behavior of some perfect
fluid star models with infinite extend, see Ref. [2].

ii. Recall that we work in geometrized units in whichGN = c =
1.

iii. The theorem says even more: the unique fixed pointu∗ ∈ A
can be obtained as the limit of the sequence(uk) defined by
u1 := T (u), u2 := T 2(u) = T (T (u)), . . . , uk :=
T k(u), starting from any pointu ∈ A. This sequence con-
verges exponentially fast tou∗ as the following error bound
shows:‖uk − u∗‖ ≤ Lk

1−L
‖u1 − u‖, k = 1, 2, 3, . . .
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