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Apartado Postal 70-543, 04510 Ciudad de México, Ḿexico.
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A century ago, Srinivasa Ramanujan – the great self-taught Indian genius of mathematics – died, shortly after returning from Cambridge, UK,
where he had collaborated with Godfrey Hardy. Ramanujan contributed numerous outstanding results to different branches of mathematics,
like analysis and number theory, with a focus on special functions and series. Here we refer to apparently weird values which he assigned
to two simple divergent series,

∑
n≥1 n and

∑
n≥1 n3. These values are sensible, however, as analytic continuations, which correspond to

Riemann’sζ-function. Moreover, they have applications in physics: we discuss the vacuum energy of the photon field, from which one can
derive the Casimir force, which has been experimentally measured. We further discuss its interpretation, which remains controversial. This
is a simple way to illustrate the concept of renormalization, which is vital in quantum field theory.
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1. Ramanujan’s letter from 1913

101 years ago, Srinivasa Ramanujani (1887-1920) passed
away in Madras, at that time part of the British Empire
(since 1996, this state capital in South-East India is named
Chennai). He was one of the greatest geniusesii in the his-
tory of mathematics. One way to measure the impact of
his work is through the number of mathematical terms that
bear his name: the mathematical online-encyclopediaWol-
fram Mathworld [1] documents 27 terms named after Ra-
manujan, and his name appears in a total of 205 items;
in both respects, he is among the leading mathematicians
of all times.iii This is particularly amazing since Ramanu-
jan started to elaborate stunning equations with hardly any
mathematical education,iv and he died at the age of only 32
(younger than Mozart, for example).

Ramanujan was born in 1887 in a town called Erode,
but at the age of 2, his mother took him to Madras,
some 400 km away. In the early 20th century, he lived
in extreme poverty, at the edge of starvation, but he
discovered a multitude of important mathematical formulae,

FIGURE 1. Srinivasa Ramanujan (1887-1920).

based on his incredible intuition – I tend to interpret it as a
kind of “pattern recognition” (although it was not an auto-
mated process).

i Phonetically, his last name could be written in Spanish as “Ramánuchan”.

ii We understand the term “genius” as defined in the Cambridge Dictionary: a person who has a very great and rare natural ability or skill, especially in
a particular area such as science or art.

iii To be explicit, if we rank mathematicians by the number of mathematical items named after them, Ramanujan is at position 6, following Euler (71),
Gauss (48), Hilbert (33), Fermat (32), and Riemann (31), and followed by Cauchy (26), Dirichlet, Jacobi, Weierstraß (23 each), Euclid (22), and
Poincaŕe (21). Regarding the number of mentionings in aMathworldentry, Ramanujan is at position 18.

iv Ramanujan only obtained from a friend a library copy of a book by George Carr [2], which he studied intensively. It is a collection of formulae and
theorems, with little explanation, written as an overview for students who are preparing for exams.



2 W. BIETENHOLZ

In 1912, he began to send letters to British mathemati-
cians, trying to attract attention to his discoveries; for a while
without success. In January 1913, he finally wrote to God-
frey Hardy, a brilliant young mathematician at Trinity Col-
lege of Cambridge University, who – together with his long-
term collaborator John Littlewood – turned out to be the most
influential British mathematician of the first half of the 20th
century. They are credited for boosting British mathematics
to the top level again after it had stayed behind the achieve-
ments in France and Germany during the 19th century. In
particular, Hardy insisted on mathematical rigor, which was
in total contrast to Ramanujan’s intuitive style [3].

Unlike his colleagues, Hardy became aware of the enor-
mous value of Ramanujan’s results, although part of it had
been known before, and some formulae were wrong – but
the rest was groundbreaking [4]. Having received two let-
ters with 120 remarkable equations, Hardy invited Ramanu-
jan to Cambridge, which he accepted after some hesitation,
and where he stayed from 1914 to 1919,i.e., mostly during
World War I. It was not easy for him to get used to the cli-
mate, lifestyle, and food.v Moreover, he suffered from seri-
ous health problems; they had antecedents in his earlier life
in India, and they lead to his decease one year after his return
to Madras.

Despite appreciating his brilliance, Hardy urged him to
take lectures (for instance, Ramanujan hardly knew anything
about complex analysis), and in particular, he insisted on
proofs,not just conjectures. That was not easily compatible
with Ramanujan’s mentality, but he published 32 high-impact
papers during his 5 years in Cambridge, 7 of them together
with Hardy [5]. In 1918 Ramanujan was elected as a Fellow
of the Royal Society, as one of the youngest members in its

FIGURE 2. Godfrey Hardy (1877-1947).

history, and half a year later, he also became a Fellow of the
Cambridge Trinity College.

His investigations involved subjects, which had been con-
sidered intractable before, in particular a miraculous approx-
imate formula forpartitioning,which (surprisingly) involves
the numberπ [6]. Ramanujan traced this number in all
kind of contexts; best known is a series that he postulated
in Ref. [7] (along with a variety of otherπ-approximation
formulae),

1
π

=
√

8
992

∑

n≥0

(4n)!
(4nn!)4

1103 + 26390n

994n
. (1)

It converges exponentially (despite the factor(4n)! in the nu-
merator); thus, it provides one of the fastest algorithms to
computeπ. If we truncate atnmax = 0, 1, 2, we obtain the
corresponding approximationπnmax , which differs from the
exact value ofπ as

|π − π0| ' 7.6 · 10−8 , |π − π1| ' 6.4 · 10−16 ,

|π − π2| ' 5.7 · 10−24 . (2)

How Ramanujan arrived at such formulae is hard to know:
Hardy later described it as a “process of mingled argument,
intuition, and induction, of which he was entirely unable to
give any coherent account” [8].

Here we are going to address a relatively simple subject,
which Ramanujan mentioned in his first letter to Hardy [9],
and which he had written down before in Chapter VI of his
Second Notebook [10]. This letter contains two apparently
weird formulae for divergent series,

(R)∑

n≥1

n = 1 + 2 + 3 + 4 + 5 + · · · = − 1
12

, (3)

(R)∑

n≥1

n3 = 1 + 8 + 27 + 64 + 125 + · · · = 1
120

, (4)

where the sums run fromn = 1 . . .∞, and the superscript
(R) indicates “Ramanujan summation” [11]. These strange
relations have fascinated generations of people; for instance,
a discussion of Eq. (3) in YouTube [12], dated 2016, has over
2.4 million views and over 5000 quite controversial com-
ments.

Of course, it is provocative to write these relations as
straight equations, as Ramanujan did (without any super-
script), but it fulfills the purpose of attracting attention and
causing debate. Still, in the following, we are going to re-
place the symbol= by

∧= , meaning “corresponds to” or “is
associated with”. In this sense, we are going to show that the

v Being a devout Hindu, Ramanujan was a strict vegetarian, which was highly unusual in England at that time.
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fractional values on the right-hand side do have a meaning,
not only as a mathematical peculiarity, but they can even be
used to derivephysicalresults.

Unlike other addressees of Ramanujan’s letters, Hardy
recognized the values of theRiemannζ-functionor p-series.
ForRe z > 1, it is defined as

ζ(z) =
∑

n≥1

1
nz

=
1
1z

+
1
2z

+
1
3z

+
1
4z

+ . . . . (5)

In 1739 Leonhard Euler had computed explicit expressions
for ζ(2n), n ∈ N+, and later, he also conjectured aζ-
functional relation [13]. More than a century later, in 1859,
Bernhard Riemann established the analytic continuation of
theζ-function toC−{1} [14], see Appendix C. In this sense,
Hardy noticed that Ramanujan’s results can be interpreted as
ζ(−1) and ζ(−3) (although these values are not explicitly
given in Ref. [14]).

Riemann was a leading mathematician of the 19th cen-
tury, and of all times, cf. footnote [iii]. Like Ramanujan, he
lived his youth in harsh poverty, until he was appointed to
a post in G̈ottingen, on Carl Friedrich Gauss’s recommenda-
tion. Another analogy is that he soon suffered from health
problems. Hoping that a warmer climate might help against
his tuberculosis [15] (which was also among Ramanujan’s
diseases [3]), he spent extended periods in Italy, where he
died in 1866, at the age of 39.

Differences from Ramanujan’s life are that Riemann had
access to education at leading mathematical institutes, in

FIGURE 3. Bernhard Riemann (1826-66).

Göttingen and Berlin, and that he published his results only
after elaborating rigorous proofs. His publications had an
enormous impact, but only Ref. [14] deals with number the-
ory. There he discussed the density of prime numbers,vi and
it was in this context that he postulated the analytic continua-
tion of theζ-function; the crucial functional equation is dis-
played in Appendix C. In contrast to Ramanujan, Riemann
was an expert on complex analysis. Presumably, he had hand-
written notes with many more important results, but after his
sudden death, his house-cleaner burned part of these notes,
until some mathematicians managed to stop her [16].

Ramanujan did not provide an actual derivation of formu-
lae (3) and (4), but in the first case, he assigned – in Ref. [10]
and also his first letter to Hardy – a value to another divergent
series, as an intermediate step to arrive at relation (3). That
series corresponds to a special case ofDirichlet’s η-function,
or alternatingζ-function

η(z) =
∑

n≥1

(−1)n−1

nz
=

1
1z
− 1

2z
+

1
3z
− 1

4z
. . . , (6)

which converges forRe z > 0. At Re z > 1, we obtain

ζ(z)− η(z) = 2
∑

n≥1

1
(2n)z

= 21−zζ(z) ,

ζ(z) =
1

1− 21−z
η(z) . (7)

The latter definesζ(z) in the domainRe z > 0 ∧ z 6= 1.
In particular, Ramanujan wrote down its continuation

to [10]

E := η(−1) =
∑

n≥1

(−1)n−1n

= 1− 2 + 3− 4 . . .
∧=

1
4

. (8)

We are going to confirm this value, and follow his path to
relations (3) and (4), which we finally apply to physics, in
particular to theCasimir effect.

2. Heuristic derivation of
∑

n≥1 n
∧
= −1/12

Series have both fascinated and confused mathematicians
over and over again, throughout history. The famous “para-
dox” by Zeno, which describes a race between Achilles and
a tortoise (and further “paradoxes” of a similar style), caused
a deep crisis in the mathematics of Ancient Greece (see,e.g.,
Ref. [17]), because the concept of convergent series – in this
case, a geometrical series – had not yet been understood.

vi This is another field of common interest of these two geniuses: later, Ramanujan proposed his own formula for the prime number density, which is,
however, not as accurate as he had expected.

Rev. Mex. F́ıs. E18, 020203
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Here we just take the familiar geometrical series as the
point of departure. For|z| < 1, we trivially obtain

G(z) =
∑

n≥0

zn = 1 + z + z2 + z3 . . .

= 1 + z G(z) ⇒ G(z) =
1

1− z
. (9)

The series converges only for|z| < 1, but the final func-
tion G(z) is defined all overC−{1}. Moreover, the complex
functionG(z) is holomorphic(or complex analytic, i.e.,com-
plex differentiable)vii inC−{1}, and thereforemeromorphic
in C, which implies that its analytic continuation from the
disk |z| < 1 toC− {1} is unique, cf. Appendix C.

This allows us to defineGrandi’s series

G = 1− 1 + 1− 1 + 1− 1 · · · =
∑

n≥0

(−1)n (10)

by means of analytic continuation,

G ∧= G(z)|z=−1 =
1
2

. (11)

We can readily extend this scheme to theη-function in eqs.
(6), (8). To this end, we first return to safe grounds,i.e., to
|z| < 1, where

G(z)2 = 1 + 2z + 3z2 + 4z3 . . .

=
∑

n≥1

n zn−1 = G′(z) =
1

(1− z)2
. (12)

The functionG(z)2 is holomorphic as well, again with a
(unique) analytic continuation toC − {1}. This implies in
particular

E =
∑

n≥1

(−1)n−1n
∧= G(z)2|z=−1 = G2 =

1
4

, (13)

which coincides with Ramanujan’s result (8).
However, this is not yet what we need in order to assign

a value to the notorious series, which we denote as

R :=
∑

n≥1

n = 1 + 2 + 3 + 4 + 5 + . . . . (14)

It would correspond toG(z)2|z=1, butz = 1 is just the point
where this function has its double pole. Following Ramanu-
jan’s line of thought [10], we proceed by introducing another

series

R1(z) = 1− 2z + 3z2 − 4z3 + 5z4 . . .

=
∑

n≥1

n(−z)n−1 , (15)

which also converges at|z| < 1, and we formally obtain
R ∧= R1(−1).viii Again, we refer to the safe region,i.e.,
to the disk|z| < 1, where we take the difference

G(z)2 −R1(z) = 4z(1 + 2z2 + 3z4 + . . . )

= 4z
∑

n≥1

nz2(n−1) . (16)

This operation can only be justified inside the convergence
disk, but once it is carried out, taking the limitz → −1 on
both sides leads to

lim
z→−1

[
G(z)2 −R1(z)

]
=

1
4
−R ∧= −4R

⇒ R ∧= − 1
12

. (17)

Thus Ramanujan removed the divergence in a controlled
manner, which leaves an unambiguous finite value, and
Hardy noticed that this assignment corresponds toR =
ζ(−1). In Appendix B, we will discuss what has been go-
ing on here.

Alternatively we could invoke Eq. (7) and consider the
divergent seriesC = 1 + 1 + 1 + 1 + 1 . . . . The limit z → 0
implies

C ∧= ζ(0) ∧= −η(0) ∧= −G = −1
2

, (18)

a value which is also given in Ramanujan’s Second Note-
book [10]. When we even insertz = −1 in Eq. (7), we arrive
again at

R ∧= − 1
3E

∧= − 1
12

= ζ(−1) . (19)

So far, this may look like a mathematical playground, but
in the next section, we are going to apply this result to a phys-
ical toy model, where it leads to sensible results. In Sec. 4,
we proceed to a setting, which refers to physical phenomenol-
ogy; for that purpose, we will need relation (4), which corre-
sponds toζ(−3).

vii We recall that this is a powerful property, which guarantees that the function has derivatives of any order in its domain of holomorphy, and that it
coincides with its power series. Moreover, sinceG′(z) 6= 0, it is alsoconformal, i.e.,angle conserving: if we interpret the functionG(z) as a map
C → C, and consider two curvesγ1(z), γ2(z), which intersect inz0 with a certain angle, then the maps of these curves intersect inG(z0) with the
same angle.

viii The reason for the notation with an index 1 will become clear in Appendix B.
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3. Casimir effect on a line

In this section and beyond, we are going to deal withquantum
field theory. General introductions can be found in a num-
ber of textbooks, such as Refs. [18] (and a popular science
description is given in Ref. [19]), but in order to follow the
derivations in Secs. 3 and 4, only very little knowledge about
it is required. Our notation implicitly refers to the functional
integral formulation, where the fields are functions of space
and time variables, with values which can, for instance, be
real numbers (then it is aneutral scalar field, as in this sec-
tion), or vectors (as in Sec. 4)ix. In general, all field config-
urations –i.e., all possible values in each space-time point –
are integrated to obtain expectation values of observables.

Here, however, we are only concerned with the ground
state contributions of free fields. For a neutral scalar field, we
can imagine an (infinite) set of coupled harmonic oscillators,
one at each space point. A Fourier transform yields oscilla-
tors for all possible frequencies.A priori, these frequencies
are not restricted, so if we sum up their ground state contri-
butions to the vacuum energy density, the result diverges.

We are going to be confronted with these ultraviolet (UV)
divergences: they require aregularization, i.e.,a mathemat-
ical modification which makes such sums (or integrals) fi-
nite, enabling calculations. In the end, we want to remove
the regularization; hence, we aim at a cancelation of the UV
divergences. This can often be achieved by subtracting di-
vergent terms, so-calledcounterterms, which correspond to
some limit; without taking that limit, a finite quantity re-
mains. This procedure is known as arenormalization: it
should lead to finite results for the physical quantities, which
do not depend on the regularization that has been chosen (if
suitable conditions are fulfilled).

The concepts, which we have sketched here in an abstract
form, are going to be illuminated by the presentation of sim-
ple examples.

To this end, we address an effect, which was theoreti-
cally predicted by the Dutch physicists Hendrik Casimir and
Dirk Polder in 1947/8 [20]. In particular, we follow the per-
spective that Casimir adopted a little later [21], inspired by a
discussion with Niels Bohr.

As a toy model, we consider a free, neutral, massless
scalar field on a line,φ(t, x) ∈ R, x ∈ R. At the points
x = 0 andx = d > 0 we applyDirichlet boundaries,which
force the field to vanish,i.e. φ(t, 0) = φ(t, d) = 0. In
this interval the field configurations can be Fourier decom-
posed into standing waves with wavenumberskn = nπ/d,
n = 1, 2, 3 . . . (such thatsin(knd) = 0). In natural units
(~ = c = 1), they contributekn/2 to the ground state energy.

For thevacuum energy densityin this interval, we for-
mally obtain

ρd =
1
2d

∑

n≥1

kn =
π

2d2

∑

n≥1

n , (20)

where we encounter the divergent termR, to which Ramanu-
jan assigned the value−1/12. We are now going to illustrate
– in a physical framework – why, and in which sense, this
value is indeed meaningful.

As usual in quantum field theory, we first need aregu-
larization (as we mentioned before), but it doesn’t need to be
fully specified. We regularizeρd by performing a substitution

n → f(n) = n r(n/Λd) , with r(0) = 1 , (21)

wheref andr are smooth functions onR+
0 (an infinite num-

ber of times continuously differentiable), andΛ is an energy
cutoff. If we remove it,Λ → ∞, we recover the term before
regularization. At finiteΛ, we require

lim
x→+∞ f(x) = 0 , lim

x→+∞ f (k)(x) = 0 , (22)

wheref (k) is any odd derivative(k = 1, 3, 5, . . . ).
A simple example off(n) in Eq. (21) is theheat kernel

regularization, where the functionr is exponential,f(n) =
n exp(−n/Λd), which leads to a geometrical series,

FIGURE 4. Hendrik Casimir (1909–2000).

ix Alternatively, in the canonical formalism the fields are operator-valued.
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6 W. BIETENHOLZ

∑

n≥1

ne−n/dΛ = Λ2d
∂

∂Λ

∑

n≥0

e−n/Λd

= Λ2d
∂

∂Λ
1

1− exp(−1/Λd)

= (Λd)2 − 1
12

+O
( 1

Λd

)
. (23)

We already seeR = −1/12 popping up, but we want to pro-
ceed to a broader perspective, which generalizes the regular-
ization, and which also clarifies the rôle of the UV divergent
term, along the lines of Ref. [21].

In an infinite interval,d → ∞, the formal term (20)
for the energy density turns into a momentum integral. We
expand thedifferenceρd − ρ∞, at the regularized level, by
means of theEuler-Maclaurin formula,

N∑
n=1

f(n)−
N∫

0

f(x) dx =
f(N)− f(0)

2

+
∑

j≥1

B2j

(2j)!

(
f (2j−1)(N)− f (2j−1)(0)

)
, (24)

whereN ∈ N+. A finite numberN represents another com-
ponent of the UV regularization: in this case, we sum over
kn only up tokn,max = Nπ/d.

The powerful formula (24) was independently derived by
Euler and by Colin Maclaurin around 1735. It is very useful
in field theory, in particular when dealing with finite tem-
perature or finite-size effects. Since we assume the function
f to be smooth and to fulfill the condition (22), this series
converges both at finiteN and in the limitN →∞.x The co-
efficients in the last term are theBernoulli numbers,xi which
can be defined in a way related to Eq. (23),

x

1− e−x
=

∑

k≥0

Bk
xk

k!
. (25)

This yieldsB0 = 1, B1 = 1/2, B2 = 1/6, B4 = −1/30,
B3 = B5 = B7 = · · · = 0,xii (B6, B8 . . . do not vanish, but
we won’t need them).

We insert in Eq. (24) a functionf which fulfills the con-
ditions (21) and (22), and we take the UV limit in two steps:

first, we letN →∞; due to Eq. (22) all contributions vanish
in this limit. As for the terms atx = 0, we note thatf(0) = 0,
f ′(0) = r(0) = 1, f (k)(0) = O((Λd)1−k), k = 2, 3, . . . ,
hence the second step of the UV limit,Λ →∞, leads to

ρd − ρ∞ =
π

2d2

(
− 1

2
B2

)
= − π

24d2
, (26)

whereR = −B2/2 = −1/12 is crucial, in agreement with
Eq. (23). We recover Ramanujan’s assignment of a finite
value to the divergent series in Eq. (20), i.e., Ramanujan sum-
mation corresponds to the subtraction of the infinite-volume
limit of the vacuum energy density.This density diverges
both in a finite and infinite interval, but thedifference, i.e. its
finite-size effect, is finite and well-defined. The elimination,
or isolation, of a UV divergent term ((Λd)2 in Eq. (23)), in
order to deal with finite differences, is the basic idea ofrenor-
malization. In field-theoretic jargon, we have subtracted the
countertermρ∞, which cancels the divergence in the series
(20).

Interestingly, this recipe matches exactly the relation

ζ(−1) =
(R)∑

n≥1

n = −1
2
B2 = − 1

12
, (27)

applied to Eq. (20). We recall that the superscript (R) means
Ramanujan summation; its general properties are defined and
explored in Ref. [11]. For this article, it is sufficient to
point out that for a series of the form

∑(R)
n≥1 nk, k ∈ N, the

Ramanujan summation coincides with theζ-functionζ(−k)
(defined by analytic continuation), see Appendix C. It further
corresponds to the finite term in the Euler-Maclaurin expan-
sion of the difference

lim
N→∞




N∑
n=1

nk −
N∫

0

xk dx


 ,

which can be read off from Eq. (24), and which generalizes
Eq. (27) to

ζ(−k) =
(R)∑

n≥1

nk = −Bk+1

k + 1
, k ∈ N . (28)

The question remains: beyond the satisfaction of deduc-
ing a finite result, why are we interested in this difference?

x If we truncated this expansion at some odd integerJ/2, such that we deal with
∑J/2

j=1 . . . , then there is a remainder termRJ on the right-hand side.

It can be estimated as|RJ | ≤ 2ζ(J)
∫ N
1 dx |f (J)(x)|/(2π)J [22], hence, the above assumptions implylim

J→+∞RJ = 0.

xi Bernoulli numbers were a particular passion of Ramanujan, who had certainly read about them in Ref. [2]. His very first paper discussed their
properties [23]. For instance, he showed that the denominators ofB2, B4, B6, B8 . . . (in lowest terms) all contain the prime factors 2 and 3 exactly
once.

xii This becomes obvious if we defineg(x) = x/(1− e−x) and computeg(x)− g(−x) = x.

Rev. Mex. F́ıs. E18, 020203
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FIGURE 5. a) Setting for the Casimir effect on a line: we apply
Dirichlet boundaries at the positions0, d, andL, with 0 < d < L.
b) The Casimir forceF (d), which acts on the “piston” atd accord-
ing to Eq. (30), in units such thatL = 1.

What is its physical meaning? One is tempted to reply: the
change of the vacuum energy, as a function ofd, implies a
force between the Dirichlet boundaries, and the counterterm
can be subtracted since it does not depend ond, so it does
not contribute to this force. However, there is still a caveat,
which is often ignored: the boundaries could also affect the
energyoutsidethe interval[0, d ]. That could contribute to
the force between the boundaries, so we have to be careful.

A sound approach introducesthreeDirichlet boundaries,
at the points0, d, L, with 0 < d < L, see Fig. 5a).

The idea is to keep the extreme boundaries at0 andL
fixed, while the one atd is a variable “piston”. In this way,

the energy outside the interval[0, L] remains constant, while
the energy inside this interval can be computed explicitly, so
everything is under control. From Eq. (26), we obtain the
total vacuum energy

E(d) = − π

24d
− π

24(L− d)
+ Eout

= − πL

24d(L− d)
+ Eout . (29)

The termEout, which represents the energy outside the inter-
val [0, L ], is divergent, but it does not depend ond. Generally
a force is obtained as the negative gradient of the potential
energy. In our 1-dimensional case, this operator reduces to
the negative derivative with respect tod (the only variable in-
volved). Therefore the termEout is irrelevant for the force
acting on the “piston” atd, which is obtained as

F (d) = −E′(d) = −πL

24
L− 2d

d2(L− d)2
, (30)

and depicted in Fig. 5b). It is odd with respect to the center
d = L/2, andattractive towards the nearer fixed boundary,
at 0 or L. Henced = L/2 is an unstable equilibrium posi-
tion. In the caseL À d, we obtain a force, which is attractive
towards the boundary at0, F (d) ' −π/(24d2), and which
coincides with the 2-boundary picture of Eq. (26). Hence, in
that picture, ignoring effects outside the interval[0, d ] is jus-
tified after all (varyingd does not change the energy in the
half-line withx > d).

To summarize this section, we haverenormalizedthe sys-
tem by discarding an additive, infinite constant in the energy
density, thecountertermρ∞, which represents the infinite-
volume limit. In order to compute the remaining finite term, a
finite-size effect in this case, a regularization is needed. Then
the Euler-Maclaurin formula can be applied, and by remov-
ing both UV cutoffs,kn,max = Nd/π → ∞ andΛ → ∞,
we arrive at the finite result (26). It does not depend on the
choice of the regularizing functionf , as long as the condi-
tions (21) and (22) are fulfilled. This leads to finite values
for the vacuum energy in the interval[0, L], and for the force
F (d) in Eq. (30), which acts on the “piston”.

4. The Casimir force in 3-dimensional space

We proceed to a realistic situation, which deals with the vac-
uum energy of the photon field in(3+1)-dimensional space-
time. The simplest setting is shown in Fig. 6; it involves two
parallel, conducting plates,xiii of the same rectangular shape
and areaA, separated by a short distance.xiv

xiii In theory, we assume perfect conductivity, this is what it takes to implement exact Dirichlet boundaries. The experiments have been performed
with well-conducting metal plates, which provide a good approximation, cf. Sec.5.2.. The generalization with respect to the dielectric constant was
theoretically studied by Evgeny Lifshitz [24].

xiv Throughout this article, we refer to the standard scenario with static Dirichlet boundaries. The two-fold generalization of the Casimir effect with
dynamical Robin boundaries is discussed for scalar fields in Refs. [25].
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FIGURE 6. Setting for an experimental test of the Casimir effect:
one measures the force between two parallel, conducting plates of
areaA, separated by a short distanced.

We rely on our experience from the 1-dimensional toy
model to conjecture that it is sufficient to consider the energy
E(d) betweenthe plates. This is appropriate when the areaA
is large (

√
A À d). The photon momentum components par-

allel to the plates – which we denote ask1, k2 – are treated as
continuous. Hence we perform a discrete sum, in analogy to
Eq. (20), only over the vertical componentk3, and the energy
between the plates takes the form

E(d) = Ad ρ(d) =
1
2
A

1
(2π)2

∫
dk1dk2

×
∑

n≥0

2

√
k2
1 + k2

2 +
(πn

d

)2

=
A

2π

∑

n≥0

∞∫

0

dK K

√
K2 +

(πn

d

)2

=
A

6π

∑

n≥0

(
K2 +

[πn

d

]2
)3/2

∣∣∣∣∣

∞

0

, (31)

where we have inserted a factor2 for the two photon polar-
ization states.

Note that we have not regularized so far. If we do so and
follow the procedure of Sec. 3, we can renormalize by sub-
tracting the energy in the same volume but without plates,

E∞ = Ad ρ∞.xv In this difference, first, the UV contribu-
tion due toK → ∞ cancels (a physical interpretation is that
infinitesimally short wavelengths are not sensitive to the pres-
ence of boundaries at a finite distance). RegardingK = 0,
we apply the Euler-Maclaurin expansion (24) to

∑

n≥1

· · · −
∞∫

0

dk3 . . . .

This corresponds to the Ramanujan summation overn, which
we again express as aζ-function,

E(d)
A

∧= − 1
6π

π3

d3
ζ(−3) = − π2

720d3
,

F (d)
A

=
−E′(d)

A
= − π2

240d4
. (32)

We have used Eq. (28) and insertedB4 = −1/30, in agree-
ment with Eq. (4). Although the sign ofB4 is opposite toB2

(which we inserted in Eq. (26)), we obtain again anattrac-
tive force between the Dirichlet boundaries: note that there is
another sign flip due to the integral overK, where the lower
bound contributes.

The question arises of what magnitude this force takes for
realistic sizesA andd, and if such a force can be measured.
The first conclusive experiment was achieved in 1997 by
Steve Lamoreaux, who succeeded in measuring the Casimir
force to5% accuracy [26]. This was soon followed by Umar
Mohideen and Anushree Roy [27], who took into account the
corrections due to finite temperature, finite conductivity, and
the roughness of the surfaces. In these experiments, the ge-
ometrical structure was a plate and a sphere, because of the
difficulty in keeping two plates parallel to very high preci-
sion.

The first experiment to successfully measure the Casimir
force between parallel plates, as sketched in Fig. 6, was
carried out at the University of Padua, Italy, in 2002 [28],
with 15% precision. That experiment used rectangular sil-
icon stripes, covered with a chromium layer, of sizeA =
1.9 cm× 1.2mm, and their separationd varied from0.5 µm
to 3 µm. In order to compute the predicted force in Newton
(N), we have to insert a factor~c in Eq. (32),xvi which leads
to

F (d) ' −1.3 · 10−7 N
(µm

d

)4 A

cm2
. (33)

Hence the predicted force in this experiment varied between
F ' −4.7 · 10−7 N and−3.7 · 10−10 N. Forces of this range
are in fact measurable: for instance, Ref. [26] used a torsion

xv To obtainE∞ we start from the term in the upper line of eq. (31), convert (in the large-d limit) πn/d to the continuous momentum componentk3,

and
∑

n≥0 to d
π

∞∫
0

dk3, which leads toE∞ = A d (2π)−3
∫

d3k |~k|.

xvi We recall that we have been using natural units. This factor shows that we are dealing with a relativistic quantum effect.
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pendulum and laser interferometry, and Ref. [27] employed
an atomic force microscope. In the experiment reported in
Ref. [28], one of the parallel plates was the face of a can-
tilever beam, free to oscillate. The variation of the force was
observed by measuring shifts in its resonator frequency, by
means of a fiber-optic interferometer.

The precision in recent experiments is around, or be-
low, 1 %.

5. Concluding remarks

We don’t know what exactly Ramanujan had in mind when
he introduced his summation of divergent series, which we
now denote as Ramanujan summation, such as relations (3)
and (4). In his letter to Hardy, he only documented one in-
termediate step, relation (13). In his Second Notebook [10],
he additionally hinted at the continuation (17), and he men-
tioned the difference between summation and integration,
which we also reviewed. This is a valid argument, and appar-
ently, Ramanujan reinvented an equivalent form of the Euler-
Maclaurin formula (he did not use that term [10], nor does
this formula appear in Ref. [2]).

A reason for the sparse documentation in Ramanujan’s
notebooks was – in addition to his intuitive way of thinking –
that he mostly worked on a slate and only wrote down final re-
sults on paper, which was valuable (in particular for him, who
was living in poverty). It is also conceivable that he was in-
fluenced by Carr’s telegram style [2], cf. footnote [iv]. In any
case, his approach matches the analytic continuation of theζ-
function, at least with respect to negative integer arguments,
see Eq. (28). In fact, he also rediscovered the analytically
continuedΓ-function with values inC−{0,−1,−2 . . . }. He
highlighted this idea in the introduction of his first letter to
Hardy [9], unaware that this had been known before; in par-
ticular, Riemann had used it in Ref. [14].

These finite values for divergent series may look like a
mathematical game, which is rather disconnected from real-
ity. However, it is possible to establish consistent rules for the
Ramanujan summation of divergent series by carefully deal-
ing with properties like linearity and translation [11]. More-
over, we reviewed their striking application to physics, where
they enable the prediction of a force, which has in fact been
measured. Themeaningof the Casimir effect will be dis-
cussed in the following two subsections.

5.1. Is the electromagnetic vacuum energy density real?

Numerous authors infer from the experimental observation of
the Casimir forcethe existence of the vacuum energy of the
photon field,ρvac, as predicted by Quantum Electrodynamics
(QED),e.g.,Refs. [26–31]. As a typical quotation, Ref. [31]

states that “the existence of zero-point vacuum fluctuations
has been spectacularly demonstrated by the Casimir effect.”
However, it does not affect usual experiments, which only
depend on energydifferences,not on the additive constant
ρvac. Still, such an energy density throughout the Universe,
known asDark Energy,is indeed manifest since it affects the
expansion of the Universe.

It corresponds to theCosmological Constantin General
Relativity: in its absence – which was generally assumed
from the 1930s to the 1990s – the expansion of the Universe
would be decelerated. However, at the very end of the 20th
century, it was observed that the expansion isaccelerated.xvii

This is best described by a positive Cosmological Constant,
which corresponds to a Dark Energy density of aboutρDE ≈
(0.002 eV)4.

Unfortunately, this value is totally incompatible with the
vacuum energy densityρ∞ that we discussed. First,ρ∞
seems to diverge, as we saw, but one might impose a UV
cutoff in the integral

∫
d3k |~k|, most naturally at the Planck

energy. This leads to a finite valueρPlanck, which is, how-
ever,muchtoo large,ρPlanck/ρDE = O(10121).

People who still believe insupersymmetrycould argue
that in a perfectly supersymmetric world, the Dark Energy
vanishes (since bosons and fermions appear in pairs of the
same mass, and the fermionic ground state energy is nega-
tive, with the same absolute value [18]). However, even if
supersymmetry exists, it has to be badly broken in our low-
energy world (otherwise particles like the “selectron” would
have been observed), and the required extent of breaking still
implies a Dark Energy density, which exceedsρDE at least
by a factorO(1060) [30].

Hence any evidence for the existence of the QED photon
field vacuum energyρvac would be puzzling. Albeit, Julian
Schwinger et al. computed the Casimir using a source field
technique, without any need to refer toρvac [33]. Part of
the literature concludes from that work that the Casimir ex-
periments do not necessarily imply the reality ofρvac, which
could be welcome as a remedy against the disastrous discrep-
ancy by 121 orders of magnitude. Thus the question remains
whether or not relativistic quantum physics could be formu-
lated withoutρvac. If ρvac exists, in the field-theoretic sense,
one might wonder whether the frequency of a photon is af-
fected when it passes through regions of differentρvac, e.g.,
when it transversally passes through a Casimir cavity, similar
to Bernoulli’s Principle in fluid dynamics. Regarding its ver-
tical motion, there is even a prediction that the speed of light
could be affected [34].

If we wanted to construct a cavity between two conduct-
ing plates withρDM = |ρd| = π2/(720d4), we would need a
separation ofd ≈ 0.3 µm, which happens to be close to the
minimal separation in the Padua experiment.

vii This was concluded from the distance and redshift of a set of type Ia supernovae [32].
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5.2. The nature of the Casimir force

One could question what kind of force this really is. It does
not seem to appear in the famous list of four forces, which can
be described by gauge fields, nor does it match further inter-
actions in the Standard Model of particle physics (Yukawa
couplings and the Higgs field self-coupling). However, be-
ing an effect of thephoton field,this force must ultimately be
electromagnetic, although this is not explicit in the above dis-
cussion. From this perspective, it can be best described as a
van der Waals forcexviii between the metal plates. This is the
picture that Casimir and Polder originally had in mind [20].

So, do we have two equivalent descriptions? This seems
puzzling again: in the van der Waals picture, the force de-
pends on the value of the electromagnetic coupling constant
α = e2/4π ' 1/137, which does not appear anywhere in the
discussion based on the vacuum energy.

This point was analyzed in depth by Robert Jaffe and col-
laborators, see Ref. [36] for a summary. They conclude that
the Casimir effect is a relativistic quantum force between
electric charges and currents,i.e., a retarded van der Waals
force, which does not requireρvac. In Jaffe’s own words,
“Casimir effects can be formulated, and Casimir forces can
be computed without reference to zero-point energies.” Thus
they contradict the paradigm in this field, but this issue re-
mains controversial.

Reference [36] obtains a Casimir force, which does de-
pend onα, such thatF (α = 0) = 0, andF (α ' 1/137)
is the physical strength. In this exceptional case, even the
limit α → ∞ leads to a finite result:F (α → ∞) just
matches the force obtained fromρvac, which is often close to
F (α ' 1/137). For instance, for copper plates separated by
0.5 µm (which is experimentally realistic), the consideration
with ρvac is a good approximation ifα À 10−5 [36], which
is easily accomplished by the phenomenological value.

A wide-spread objection against that point of view refers
to examples, where the consideration based onρvac leads to a
repulsiveCasimir force [37],e.g.,for specific parallelepipeds
[38]. That feature is not easily encompassed by van der
Waals forces.xix For instance, Lamoreaux [26] writes: “the
Casimir and van der Waals forces are quite different; the van
der Waals force is always attractive, whereas the sign of the
Casimir force is geometry dependent.” Ref. [40] disagrees
and assigns the repulsive result to the negligence of cutoff ef-
fects. In fact, an approach by Ricardo Cavalcanti [41], which
is manifestly free of any cutoff dependence, only obtains at-
tractive Casimir forces.

Jaffe and his collaborators insist that the physical Casimir
force is always attractive [36, 40], and therefore compatible
with the van der Waals picture. If this alternative to the
paradigm – as expressed in Refs. [26–31] – is correct, then
the approach that we reviewed is not the most precise one,
but it is still in agreement with the experimental results.

Thus, returning to the title of Subsec. 5.1, doubts persist
about the physical reality ofρvac as encoded in QED. There
is a consensus, however, that we do not know how to theo-
retically derive the Dark Matter densityρDE, and that we do
not understand the enormous discrepancy from the vacuum
energy predicted by quantum field theory.

So far, our discussion in this subsection focused on the
Casimir effect due to QED, which was described in Sec. 4.
In principle, such an effect also exists for other gauge fields,
but only for QED it is simple and instructive, in particular,
because the photon field does not self-interact. This is also
the only case where the Casimir force is experimentally con-
firmed.

For instance, inQuantum Chromodynamics(QCD) – the
gauge theory of the strong interaction – this effect is much
less transparent because of the complicated self-interaction
of the gluon field [18], which occurs since the QCD gauge
group SU(3) is non-Abelian.xx At low energy, its behavior
is dominated by non-perturbative effects, which are hard to
compute, and which induce an intricate vacuum structure.
Studies in Euclidean space often focus on the rôle of instan-
tons [42]. For a static quark–anti-quark pair (which is an
idealization), a multipole expansion has been applied to esti-
mate the Casimir force [43]. Another study [44] deals with
the (restricted) Gribov–Zwanziger action.

Furthermore, there are numerous attempts to theoretically
investigate thegravitationalCasimir force, although this is a
quantum effect, and we do not have any (fully satisfactory)
theory of quantum gravity. Numerous papers refer to un-
usual gravitation theories; studies which are (roughly speak-
ing) close to the framework of General Relativity include
Refs. [45]. The question of whether an experimental demon-
stration of such an effect, with gravitational wave mirrors,
would prove the existence of gravitons is discussed (and neg-
atively answered) in Ref. [46].

5.3. Further physical applications of Ramanujan sum-
mation

There are further applications of Ramanujan summation in
the perturbative expansions of quantum field theory, which

xviii We refer to the van der Waals force in the narrow sense, also known as London–van der Waals force,i.e. the attractive multipole interaction between
molecules [35].

xix On the other hand, Ref. [35] predicted a repulsive Casimir–van der Waals–type force, which agrees with an experiment with interacting materials
immersed in a fluid [39].

xx For interacting quantum field theories, renormalization involves more than subtracting a divergent term, which was sufficient in Sec. 4 for the free
electromagnetic field. In the interacting case, one assigns renormalized values to the fields and their couplings, which are in general energy-scale
dependent.
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can be treated by theζ-function regularization[47]. It is an
alternative to dimensional regularization, which is most pop-
ular in perturbation theory. Theζ-function regularization re-
moves from the beginning the UV divergent terms in the Lau-
rent series by insertingζ(−k), thus preventing the necessity
of counterterms.xxi Stephen Hawking advocated its applica-
tion in curved space-time [49].

Applications of theζ-function in bosonic string theory
are reviewed in Refs. [50]. Ref. [51] summarizes a key point
as follows: a particle massm is obtained as

m2 =
1
σ

(
j +

D − 2
2

(R)∑

k≥1

k

)
, (34)

whereσ is the string tension,D is the space-time dimension
(such that a worldsheet lives inD − 2 dimensions), andj is
the string excitation number (here also the Planck scale is set
to 1). The term with the sum over the modesk represents
the ground state energyE0, where one applies Ramanujan
summation,E0 = −(D − 2)/24σ. The casej = 1 describes
spin-1 particles with only two polarization states, which must
therefore be massless. This condition yields the space-time
dimensionD = 26, where bosonic string theory is formu-
lated [50]. The deeper reason is the requirement to cancel
the conformal anomaly. A detailed pedagogical description
is given in Ref. [52].

Appendix

A. The failure of partial sums

Many controversial discussions about relations like (3) – for
instance, numerous comments on Ref. [12] – refer to partial
sums of a few summands. In the framework of divergent se-
ries, separating them is conceptually wrong and leads to con-
tradictions. It is entertaining to look at some examples, to see
what one should beware of,e.g.,

R = 1 + (2 + 3 + 4) + (5 + 6 + 7) + (8 + 9 + 10) + . . .

?=1 + 9R → R ?=−1/8 , (A.1)

which deviates from Ramanujan’s value. One might even feel
tempted to pay attention to this alternative value, since it is
consistent with blocks of any odd numberu ≥ 3 of sum-
mands,

R = 1 + 2 + · · ·+ u− 1
2

+
(

u + 1
2

+ · · ·+ 3u− 1
2

)

+
(

3u + 1
2

+ · · ·+ 5u− 1
2

)
+ . . .

?=
u2 − 1

8

+Ru2 → R ?=−1
8

. (A.2)

However, we can show that this approach is even intrinsi-
cally inconsistent by choosing blocks of an even number of
g summands (where the boundary terms are equally divided
between the blocks),

R = 1 + 2 . . .
(g

2
− 1

)
+

g

4
+

(
g

4
+

[
g

2
+ 1

]
. . .

+
[
3g

2
− 1

]
+

3g

4

)
+

(
3g

4
+

[
3g

2
+ 1

]
. . .

)
+ . . .

?=
g2

8
+Rg2 → R ?=−1

8
g2

g2 − 1
, (A.3)

which only coincides with the claim (A.2) in the limit g →
∞.

Of course, the applicability of partial sums can be dis-
proved more easily,e.g., in Grandi’s series or Dirichlet’sη-
function, if we write them as

G = (1− 1) + (1− 1) + (1− 1) + . . .

= 1 + (−1 + 1) + (−1 + 1) + . . .

E = (1− 2) + (3− 4) + (5− 6) + . . .

= 1 + (−2 + 3) + (−4 + 5) + . . .

which seems to suggest the contradictory valuesG ?=0 or
G ?=1, andE ?=∓(1 + 1 + 1 + 1 . . . ) .= ∓C. Again we
encounter the seriesC, which also appeared in Ramanu-
jan’s Second Notebook [10], as we anticipated in Eq. (18).
We will come back to it in Appendix B. In that case, a di-
vision into blocks ofn summands seems to suggestC =
(1 + · · ·+ 1) + (1 + · · ·+ 1) + . . .

?=nC, C ?=0 or∞ (while
separatingk summandsC = k + C, C = ∞).

B. Analytic continuation from the unit disk

We now follow the scheme of Sec. 2 by writing the series un-
der consideration in terms of a variablez ∈ C, such that they
converge for|z| < 1, and the divergent series of interest cor-
responds to the limitz → −1. Working in the convergence
region|z| < 1 avoids, for instance, the confusion with partial
sums. First, we repeat the geometrical series and Dirichlet’s
η-function,

G(z) = 1 + z + z2 + z3 + . . .

=
1

1− z

z→−1−→ G = 1− 1 + 1− 1 . . .
∧=

1
2
,

xxi Its mathematical equivalence to the heat kernel regularization, see Sec. 3, was demonstrated by Hardy and Littlewood [48].
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η(z) = 1 + 2z + 3z2 + 4z3 + · · · = G(z)2 = G′(z)

=
1

(1− z)2
z→−1−→ E = 1− 2 + 3− 4 . . .

∧=
1
4

. (B.1)

As long as this limit is finite, taking the analytic continuation
is trivial. This allows us to perform operations, which remain
valid in the limitz → −1, like

η(z) + G(z) =
1
z
[η(z)− 1]

= 2 + 3z + 4z2 + . . .
z→−1−→ 3

4

η(z)−G(z) = zη(z)

= z + 2z2 + 3z3 + . . .
z→−1−→ −1

4
. (B.2)

In this framework, the limitz → −1 is well controlled.
This is not obvious anymore when we deal with the pole

of the geometrical series atz = 1, in particular when we refer
to the series

C = 1 + 1 + 1 + 1 + 1 . . . (B.3)

which worried us before in Sec. 2 and Appendix A. Here we
consider three different regularizing functions (at|z| < 1),

C1(z) = 1− z + z2 − z3 + z4 · · · = 1
1 + z

,

C2(z) = 1 + z2 + z4 + z6 · · · = 1
1− z2

,

C3(z) = −(z + z3 + z5 + . . . ) = − z

1− z2
. (B.4)

We can involve the functionsCi(z) in a variety of relations,
such asG(z) = (1 + z)C2(z) = 1 − (1 + z)C3(z). Of
course, they work both in the form of series and of functions,
in agreement withCi(z → −1) → ∞. We can also build
linear combinations of the functionsCi(z), for instance,

G(z) = C1(z)− 2C3(z) =
1

1− z
, (B.5)

where the singularity atz = −1 is removed.When we now
insertC = C1(z → −1) = C3(z → −1), and treat it as
a finite constant, we obtain the finite value, which indeed
matchesζ(0), as we saw in Eq. (18), and which Ramanujan
had reported [10],

C ∧= −G ∧= −1
2

= ζ(0) . (B.6)

It was (apparently) a step of this kind that Ramanujan per-
formed to compute the famous series (14),R = 1 + 2 + 3 +
4 + 5 . . . . Here we consider the regularizations

R1(z) = 1− 2z + 3z2 − 4z3 + 5z4 · · · = C1(z)2

= −C ′1(z) =
1

(1 + z)2
,

R2(z) = 1 + 2z2 + 3z4 + 4z6 . . .

= η(z2) =
1

(1− z2)2
. (B.7)

We introducedR1(z) before in Eq. (15), and we used it, at the
regularized level, in identity (16), which we can now write in
the compact form

η(z) = R1(z) + 4zR2(z) . (B.8)

Again the singularity atz = −1 cancels on the right-hand
side: note the an expansion inε = z + 1 leads to differ-
ent Laurent series forR1(ε) = 1/ε2 andR2(ε) = (1 + ε +
3ε2/4)/4ε2+O(ε), such that the right-hand side of Eq. (B.8)
takes the expected form1/4 +O(ε).

If we insertR = R1(−1) = R2(−1), and treatR as a
finite constant, we retrieve Ramanujan’s famous result

1
4
∧= −3R ⇒ R ∧= − 1

12
= ζ(−1) . (B.9)

However, this procedure only works when the terms are
arranged such that the limit of interest (z → −1 in our case)
is regular,otherwise, this step is not controlled. Consider, for
instance the identity

R1(z) + C1(z) = 2− 3z + 4z2 − 5z3 . . .

=
1
z
[1−R1(z)] . (B.10)

If we now insert C = C1(−1) and R = R1(−1) =
−(1/z)R1(z)|z=−1, we end up withC ?=−1, which contra-
dicts Eq. (B.6).

Another example, which refers toR, is the identity

R2(z) = R1(z)η(z) =
1

(1 + z)2(1− z)2
. (B.11)

Carelessly insertingR = R1(−1) = R2(−1) purports

R ?=(1/4)R, R ?= 0 or ∞. The reason for this fiasco is that
Eqs. (B.10) and (B.11) are singular atz = −1.

Ramanujan had either the right intuition to pick an ap-
propriate relation, (16) or (B.8), where this step works, or it
is based on additional considerations on his slate, which are
not documented. It seems that he hardly knew any litera-
ture about theζ-function, but he rediscovered correct values
of its analytic continuation to correct values of its analytic
continuation toζ(0), ζ(−1), andζ(−3), which cannot be by
accident. In particular, he must have observed [10] the agree-
ment of the results that he obtained in this way with the finite
term in the series that we call Euler-Maclaurin expansion, cf.
Sec. 3.
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C. The Riemannζ-function

We have seen that a naive ansatz for the continuation can be
plagued by subtleties when we hit a pole. An unambiguous
approach to evaluate series likeC andR, as well as the cu-
bic series (4), combines the terms such that – in the limit of
interest – the singularity is removed, as it is done in the ap-
proaches of Eqs. (16), (B.8), and of Eqs. (18), (19), or by
subtracting the corresponding integral: the result, given in
Eq. (28), coincides withζ(−k), k ∈ N0.

The underlying concept isanalytic continuation: if a
complex functionf(z) ∈ C, z ∈ C, is holomorphic in some
region, then its analytic continuation is unique. Hence the ex-
istence of a complex derivative is a powerful property: a plau-
sibility argument is that such a mapf(z), with f ′(z) 6= 0, is
angle-preserving, cf. footnote [vii], which constrains the an-
alytic continuation to a single possibility.

Being a pioneer in this field, Riemann extended theζ-
function from the region withRe z > 1 (where it is defined
by the convergent series (5)) to C − {1} by means of rela-
tions [14], which can be condensed into the functional equa-
tion

ζ(z) =
(2π)z

π
sin(

πz

2
) Γ(1− z) ζ(1− z) , (C.1)

which is valid all over C. We read off ζ(−1) =
(2π2)−1(−1)π2/6 = −1/12, where we insertedΓ(n) =
(n − 1)!, n ∈ N+, as well as Euler’s Basel formula∑

n≥1 1/n2 = π2/6. Similarly we obtain ζ(−3) =
6ζ(4)/(8π4) = 1/120, by employing Euler’s resultζ(4) =
π4/90. This confirms again the Ramanujan summations (3)
and (4). We further see thatζ(−2n) = 0, ∀n ∈ N (due to

the sin-function), in agreement with Eq. (28).xxii Finally we
observe a simple pole atz = 1, with the residuelimz→1(z −
1)ζ(z) = 1, which is consistent withζ(0) = −(1/2) = C.

The validity of a series representationof ζ(z), which
converges all overC − {1}, was demonstrated by Helmut
Hasse [53]. This formula uses Eq. (7) and a double sum for
η(z),

ζ(z) =
1

1− 21−z

∑

n≥0

1
2n+1

×
n∑

k=0

(−1)k

(
n
k

)
1

(k + 1)z
. (C.2)

For z = 0 the sum overk corresponds to(1 − 1)n = δn,0,
and we confirmζ(0) = −1/2. Similarly, for z = −1 the
second sum yieldsδn,0 − δn,1, and we obtain once more
ζ(−1) = −1/12.

So could we have directly quoted these values and
skipped the previous consideration? There are two reasons
against it: we would not capture the magic of Ramanujan’s
way of thinking, and we would have missed the physical pic-
ture, which leads to the values ofζ(−n), n ∈ N. This picture
justifies their application to the Casimir effect as a basic ex-
ample of renormalization.
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