Education in Physics Revista Mexicana deibica E18, 020203 1-15 JULY-DECEMBER 2021

From Ramanujan to renormalization: the art of doing
away with divergences and arriving at physical results

W. Bietenholz

Instituto de Ciencias Nucleares, Universidad Nacionalodwima de Mxico,
Apartado Postal 70-543, 04510 Ciudad déxico, Mexico.

Received 11 December 2020; accepted 5 February 2021

A century ago, Srinivasa Ramanujan — the great self-taught Indian genius of mathematics — died, shortly after returning from Cambridge, UK,
where he had collaborated with Godfrey Hardy. Ramanujan contributed numerous outstanding results to different branches of mathematics
like analysis and number theory, with a focus on special functions and series. Here we refer to apparently weird values which he assignec
to two simple divergent serie§,, ., n and}_, ., n*. These values are sensible, however, as analytic continuations, which correspond to
Riemann's(-function. Moreover, they have applications in physics: we discuss the vacuum energy of the photon field, from which one can
derive the Casimir force, which has been experimentally measured. We further discuss its interpretation, which remains controversial. This
is a simple way to illustrate the concept of renormalization, which is vital in quantum field theory.
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1. Ramanujan’s letter from 1913

101 years ago, Srinivasa Ramanuij§h887-1920) passed
away in Madras, at that time part of the British Empire
(since 1996, this state capital in South-East India is named
Chennai). He was one of the greatest genitisaghe his-
tory of mathematics. One way to measure the impact of
his work is through the number of mathematical terms that
bear his name: the mathematical online-encyclop&dié
fram Mathworld [1] documents 27 terms named after Ra-
manujan, and his name appears in a total of 205 items;
in both respects, he is among the leading mathematicians
of all times?* This is particularly amazing since Ramanu-
jan started to elaborate stunning equations with hardly any
mathematical educatidti,and he died at the age of only 32
(younger than Mozart, for example).

Ramanujan was born in 1887 in a town called Erode,Figure 1. Srinivasa Ramanujan (1887-1920).
but at the age of 2, his mother took him to Madras,
some 400 km away. In the early 20th century, he livedbased on his incredible intuition — | tend to interpret it as a
in extreme poverty, at the edge of starvation, but hekind of “pattern recognition” (although it was not an auto-
discovered a multitude of important mathematical formulae, mated process).

1 Phonetically, his last name could be written in Spanish as ‘&archan”.

iz We understand the term “genius” as defined in the Cambridge Dictionary: a person who has a very great and rare natural ability or skill, especially in
a particular area such as science or art.

111 To be explicit, if we rank mathematicians by the number of mathematical items named after them, Ramanujan is at position 6, following Euler (71),
Gauss (48), Hilbert (33), Fermat (32), and Riemann (31), and followed by Cauchy (26), Dirichlet, Jacobi, Weierstra3 (23 each), Euclid (22), and
Poincaé (21). Regarding the number of mentionings Mathworld entry, Ramanujan is at position 18.

‘v Ramanujan only obtained from a friend a library copy of a book by George Carr [2], which he studied intensively. It is a collection of formulae and
theorems, with little explanation, written as an overview for students who are preparing for exams.
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In 1912, he began to send letters to British mathematihistory, and half a year later, he also became a Fellow of the
cians, trying to attract attention to his discoveries; for a whileCambridge Trinity College.
without success. In January 1913, he finally wrote to God- His investigations involved subjects, which had been con-
frey Hardy, a brilliant young mathematician at Trinity Col- sidered intractable before, in particular a miraculous approx-
lege of Cambridge University, who — together with his long-imate formula forpartitioning, which (surprisingly) involves
term collaborator John Littlewood — turned out to be the mosthe numberr [6]. Ramanujan traced this number in all
influential British mathematician of the first half of the 20th kind of contexts; best known is a series that he postulated
century. They are credited for boosting British mathematicsn Ref. [7] (along with a variety of other-approximation
to the top level again after it had stayed behind the achieveformulae),
ments in France and Germany during the 19th century. In
particular, Hardy insisted on mathematical rigor, which was 1_ W 3 (4n)! 1103 + 263901 B

992 ( '
n>0

—_

in total contrast to Ramanujan’s intuitive style [3]. 7r 4nnl)d 99in

Unlike his colleagues, Hardy became aware of the enor-
mous value of Ramanujan’s results, although part of it hadt converges exponentially (despite the fadtbm)! in the nu-
been known before, and some formulae were wrong — buterator); thus, it provides one of the fastest algorithms to
the rest was groundbreaking [4]. Having received two let-computer. If we truncate ab,,., = 0, 1, 2, we obtain the
ters with 120 remarkable equations, Hardy invited Ramanueorresponding approximation, which differs from the
jan to Cambridge, which he accepted after some hesitatiorexact value ofr as
and where he stayed from 1914 to 191.8,, mostly during
World War 1. It was not easy for him to get used to the cli- m— 7ol ~7.6-107%, |r—m[~64-10"1°,
mate, lifestyle, and footl.Moreover, he suffered from seri- I — o] = 5.7 10724 @
ous health problems; they had antecedents in his earlier life 2= '

in India, and they lead to his decease one year after his retugg,, Ramanujan arrived at such formulae is hard to know:

to Madra_s. L . . ) Hardy later described it as a “process of mingled argument,
Despite appreciating his brilliance, Hardy urged him t0;nyition, and induction, of which he was entirely unable to

take lectures (for instance, Ramanujan hardly knew anythlngive any coherent account” [8].

about complex analysis), and in particular, he insisted on"  are we are going to address a relatively simple subject,

proofs, not just conjectures. That was not easily compatible,hich Ramanujan mentioned in his first letter to Hardy [9],

with Ramanujan’s mentality, but he published 32 high-impactq \yhich he had written down before in Chapter VI of his

papers during his 5 years in Cambridge, 7 of them togethegeqong Notebook [10]. This letter contains two apparently
with Hardy [5]. In 1918 Ramanujan was elected as a Fellow,airq formulae for divergent series

of the Royal Society, as one of the youngest members in its

max !

(R)

1
Zn=1+2+3+4+5+---=—ﬁ, 3)
n>1

& 1
Zn3:1+8+27+64+125+~~:@, (4)
n>1

where the sums run from = 1... 00, and the superscript
(R) indicates “Ramanujan summation” [11]. These strange
relations have fascinated generations of people; for instance,
a discussion of Eq3j in YouTube [12], dated 2016, has over
2.4 million views and over 5000 quite controversial com-
ments.

Of course, it is provocative to write these relations as
straight equations, as Ramanujan did (without any super-
script), but it fulfills the purpose of attracting attention and
causing debate. Still, in the following, we are going to re-
place the symbok by L, meaning “corresponds to” or “is
FIGURE 2. Godfrey Hardy (1877-1947). associated with”. In this sense, we are going to show that the

v Being a devout Hindu, Ramanujan was a strict vegetarian, which was highly unusual in England at that time.
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FROM RAMANUJAN TO RENORMALIZATION: THE ART OF DOING AWAY WITH DIVERGENCES AND ARRIVING... 3

fractional values on the right-hand side do have a meanindgzottingen and Berlin, and that he published his results only
not only as a mathematical peculiarity, but they can even bafter elaborating rigorous proofs. His publications had an
used to derivghysicalresults. enormous impact, but only Ref. [14] deals with number the-
Unlike other addressees of Ramanujan’'s letters, Hardpry. There he discussed the density of prime numbfeasid
recognized the values of tiiemann-functionor p-series. it was in this context that he postulated the analytic continua-

ForRez > 1, itis defined as tion of the(-function; the crucial functional equation is dis-
1 1 1 1 1 played in Appendix C. In contrast to Ramanujan, Riemann
()= — =ttt (B wasanexpertoncomplexanalysis. Presumably, he had hand-
n>1 written notes with many more important results, but after his

In 1739 Leonhard Euler had computed explicit expression§udden death, his house-cleaner burned part of these notes,
for ¢(2n), n € N4, and later, he also conjectured¢a until some mathematicians managed to stop her [16].
functional relation [13]. More than a century later, in 1859,  Ramanujan did not provide an actual derivation of formu-
Bernhard Riemann established the analytic continuation o€ 3) and @), butin the first case, he assigned — in Ref. [10]
the¢-function toC — {1} [14], see Appendix C. In this sense, and also his first letter to Hardy — a value to another divergent
Hardy noticed that Ramanujan’s results can be interpreted &ries, as an intermediate step to arrive at rela@nThat
¢(—1) and¢(—3) (although these values are not explicitly series corresponds to a special casBiathlet’s n-function,

given in Ref. [14]). or alternating¢-function

Riemann was a leading mathematician of the 19th cen- -1 1 1 1 1
tury, and of all times, cf. footnote [iii]. Like Ramanujan, he n(z) = Z 7(_ ) =———+———..., (6
lived his youth in harsh poverty, until he was appointed to 1 1= 22 3 47

a post in @ttingen, on Carl Friedrich Gauss's recommenda- _
tion. Another analogy is that he soon suffered from healtivhich converges foRe z > 0. At Re z > 1, we obtain

problems. Hoping that a warmer climate might help against 1
his tuberculosis [15] (which was also among Ramanujan’s C(z) —n(z) =2 Z - = 217%¢(2) ,
diseases [3]), he spent extended periods in Italy, where he n>1 (2n)
died in 1866, at the age of 39. 1
Differences from Ramanujan’s life are that Riemann had ((2) = {91 n(z) . (7)

access to education at leading mathematical institutes, in
The latter defineg(z) in the domaimRe z > 0 A z # 1.
In particular, Ramanujan wrote down its continuation

to [10]
E=n(-1)= Z(*l)”*ln
n>1
—1_ 9434, Al 8
=1-2+3-4...= . (8)

We are going to confirm this value, and follow his path to
relations B) and @), which we finally apply to physics, in
particular to theCasimir effect.

2. Heuristic derivation of 3>, n & —1/12

Series have both fascinated and confused mathematicians
over and over again, throughout history. The famous “para-
dox” by Zeno, which describes a race between Achilles and
a tortoise (and further “paradoxes” of a similar style), caused
a deep crisis in the mathematics of Ancient Greece (ee,

Ref. [17]), because the concept of convergent series — in this
FIGURE 3. Bernhard Riemann (1826-66). case, a geometrical series — had not yet been understood.

vi This is another field of common interest of these two geniuses: later, Ramanujan proposed his own formula for the prime number density, which is,

however, not as accurate as he had expected.

Rev. Mex. I5. E18, 020203
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Here we just take the familiar geometrical series as theseries
point of departure. Fae| < 1, we trivially obtain
Z Ri(2) =1—22+32% —42% + 52 ...
G(z) = =144+ 22428
n>0 = Zn(_z)n—l ) (15)
1 n>1
=1 G G(z) = . 9 . .
+2Gk) = Gi) 1—2z ©) which also converges dt| < 1, and we formally obtain
; : R £ Ry(—1).Y% Again, we refer to the safe regiong
The series converges only fog] < 1, but the final func- 1 . ' 3 "
tion G(=) is defined all ove€ — {1}. Moreover, the complex 10 the disk|z| < 1, where we take the difference
functionG(z) is holomorphic(or complex analytici.e.,com- 2 _ 9 4
plex differentiabley* in C — {1}, and thereforeneromorphic G2)” — Bal2) = 42(1+ 2274 327+ ..
in C, which implies that its analytic continuation from the =4z anQ(”*l) . (16)
disk|z| < 1toC — {1} is unique, cf. Appendix C.
This allows us to defin&randi's series

n>1

This operation can only be justified inside the convergence

G=1-141—-14+1-1---= Z(—l)” (10)  disk, but once it is carried out, taking the limit— —1 on
n>0 both sides leads to
by means of analytic continuation, ) 1
Y d i [Ge? = Raz)] = - RE 4R
1
GEG(2) e = 5 (11) A1
= R=-17. (17)

We can readily extend this scheme to tjt@unction in egs.
(6), (8). To this end, we first return to safe grounds,,to ~ Thus Ramanujan removed the divergence in a controlled

|z] <1, where manner, which leaves an unambiguous finite value, and
Hardy noticed that this assignment correspondskto=
G(2)” =142z +322 +42° .. ¢(—1). In Appendix B, we will discuss what has been go-
- ) 1 ing on here.
=Y nz"'=G(2) = A= 12) Alternatively we could invoke Eq/7j and consider the
nzl divergentserie€ =1+1+1+1+1.... Thelimitz — 0
The functionG(z)? is holomorphic as well, again with a MPlies
(unique) analytic continuation t& — {1}. This implies in
particular o CLCO) 2 )2 G=—, (18)
£ = Z(_l)nfln A G(2)]ser = G2 = 1 ’ (13) @ value which is also given in Ramanujan’s Second Note-
= 4 book [10]. When we even insert= —1 in Eq. (7), we arrive
again at
which coincides with Ramanujan’s resus) (
However, this is not yet what we need in order to assign A_1gnA 1 ¢(-1). (19)
a value to the notorious series, which we denote as 3 12
R = Z n=1+24344+5+. ... (14) So far, this may look like a mathematical playground, but

in the next section, we are going to apply this result to a phys-
ical toy model, where it leads to sensible results. In Sec. 4,
It would correspond t@7(z)?|.—1, butz = 1 is just the point ~ we proceed to a setting, which refers to physical phenomenol-
where this function has its double pole. Following Ramanu-ogy; for that purpose, we will need relaticd) ( which corre-
jan’s line of thought [10], we proceed by introducing anothersponds ta;(—3).

n>1

vit We recall that this is a powerful property, which guarantees that the function has derivatives of any order in its domain of holomorphy, and that it
coincides with its power series. Moreover, sif@&z) # 0, it is alsoconformal, i.e.angle conserving: if we interpret the functiéi(z) as a map
C — C, and consider two curvesg, (z), v2(z), which intersect irzg with a certain angle, then the maps of these curves inters€étip) with the
same angle.

viit The reason for the notation with an index 1 will become clear in Appendix B.

Rev. Mex. 5. E18, 020203



FROM RAMANUJAN TO RENORMALIZATION: THE ART OF DOING AWAY WITH DIVERGENCES AND ARRIVING... 5

3. Casimir effect on a line For thevacuum energy densiiy this interval, we for-
mally obtain

In this section and beyond, we are going to deal witantum

field theory. General introductions can be found in a num- 1 T

ber of textbooks, such as Refs. [18] (and a popular science Pd =54 Z ke = 242 Z s (20)
description is given in Ref. [19]), but in order to follow the nz1 n21

derivations in Secs. 3 and 4, only very little knowledge aboutynere we encounter the divergent teRnto which Ramanu-
itis required. Our notation implicitly refers to the functional jan, assigned the valuel/12. We are now going to illustrate
integral formulation, where the fields are functions of space_ i 5 physical framework — why, and in which sense, this
and time variables, with values which can, for instance, bgjye is indeed meaningful.
real numbers (then it is meutral scalar fieldas in this sec- As usual in quantum field theory, we first needegu-
tion), or vectors (as in Sec.4) In general, all field config-  |arization (as we mentioned before), but it doesn't need to be
urations —.e., all possible values in each space-time point —|y specified. We regularizg, by performing a substitution
are integrated to obtain expectation values of observables.

Here, however, we are only concerned with the ground
state contributions of free fields. For a neutral scalar field, we ~ 7 — f(n) =nr(n/Ad), with r(0)=1,  (21)
can imagine an (infinite) set of coupled harmonic oscillators, . N Lo
one at each space point. A Fourier transform yields oscillaWheréf andr are smooth functions R, (an infinite num-
tors for all possible frequencies priori, these frequencies P€r Of times continuously differentiable), ads an energy
are not restricted, so if we sum up their ground state contriCUtoff. If we remove it A — oo, we recover the term before
butions to the vacuum energy density, the result diverges. egularization. Atfinite, we require

We are going to be confronted with these ultraviolet (UV)
divergences: they requireragularization, i.e.a mathemat- b f@)y=0, M) =0, (22)
ical modification which makes such sums (or integrals) fi-
nite, enabling calculations. In the end, we want to removeyheref(*) is any odd derivativék = 1, 3, 5,...).
the regularization; hence, we aim at a cancelation of the UV A simple example off(n) in Eq. 21) is theheat kernel
divergences. This can often be achieved by subtracting diregularization where the function is exponential f(n) =
vergent terms, so-callecbuntertermswhich correspond to n exp(—n,/Ad), which leads to a geometrical series,
some limit; without taking that limit, a finite quantity re-
mains. This procedure is known asrenormalization: it
should lead to finite results for the physical quantities, which
do not depend on the regularization that has been chosen (if
suitable conditions are fulfilled).

The concepts, which we have sketched here in an abstract
form, are going to be illuminated by the presentation of sim-
ple examples.

To this end, we address an effect, which was theoreti-
cally predicted by the Dutch physicists Hendrik Casimir and
Dirk Polder in 1947/8 [20]. In particular, we follow the per-
spective that Casimir adopted a little later [21], inspired by a
discussion with Niels Bohr.

As a toy model, we consider a free, neutral, massless
scalar field on a lineg(t,z) € R, z € R. At the points
x = 0andx = d > 0 we applyDirichlet boundarieswhich
force the field to vanishi.e. ¢(¢,0) = ¢(t,d) = 0. In
this interval the field configurations can be Fourier decom-
posed into standing waves with wavenumbkygs= nm/d,
n = 1,2,3... (such thatsin(k,d) = 0). In natural units
(h = ¢ = 1), they contributek,, /2 to the ground state energy. FIGURE 4. Hendrik Casimir (1909-2000).

iz Alternatively, in the canonical formalism the fields are operator-valued.

Rev. Mex. I5. E18, 020203



6 W. BIETENHOLZ

first, we letV — oo; due to Eq.22) all contributions vanish
in this limit. As for the terms at = 0, we note thajf (0) = 0,

> ne N = A% a% > emm/nd F0) = 7(0) = 1, f®(0) = O((Ad)* %), k = 2,3,...,
n>1 n>0 hence the second step of the UV limit,— oo, leads to
9 1
=ANd = T (_Z —__T
8A1—6Xp(—1//\d) Pd = Poo = 2d2( 232) T 9442 (26)
= (Ad)? — 1 + @(i) ) (23) WhereR = —B,/2 = —1/121is c_:rucial, in_ agreement wi.th.
12 Ad Eq. 23). We recover Ramanujan’s assignment of a finite

We already se® = —1,/12 popping up, but we want to pro- value to the divergent series in EGQ}, i.e., Ramanujan sum-

ceed to a broader perspective, which generalizes the reguldfla_tion corresponds to the subtra(_:tion_ of the i_nfinij[e-volume
ization, and which also clarifies théle of the UV divergent limit of the vacuum energy densityThis density diverges
term, along the lines of Ref. [21]. both in a finite and infinite interval, but thdifferencei.e. its

In an infinite interval,d — oo, the formal term 20) finite-size effect, is finite and well-defined. The elimination,
1 1 S . . . 2 7 .
for the energy density turns into a momentum integral. WePr isolation, of a UV divergent term(4d)* in Eq. 23)), in
expand thedifferencepy — o, at the regularized level, by order to deal with finite differences, is the basic ideeeoior-
means of th&uler-Maclaurin f'ormula ’ malization. In field-theoretic jargon, we have subtracted the
' countertermp,,, which cancels the divergence in the series

N N (20).
Z fn) = [ flx)de = M Interestingly, this recipe matches exactly the relation
"~ ’ &) 1 1
Baj ( i1y an _ p(2io1) (-)=) n=-5B=-=, (27)
+j>1 (2j;! (f YT (O)> - (29 n>1 2 12

applied to Eq.20). We recall that the superscript (R) means
Ramanujan summatioits general properties are defined and
rexplored in Ref. [11]. For this article, it is sufficient to
point out that for a series of the for@:fg)l nk, k € N, the
Ramanujan summation coincides with théunction ((—k)
(defined by analytic continuation), see Appendix C. It further
corresponds to the finite term in the Euler-Maclaurin expan-
Bion of the difference

whereN € N_. A finite numberN represents another com-
ponent of the UV regularization: in this case, we sum ove
ky, only up tok,, max = N7/d.

The powerful formulal24) was independently derived by
Euler and by Colin Maclaurin around 1735. It is very useful
in field theory, in particular when dealing with finite tem-
perature or finite-size effects. Since we assume the functio
f to be smooth and to fulfill the conditioi22), this series
converges both at finitd and in the limitV — co0.” The co- N N
efficients in the last term are tiernoulli numberg* which Moo | D nF - /x’f de |,
can be defined in a way related to ER3), n=1 s

T ¥ which can be read off from Eq24), and which generalizes
— == B @9 Eq. 2910
k>0
This yieldsBy = 1, By = 1/2, Bs = 1/6, By = —1/30, (k) = (ZR)nk _ By (28)
By = Bs = B; = --- = 0,%" (Bg, Bs ... do not vanish, but _n>1 k417 :
we won't need them). -
We insert in Eq.24) a function f which fulfills the con- The question remains: beyond the satisfaction of deduc-

ditions 21) and 22), and we take the UV limit in two steps: ing a finite result, why are we interested inthis difference?

x If we truncated this expansion at some odd intefjét, such that we deal wit[}’fl ..., then there is a remainder terR); on the right-hand side.

It can be estimated a® ;| < 2¢(J) [, dz |f(/) (z)|/(2r)” [22], hence, the above assumptions imp®; Ry =0.

1 Bernoulli numbers were a particular passion of Ramanujan, who had certainly read about them in Ref. [2]. His very first paper discussed their
properties [23]. For instance, he showed that the denominatdBs aB4, Bs, Bs . .. (in lowest terms) all contain the prime factors 2 and 3 exactly
once.

zti This becomes obvious if we defigéz) = z/(1 — e~ *) and computg/(z) — g(—z) = x.

Rev. Mex. 5. E18, 020203



FROM RAMANUJAN TO RENORMALIZATION: THE ART OF DOING AWAY WITH DIVERGENCES AND ARRIVING... 7

X the energy outside the interil L] remains constant, while
| I | the energy inside this interval can be computed explicitly, so
everything is under control. From E26), we obtain the
0 d i total vacuum energy

a B —_ T ™ B
) (@) =~514 24(L—d)+ out

| = —m + Eout - (29)

30 |- f The termkE,,;, which represents the energy outside the inter-
| val [0, L], is divergent, but it does not dependdrGenerally
. a force is obtained as the negative gradient of the potential

20 [ 7] energy. In our 1-dimensional case, this operator reduces to
the negative derivative with respectddthe only variable in-
10 L I ol volved). Therefore the term,, is irrelevant for the force
acting on the “piston” atl, which is obtained as
M
- — , L L—2d
= — Fld)=-Fd)=—-————+"—= 30
- 0 () @=-Sec_a €0
I and depicted in Fig. 5b). It is odd with respect to the center
1 - B d = L/2, andattractivetowards the nearer fixed boundary,

| at0 or L. Henced = L/2 is an unstable equilibrium posi-
' tion. In the casd. >> d, we obtain a force, which is attractive

20 | .' b towards the boundary &t F(d) ~ —=/(24d?), and which
' coincides with the 2-boundary picture of EG6J. Hence, in
80 |- ' ul that picture, ignoring effects outside the interifald ] is jus-

| tified after all (varyingd does not change the energy in the
half-line withx > d).
40 U I I I I To summarize this section, we haemormalizedhe sys-
0 02 04 06 08 1 tem by discarding an additive, infinite constant in the energy
density, thecountertermp.., which represents the infinite-
b) d volume limit. In order to compute the remaining finite term, a
finite-size effect in this case, a regularization is needed. Then
the Euler-Maclaurin formula can be applied, and by remov-
ing both UV cutoffs,k, max = Nd/m — oo andA — oo,
we arrive at the finite resul26). It does not depend on the
. ) ) ) choice of the regularizing functiofi, as long as the condi-
What is its physical meaning? One is tempted to rfaply: th‘?ions 21) and R2) are fulfilled. This leads to finite values
change of the vacuum energy, as a functionioimplies a {51 the yacuum energy in the interval, L], and for the force
force between the DIrlchlgt boundaries, and the cpunterter@(d) in Eq. (30), which acts on the “piston’”.
can be subtracted since it does not depend/,oso it does
not contribute to this force. However, there is still a caveat,
which is often ignored: the boundaries could also affect thed. The Casimir force in 3-dimensional space
energyoutsidethe interval[0,d]. That could contribute to
the force between the boundaries, so we have to be careful. e proceed to a realistic situation, which deals with the vac-
A sound approach introducésree Dirichlet boundaries, uum energy of the photon field {{3 + 1)-dimensional space-
at the point®), d, L, with 0 < d < L, see Fig. 5a). time. The simplest setting‘ |s shown in Fig. 6; it involves two
The idea is to keep the extreme boundarie§ and L  Parallel, conducting plates;* of the same rectangular shape
fixed, while the one atl is a variable “piston”. In this way, and area, separated by a short distarfce.

FIGURE 5. a) Setting for the Casimir effect on a line: we apply
Dirichlet boundaries at the positiofsd, andL, with 0 < d < L.

b) The Casimir forcd”(d), which acts on the “piston” at accord-
ing to Eq. B0), in units such thal, = 1.

zi1z In theory, we assume perfect conductivity, this is what it takes to implement exact Dirichlet boundaries. The experiments have been performed
with well-conducting metal plates, which provide a good approximation, cf.552¢.The generalization with respect to the dielectric constant was

theoretically studied by Evgeny Lifshitz [24].
ziv Throughout this article, we refer to the standard scenario with static Dirichlet boundaries. The two-fold generalization of the Casimir effect with
dynamical Robin boundaries is discussed for scalar fields in Refs. [25].

Rev. Mex. 5. E18, 020203



8 W. BIETENHOLZ

E. = Adps-* In this difference, first, the UV contribu-
tion due toK — oo cancels (a physical interpretation is that
infinitesimally short wavelengths are not sensitive to the pres-
ence of boundaries at a finite distance). Regardiheg- 0,

we apply the Euler-Maclaurin expansidyj to

Z-.-—fdkg....

n>1

This corresponds to the Ramanujan summation ayeshich
we again express ag/afunction,

E(d) , 17 (—3) = o
A 6md C 72043
F(d) —E'(d) 72
/ AT AT T u0dt (32)
We have used Eg28) and insertedB, = —1/30, in agree-
d ment with Eq./4). Although the sign o3, is opposite taB;

FIGURE 6. Setting for an experimental test of the Casimir effect; (Which we inserted in Eq'26)), we obtain again aattrac-
one measures the force between two parallel, conducting plates dive force between the Dirichlet boundaries: note that there is
aread, separated by a short distante another sign flip due to the integral ov&r, where the lower
. . . bound contributes.
We rely on our experience from the 1-dimensional toy The question arises of what magnitude this force takes for

model to conjecture that it is sufficient to consider the energy . jistic sizesd andd. and if such a force can be measured
E(d) betweerthe plates. This is appropriate when the aea ¢ first conclusive experiment was achieved in 1997 by

is large (/A > d). The photon momentum components Par steve Lamoreaux, who succeeded in measuring the Casimir

allel _to the plates —which we denotglqs kp —are tyeated a5 force to5 % accuracy [26]. This was soon followed by Umar
continuous. Hence we perform a discrete sum, in analogy tg;qijeen and Anushree Roy [27], who took into account the
Eq. [20), only over the vertical componehf, and the energy ., rections due to finite temperature, finite conductivity, and
between the plates takes the form the roughness of the surfaces. In these experiments, the ge-

1 1 ometrical structure was a plate and a sphere, because of the
E(d) = Adp(d) = §A(27T)2 /dlﬁdl@ difficulty in keeping two plates parallel to very high preci-
sion.
™ 2 The first experiment to successfully measure the Casimir
x 22\/]“% + K3+ (F) force between parallel plates, as sketched in Fig. 6, was
=0 carried out at the University of Padua, Italy, in 2002 [28],
A s N2 with 15 % precision. That experiment used rectangular sil-
= o Z/dK K\ K2+ (7) icon stripes, covered with a chromium layer, of size=
n>07 1.9cm x 1.2mm, and their separatios varied from0.5 pm
N o 3/2|% to 3 um. In order to compute the predicted force in Newton
== Z (Kz n [ﬂ} ) 7 (31) (N), we have to insert a factdic in Eq. (32),*** which leads
T d to
n>0 0
: _ pmy4 A
where we have inserted a factdffor the two photon polar- F(d)~-13-10"'N (7) m? (33)

ization states.
Note that we have not regularized so far. If we do so andHence the predicted force in this experiment varied between

follow the procedure of Sec. 3, we can renormalize by sub¥ ~ —4.7-10~7 N and—3.7-10~'% N. Forces of this range

tracting the energy in the same volume but without platesare in fact measurable: for instance, Ref. [26] used a torsion

zv To obtainEs we start from the term in the upper line of e81), convert (in the larget limit) 7n/d to the continuous momentum componést
oo —
andy>, ~oto £ [ dks, which leads tdfee = Ad (27)~3 [ d®k |K].
= 0

zvi We recall that we have been using natural units. This factor shows that we are dealing with a relativistic quantum effect.
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FROM RAMANUJAN TO RENORMALIZATION: THE ART OF DOING AWAY WITH DIVERGENCES AND ARRIVING... 9

pendulum and laser interferometry, and Ref. [27] employedstates that “the existence of zero-point vacuum fluctuations
an atomic force microscope. In the experiment reported irhas been spectacularly demonstrated by the Casimir effect.”
Ref. [28], one of the parallel plates was the face of a canHowever, it does not affect usual experiments, which only
tilever beam, free to oscillate. The variation of the force wasdepend on energglifferencesnot on the additive constant
observed by measuring shifts in its resonator frequency, by,... Still, such an energy density throughout the Universe,

means of a fiber-optic interferometer. known asDark Energyiis indeed manifest since it affects the
The precision in recent experiments is around, or beexpansion of the Universe.
low, 1 %. It corresponds to th€osmological Constarih General

Relativity: in its absence — which was generally assumed
from the 1930s to the 1990s — the expansion of the Universe
would be decelerated. However, at the very end of the 20th

We don't know what exactly Ramanujan had in mind whenCentury, itwas observed that the expansicaciselerated™*
he introduced his summation of divergent series, which wel NiS i best described by a positive Cosmological Constant,
now denote as Ramanujan summation, such as relai@ns (Which corresponds to a Dark Energy density of ahay ~
and @). In his letter to Hardy, he only documented one in- (0.002 eV)*. _ _ _ _ _
termediate step, relatiod®). In his Second Notebook [10], Unfortunately, thls_value is totally _|ncompat|ble_W|th the
he additionally hinted at the continuatici7j, and he men- Vacuum energy densityo, that we discussed. Firspo
tioned the difference between summation and integrationS8ems to diverge, as we saw, but one might impose a UV
which we also reviewed. This is a valid argument, and apparcutoff in the integralf d*k ||, most naturally at the Planck
ently, Ramanuijan reinvented an equivalent form of the Euler€nergy. This leads to a finite valy@ianc, which is, how-
Maclaurin formula (he did not use that term [10], nor does€Vel,MUChtoo large ppianci /oo = O(107).
this formula appear in Ref. [2]). P.eople who still believe mupgrsymmetryzould argue
A reason for the sparse documentation in Ramanujan‘§1at in a perfectly supersymmetric world, the Dark Energy
notebooks was — in addition to his intuitive way of thinking — Vanishes (since bosons and fermions appear in pairs of the
that he mostly worked on a slate and only wrote down final reSame mass, and the fermionic ground state energy is nega-
sults on paper, which was valuable (in particular for him, whotiVe, with the same absolute value [18]). However, even if
was living in poverty). It is also conceivable that he was in-SUPersymmetry exists, it has to be badly broken in our low-
fluenced by Carr’s telegram style [2], cf. footnote [iv]. In any €Nergy world (otherwise particles I|!<e the “selectron” V\./OU|d.
case, his approach matches the analytic continuation githe have been observed), and the required extent of breaking still
function, at least with respect to negative integer argumentdMplies a Dark Energy density, which exceeds: at least
see Eq.Z9). In fact, he also rediscovered the analytically bY a factorO(10°) [30].
continued"-function with values irC — {0, —1, 2. .. }. He Hence any evidence for the existence of the QED photon
highlighted this idea in the introduction of his first letter to field vacuum energy.... would be puzzling. Albeit, Julian
Hardy [9], unaware that this had been known before; in parSchwinger et al. computed the Casimir using a source field
ticular, Riemann had used it in Ref. [14]. technique, without any need to refer Q.. [33]. Part of
These finite values for divergent series may look like athe literature concludes from that work that the Casimir ex-
mathematical game, which is rather disconnected from reaR€riments do not necessarily imply the realitysof., which
ity. However, it is possible to establish consistent rules for theould be welcome as a remedy against the disastrous discrep-
Ramanujan summation of divergent series by carefully dea/@nCy by 121 orders of magnitude. Thus the question remains
ing with properties like linearity and translation [11]. More- Whether or not relativistic quantum physics could be formu-
over, we reviewed their striking application to physics, wherelated withoutpy... If py.. exists, in the field-theoretic sense,
they enable the prediction of a force, which has in fact beef®ne might wonder whether the frequency of a photon is af-

measured. Theneaningof the Casimir effect will be dis- fected when it passes through regions of different, e.g.,
cussed in the following two subsections. when it transversally passes through a Casimir cavity, similar

to Bernoulli’s Principle in fluid dynamics. Regarding its ver-
5.1. Is the electromagnetic vacuum energy density real? tical motion, there is even a prediction that the speed of light
could be affected [34].
Numerous authors infer from the experimental observation of  If we wanted to construct a cavity between two conduct-
the Casimir forcethe existence of the vacuum energy of theing plates withopy = |pa| = 72/(720d*), we would need a
photon fieldp..., as predicted by Quantum Electrodynamicsseparation ofl ~ 0.3 um, which happens to be close to the
(QED), e.g.,Refs. [26—31]. As a typical quotation, Ref. [31] minimal separation in the Padua experiment.

5. Concluding remarks

viz This was concluded from the distance and redshift of a set of type la supernovae [32].

Rev. Mex. 5. E18, 020203



10 W. BIETENHOLZ

5.2. The nature of the Casimir force Jaffe and his collaborators insist that the physical Casimir

) ] ) ] force is always attractive [36, 40], and therefore compatible
One could question what kind of force this really is. It doesyith the van der Waals picture. If this alternative to the

not seem to appear in the famous list of four forces, which camaradigm — as expressed in Refs. [26-31] — is correct, then
be described by gauge fields, nor does it match further intefhe approach that we reviewed is not the most precise one,
actions in the Standard Model of particle physics (Yukawapyt it is still in agreement with the experimental results.
couplings and the Higgs field self-coupling). However, be-  Thys, returning to the title of Subsec. 5.1, doubts persist
ing an effect of thephoton fieldthis force must ultimately be  apoyt the physical reality 9f... as encoded in QED. There
electromagnetic, although this is not explicit in the above disis 5 consensus, however, that we do not know how to theo-
cussion. From this perspective, it can be best described asygijcally derive the Dark Matter densipp i, and that we do

van der Waals force'™** between the metal plates. This is the ot understand the enormous discrepancy from the vacuum

So, do we have two equivalent descriptions? This seems  gq far, our discussion in this subsection focused on the
puzzling again: in the van der Waals picture, the force decasimir effect due to QED, which was described in Sec. 4.
pends on the value of the electromagnetic coupling constarg principle, such an effect also exists for other gauge fields,
a = e?/4m ~1/137, which does not appear anywhere in the bt only for QED it is simple and instructive, in particular,
discussion based on the vacuum energy. because the photon field does not self-interact. This is also

This point was analyzed in depth by Robert Jaffe and colyhe only case where the Casimir force is experimentally con-
laborators, see Ref. [36] for a summary. They conclude thafirmed.
the Casimir effect is a relativistic quantum force between o instance, iQuantum Chromodynami¢®CD) — the
electric charges and currenis;., a retarded van der Waals gayge theory of the strong interaction — this effect is much
force, which does not requirgy... In Jaffe’s own words, |ess transparent because of the complicated self-interaction
“Casimir effects can be formulated, and Casimir forces canys ine gluon field [18], which occurs since the QCD gauge
be computed without reference to zero-point energies.” ThU@roup SU(3) is non-Abeliafi® At low energy, its behavior
they contradict the paradigm in this field, but this issue re{g gominated by non-perturbative effects, which are hard to
mains controversial. compute, and which induce an intricate vacuum structure.

Reference [36] obtains a Casimir force, which does desyygies in Euclidean space often focus on e of instan-
pend ona, such thatF'(a = 0) = 0, andF(a ~ 1/137)  tons [42]. For a static quark—anti-quark pair (which is an
is the physical strength. In this exceptional case, even thgyealization), a multipole expansion has been applied to esti-
limit @« — oo leads to a finite result.F(a — o0) just  mate the Casimir force [43]. Another study [44] deals with
matches the force obtained frgm,., which is often close to  he (restricted) Gribov—Zwanziger action.

F(a ~ 1/137). For instance, for copper plates separated by  Fyrthermore, there are numerous attempts to theoretically
0.5 pm (which is experimentally realistic), the consideration jnyestigate theravitational Casimir force, although this is a
With puac is @ good approximation i > 10~° [36], which quantum effect, and we do not have any (fully satisfactory)
is easily accomplishe.d by the ph'enomenolqgical \{alue. theory of quantum gravity. Numerous papers refer to un-

A wide-spread objection against that point of view refers,ga| gravitation theories; studies which are (roughly speak-
to examples, where the consideration baseflonleadstoa  jng) close to the framework of General Relativity include
repulsiveCasimir force [37]e.g.,for specific parallelepipeds Refs. [45]. The question of whether an experimental demon-
[38]. That feature is not easily encompassed by van degiation of such an effect, with gravitational wave mirrors,

Waals forces: For instance, Lamoreaux [26] writes: “the \yould prove the existence of gravitons is discussed (and neg-
Casimir and van der Waals forces are quite different; the vanjyely answered) in Ref. [46].

der Waals force is always attractive, whereas the sign of the

Casimir force is geometry dependent.” Ref. [40] disagrees; 3. Further physical applications of Ramanujan sum-
and assigns the repulsive result to the negligence of cutoff ef- mation

fects. In fact, an approach by Ricardo Cavalcanti [41], which

is manifestly free of any cutoff dependence, only obtains atThere are further applications of Ramanujan summation in
tractive Casimir forces. the perturbative expansions of quantum field theory, which

zviii We refer to the van der Waals force in the narrow sense, also known as London-van der Waalle ftreeattractive multipole interaction between
molecules [35].

ziz On the other hand, Ref. [35] predicted a repulsive Casimir—van der Waals—type force, which agrees with an experiment with interacting materials

immersed in a fluid [39].

zz For interacting quantum field theories, renormalization involves more than subtracting a divergent term, which was sufficient in Sec. 4 for the free
electromagnetic field. In the interacting case, one assigns renormalized values to the fields and their couplings, which are in general energy-scale

dependent.
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can be treated by th¢function regularizatior[47]. Itisan  However, we can show that this approach is even intrinsi-
alternative to dimensional regularization, which is most pop-cally inconsistent by choosing blocks of an even number of
ular in perturbation theory. Thgfunction regularization re- g summands (where the boundary terms are equally divided
moves from the beginning the UV divergent terms in the Lau-between the blocks),
rent series by inserting(—k), thus preventing the necessity
of counterterm$§®? Stephen Hawking advocated its applica- g g g g
tion in curved space-time [49]. R=1+2... (5 - 1) T (4 + {2 + 1]

Applications of the¢-function in bosonic string theory

+

are reviewed in Refs. [50]. Ref. [51] summarizes a key point 39 _ 39 39 39
_ , : + 1 +2)+ F1l )+
as follows: a particle mass is obtained as 2 4 4 2
(R) 0 g2 . 1 2
(. D=2 29 2 - 9
e e o) N R 7= U
k>1

whereo is the string tension) is the space-time dimension which only coincides with the claimA(2) in the limit g —
(such that a worldsheet lives ih — 2 dimensions), ang is .

the string excitation number (here also the Planck scale is set Of course, the applicability of partial sums can be dis-
to 1). The term with the sum over the modesepresents ., o4 more easilye.g.,in Grandi's series or Dirichlet's-
the ground state energyy, where one applies Ramanujan function. if we write them as

summationFy = —(D — 2)/240. The casg = 1 describes '

spin-1 particles with only two polarization states, which must

therefore be massless. This condition yields the space-time G=01-D+0-D+A-D+...

dimensionD = 26, where bosonic string theory is formu- =14 (=1+1)+(=1+1)+

lated [50]. The deeper reason is the requirement to cancel

the conformal anomaly. A detailed pedagogical description E=1-2)+B-49+(—-6)+

is given in Ref. [52]. 1 (—243) +(—4+5) +

Appendix which seems to suggest the contradictory valge?so or
g:’1, andéfi’q:(l +1+1+1...) = FC. Again we

A. The failure of partial sums encounter the serie§, which also appeared in Ramanu-

jan’'s Second Notebook [10], as we anticipated in Eg).(
Many controversial discussions about relations IBe{for  We will come back to it in Appendix B. In that case, a di-

instance, numerous comments on Ref. [12] — refer to partiajision into blocks ofn summands seems to suggé€st=
sums of a few summands. In the framework of divergent se¢{ Fod D)+ Q41 F 2l CL00rco (while

ries, separating them is conceptually wrong and leads to CORseparating: summand€ = k + C, C = o).
tradictions. Itis entertaining to look at some examples, to see
what one should beware d,g,
R=1+2+34+4)+B+6+7)+(8+9+10)+... . . . .
( )+ )+ ) B. Analytic continuation from the unit disk
Z149R — RE-1/8, (A.1)
which deviates from Ramanujan’s value. One might even feeYVe Now follow the scheme of Sec. 2 by writing the series un-

tempted to pay attention to this alternative value, since it iI€r consideration in terms of a variables C, such that they
consistent with blocks of any odd number> 3 of sum-  converge foz| < 1, and the divergent series of interest cor-

mands responds to the limit — —1. Working in the convergence
u_1 w1 3 1 region|z| < 1 avoids, for instance, the confusion with partial
R=14+2+ -+ 5 + < 5 +o 5 > sums. First, we repeat the geometrical series and Dirichlet's
n-function,
+(3u+1+ +5u1>+ luzfl
2 2 8 GR)=1+z+22+23+...

2 1

+ R - R=-—=. (A.2) _ ! Zi,lgzl_1+1_1_._é}7

8 1—2 2

zzi Its mathematical equivalence to the heat kernel regularization, see Sec. 3, was demonstrated by Hardy and Littlewood [48].
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n(z) =14+22+322+422 4+ - = G(2)* = G'(2) We introduced?, () before in Eq.[15), and we used it, at the
regularized level, in identityl(6), which we can now write in

1 2 1
= “3'e=1-2+3-4...2-.(B.1) the compactform
(1—2)2 4
As long as this limit is finite, taking the analytic continuation
is trivial. This allows us to perform operations, which remain n(z) = R1(2) + 4zRa(2) . (B.8)

valid in the limitz — —1, like

1
n(2) + G(z) = ~[n(z) — 1] Again the singularity at = —1 cancels on the right-hand
side: note the an expansion in= z + 1 leads to differ-

=243z +422+... =5 3 ent Laurent series foR (¢) = 1/e% andRa(e) = (1 + ¢ +
4 3e2/4) /4% +O(e), such that the right-hand side of E&.8)

n(z) — G(z) = zn(z) takes the expected forry4 + O(e).
11 If we insertR = R;(—1) = Ry(—1), and treatR as a

=2 +22243234...7 =5 —— . (B2 . : .
SR ! (B-2) finite constant, we retrieve Ramanujan’s famous result

In this framework, the limit — —1 is well controlled.

This is not obvious anymore when we deal with the pole
of the geometrical series at= 1, in particular when we refer
to the series

A A 1
=-3R = RE-5=((-1). (B.9)

A~ =

C=1+4+1+1+1+1... (B.3)

which worried us before in Sec. 2 and Appendix A. Here we
consider three different regularizing functions |dt< 1),

However, this procedure only works when the terms are
arranged such that the limit of interest{- —1 in our case)
is regular, otherwise, this step is not controlled. Consider, for

Ci(z)=1—z2+22-22+24 .. = 1 instance the identity
1+2z2’
1
2 4 6 .
Coz) =1+42"+2"+2 T2 Ri(2)+C1(2) =2 — 324422 - 523 ..
Z 1

We can involve the function§’;(z) in a variety of relations,
such asG(z) = (1 + 2)C2(z) = 1 — (1 + 2)C3(z). Of

course, they work both in the form of series and of functions,
in agreement withC;(z — —1) — co. We can also build

If we now insertC = Cy(—1) and R = Ry(—1) =
—(1/2)R1(2)|,=—1, we end up withC = —1, which contra-

linear combinations of the functiorg$;(z), for instance, dicts Eq.B.9).
1 Another example, which refers @, is the identity
G(Z) = Cl(Z) — 203(2’) = 71 e , (BS)
where the singularity at = —1 is removed.When we now 1
insertC = C1(z — —1) = C3(z — —1), and treat it as Ry(z) = Ra(2)n(z) = (1+22(1-2)2" (B.11)

a finite constant, we obtain the finite value, which indeed
matches((0), as we saw in Eq/18), and which Ramanujan

had reported [10], Carelessly insertingR = R;(—1) = Ro(—1) purports
ol A1 6 R;(1/4)R, R =0 or co. The reason for this fiasco is that
=-G= 9 ¢(0). (B.6) Egs. B.10) and B.11) are singular at = —1.

Itwas (apparently) a step of this kind that Ramanujan per- - Ramanujan had either the right intuition to pick an ap-
formed to compute the famous serigd R = 1+2+3+  propriate relation,16) or (B.8), where this step works, or it

4+5... . Here we consider the regularizations is based on additional considerations on his slate, which are
Ri(2) =1—22+322 —42° + 52* ... = C1(2)? not documented. It seems that he hardly knew any litera-
ture about th&-function, but he rediscovered correct values
=—Cj(2) = # , of its analytic continuation to correct values of its analytic
(1+2)? continuation to¢(0), ¢(—1), and{(—3), which cannot be by
Ry(2) =1+222 +32% +425 .. accident. In particular, he must have observed [10] the agree-

ment of the results that he obtained in this way with the finite

=n(22) = 1 ) (B.7) terminthe series that we call Euler-Maclaurin expansion, cf.
(1—22)2
Sec. 3.
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C. The Riemann(-function the sin-function), in agreement with E@8).%** Finally we
observe a simple pole at = 1, with the residué™, (» —
We have seen that a naive ansatz for the continuation can hg¢ () = 1, which is consistent witkj (0) = —(1/2) = C.
plagued by subtleties when we hit a pole. An unambiguous The validity of aseries representationf ¢(z), which
approach to evaluate series likeandR, as well as the cu- converges all ovef — {1}, was demonstrated by Helmut

bic series'4), combines the terms such that — in the limit of Hasse [53]. This formula uses Ed) @nd a double sum for
interest — the singularity is removed, as it is done in the apy(z),

proaches of Egs!16), (B.8), and of Egs./18), (19), or by

subtracting the corresponding integral: the result, given in ((2) = 1 Z 1
Eq. (28), coincides with((—k), k € Ny. 1—21-2 = 2n+1
The underlying concept ianalytic continuation: if a B
complex functionf(z) € C, z € C, is holomorphic in some y Zn:(—l)’“ ( n ) 1 (C.2)
region, then its analytic continuation is unique. Hence the ex- k) (k+1)2" '

. . . . k=
istence of a complex derivative is a powerful property: a plau- 0

sibility argument is that such a mgfz), with f’(z) # 0,is  For z = 0 the sum ovelk corresponds t¢l — 1)" = 4, o,

angle-preserving, cf. footnote [vii], which constrains the an-and we confirm{(0) = —1/2. Similarly, for z = —1 the

alytic continuation to a single possibility. second sum vyields,, o — J,,1, and we obtain once more
Being a pioneer in this field, Riemann extended the ((—1) = —1/12.

function from the region witfRRe z > 1 (where it is defined So could we have directly quoted these values and

by the convergent serie§)j to C — {1} by means of rela- skipped the previous consideration? There are two reasons
tions [14], which can be condensed into the functional equaagainst it: we would not capture the magic of Ramanujan’s

tion way of thinking, and we would have missed the physical pic-
o) ture, which leads to the values @f—n), n € N. This picture
((z) = (2m) sin(%) Nl1—-2)¢c(1-=2), (C.1) Justifies their application to the Casimir effect as a basic ex-
Y

ample of renormalization.
which is valid all over C. We read off ((—-1) =

(2r?)~Y(-1)7?/6 = —1/12, where we inserted'(n) = Acknowledgement

(n — 1)!, n € Ny, as well as Euler's Basel formula

>,s11/n* = w2/6. Similarly we obtain((—3) = | would like to thank Kimball Milton for instructive com-
6¢(4)/(87*) = 1/120, by employing Euler’s resulf(4) = ments. This work was supported by UNAM-DGAPA-

7%/90. This confirms again the Ramanujan summati@)s ( PAPIIT, grant number IG100219.
and @). We further see thag(—2n) = 0, Vn € N (due to

zxii These are the “trivial zeros” @f(z). According to the famous Riemann Conjecture, all other (“non-trivial”) zeros Rave = 1/2.
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