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The use of fictitious time in Lagrangian mechanics
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We present some examples in the elementary Lagrangian formulation of classical mechanics where the introduction of a parameter in place
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1. Introduction time. In Sec. 3, we show that this special case belongs to
the class of problems known as Liouville systems (seg,
One of the advantages of the use of the Lagrangian formuRefs. [1-3]), and we present several additional examples. Itis
lation in classical mechanics is the ease with which one cagssumed that the reader is acquainted with the basic elements
make use of any coordinate system (which does not mea®f the Lagrangian formalism of classical mechanics.
that one cannot make use of any coordinate system directly in
combination with Newton’s second law; the main difference
is that in the Lagrangian formalism one can readily switch
between different coordinate systems). The equations of m2- 1 he Kepler problem
tion obtained via the Lagrange equations are equivalent to
those obtained from Newton’s second law, with the differ-1n the Kepler problem, one considers a particle in a central
ence that, in the case of systems with holonomic constraintsield of force with potentiaV/(r) = —k/r, wherek is a con-
in the Lagrangian formulation, we do not have to worry aboutstant and- is the distance from the particle to the center of
the constraint forces. force (considered fixed with respect to some inertial frame).
Another advantage of using the Lagrangian formalism isAs is well known, the orbit must lie in a plane containing the
that, in some cases, it is possible to identify constants of mocenter of force and, therefore, one can restrict the attention
tion (e.g, when the Lagrangian does not depend on soméo the motion of the particle in a plane. The standard choice
coordinate or on time), which reduces the order of the dif-for the coordinates is the polar coordinates, which have the
ferential equations to be solved. Despite all this, even withvirtue of leading to an ignorable coordinate (the angje
a convenient choice of coordinates, the equations of motioAnd therefore to a conserved quantity (the angular momen-
obtained with the aid of the Lagrange equations may be quiteum about the origin). In this case, a convenient alternative
complicated. The aim of this paper is to point out that, inare the parabolic coordinates,v, which can be defined by
some cases, the substitution of the time by some other pa-
rameter may lead to simpler equations than those obtained in x=L1u?—v?),
the standard manner, where the time is the independent vari-
able. The examples considered here belong to the so-calleqh . .
Liouville systems (se.g, Refs. [1-3], though in Refs. [1,3] Then, a _stralghtforward_ co_mputatlon shows that the natural
the analysis is based on the Hamilton—Jacobi formalism). &agrang|an,L =T -V, isgiven by
Liouville system has a time-independent Lagrangian which
may not have ignorable coordinates, but one can gigen- I = @(u2 +o?)(a® + 02) + 2k ’ )
stants of motion (where is the number of degrees of free- 2 u? + v?
dom), and the equations of motion can be reduced to quadra-
tures. We show that these integrability properties can be readince L does not depend explicitly on the time, the Jacobi
ily explained by the introduction of a fictitious time. The integral,x dL/0u + v JL/0v — L, is a constant of motion,
idea of a fictitious (or local) time is also useful in the path which coincides with the total energy, and we shall denote it
integral formulation of quantum mechanics (see Ref. [4] andy E:
the references cited therein).
In Sec. 2, we begin by considering the Kepler problem E— @(uz +0?)
in some detail, using parabolic coordinates and a fictitious 2
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2 G.F. TORRES DEL CASTILLO

One of the Lagrange equations given by the Lagran@an ( The meaning of the constaft can be readily obtained.

is From Egs.9), (5) and ) we have
doL oL m k(u? —v?)
= —— — — _ 2 2 2,2 2,2
Qi on ~ ou Dfi(u + v?) (u*0? — v?u?) — 20
d 2 21 - .9 .2 4ku . .92 . .12
= g(m[u + v?]a) — m(a* + 0 )u—l—m R <u2 {—vx—&—uy} 2 [ux—l—vy} ) 2
2r 2r r
d 9 9. 2u
= — + -
3 (e ) = mij(ay — yi) — b,
X T[u2+v2}[u2+@2]—i hichcanb ized as th t of the Lapl
5 R which can be recognized as thecomponent of the Laplace—
Runge-Lenz vectap x L — mkr/r divided bym (seege.qg,
_ 1 2, o4 [ o o du Refs. [5, 6]).
Cu24? (m[u i ]E {(u v )dt “2Bu ), (4) If E = 0 (which requiresk > 0), from Egs. B) we see

) ) that the parabolic coordinates of the particle must be linear
where we have used E@)( This last expression suggests the ¢, qtions of 7, which means that, in thev-plane, the orbit

introduction of an auxiliary parameter (a “fictitious time?), i 5 straight line. By means of a rotation of the axes, if nec-

defined by essary, we can assume that this straight line is parallel to the
d+ v-axis, thatisy = ug (a constant). Then, from the first equa-
dr = R (5)  tionin (9), we see thaD = k, and from the second of these
equations we have = 2./k/m 7 (choosingr = 0 at the
so that Eq.4) amounts to closest point of the orbit to the origin). Then, from EdE), (
a2u we obtain
deQ = 2Fu, (6) . < _— 2) \/7
r=—=(u"——7°), Yy = 2ug\/ — T,
which is a linear, homogeneous equation, with constant coef- 2 m m

ficients. This is to be compared with the last E4), (vhereu
andv are explicitly coupled.
Similarly one finds that obeys the equation

which are parametric equations of a parabola (in ithye
plane) with its focus at the origin. Making use of E§),(
we see that the time is relateditdhrough

d?v 4k
Mmoo = 2Ewv. (7 t = ug?T + 37m7_3.
Equationsi§) and [7), in turn, are equivalent to the first-order The most important case is that witi < 0, the or-
ordinary differential equations bit in the uv-plane is the composition of two simple har-

9 9 monic motions with the same “frequency” [see E@)] (
m (d“> — Fu? =0y, m (dv) — Ev?=(,, (8) and, therefore, it is an ellipse centered at the origin.
2 \dr 2 \dr By means of a rotation of the axes, if necessary, we
respectively, where; and Cs are constants. Substituting NaY& % = (k= D)/|E| _cos(y, 2h‘E|/mT) andv =
Egs. B) into Eq. B), one finds that”; + Cy; = 2k; hence, hvaE/keJr D)/IE| sin (y/2|E|/m7). Then, from Eq.), we

Egs. B8) can be written in the form

m (du)? 9 T =— D +LCOS 2 2‘E|T
5 (d7'> —FEu*=k—-D, 2|E|  2|E| m ’
m [ dv\? 9 Vk* — D% | 2|E|

i — — — e < 2 —_ !

2 <d7‘> EU = k"‘D, (9) Yy 2‘E| S111 m T )

whereD is a constant. (Eqs7) show that the Kepler prob- which are parametric equations of an ellipse, intheplane,
lem with E < 0 is related to the two-dimensional isotropic with one of its foci at the origin, semiaxes = k/2|E],

harmonic oscillator.) b = Vvk? — D?/2|E|, and eccentricity = D/k. Thus, the
The relation/b) does not represent an ordinary change offictitious time elapsed in each revolutionrig/m/2|E]|.
variable: the right-hand side cb)is not the differential of According to Eq./6) and the expressions obtained above,

a function of(u, v, t); the fictitious timer elapsed between the timet is related to the fictitious time by means of
two points of the orbit depends on the details of the orbit (it

is path-dependent, something similar to the heat transferred t— 9% —ea. |- & (2 2|E]| T)

in a thermodynamic process). 2| F| m ’
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THE USE OF FICTITIOUS TIME IN LAGRANGIAN MECHANICS 3

which allows us to identify the period of the motioff: = Introducing now the auxiliary parameteiby means of
2a(m\/m/2|E]) (that is, T? = (47?m/k)a®), and making
; _ dt = fdr, (16)
use of the so-called eccentric anomaly= 2/2|E|/m,
2w
—t =1 — esi . dg;
Tt 1 — esin. (20) Fai = Z, (17)

Equation |L0) is known as Kepler's equation (sezg, Ref.
[1], Sec. 5.5; Ref. [6], Eq. (3-76); Ref. [7], p. 16).

3. Liouville systems

The example considered in the previous section is a specu'f\llI

case of the Lagrangian

1 n
=3 M;g:* —
QleZI ! fL—l

where

n

fEZfi,

=1

and the functiond1;, v;, f; depend only on the coordinajg

and Eq./15) amounts to

2, . _ N 2 .
0 — M d ql _ Edfl ldM’L qu drU’L ,
dr dg;

i 18
dr2 dg; 2 dg; (18)

h|ch only involves thei-th coordinate as a function of.
ultiplying the last equation bylg; /dr, we obtain

120 das das N 2
dg; d°g; Edfz dg; + 1 dM; dg; (sz)

0= M, - -
(11) dr dr2 dg; dr ' 2 dg; dr \ dr

dv; dg; u dg; d2¢ Edfi 1dM; (in)2

dg; dr “dr drz - Tdr "2 dr \dr

dv; d (1 [dg]?
+d7'_d7'(2]%[d7'] _Efl—’_w)’

(12)

(e.g, My,v; and f; depend ony; only). Any Lagrangian of hence,

the form (L1) is said to define a Liouville system (seq,

Ref. [1], Sec. 18.1, and Refs. [2, 3]). One can readily see that
the Lagrangian2) has the form/11), with ¢; = u, g2 = v, 2
=m, andv; = vy =

f1:u2,f2:'l)2,M1:M2

1 dg; \°
Mi( qz) —Efi+v;=Cy, (19)
dr

—k. where theC; are constants. The constantg’; are not in-

The Lagrange equations applied to the Lagranci) (  gependent. Using Eq<ld), (17), and @), one finds that

give, fori = 1,2,...,n (note that in the following equations S C; = 0. Thus,e.q, E,Cy, Co
there is no implicit summation over repeated indices), v o

_ ey Ldfigsy e 1
0= )~ 35S

J=1

1 df; < 1 dv;
- — U,_‘_f
f? d%‘; 7 fdy

_ gy - L[y
= 5 ([ Mid;) _ ij;M

f dg;
1 dM L ldu
f dg;

) Ede 1 dM

“dt (fqz) TFdg T2

where we have identified the expression between braces in
the second line with the Jacobi integral

Efz

which is conserved as a consequence of the factittdes
not depend on the time explicitly. Multiplying EdL3) by f,

we obtain

0= M () — B

dq

+f2

_ .,Cph_1 aren arbi-
trary constants, and the remainingconstants required for
the general solution of the equations of motion are the addi-
tive constants arising from Eq4.9).

In this manner, the equations of motion are reduced to
trivial first-order ordinary differential equations for thgas
functions ofr. If we have explicit expressions for thg in
terms ofr, then Eq.L6) givest as a function of-. One may
say that the definition of hides the coupling between the

1 zn: v, coordinates, but another point of view is that the coordinates
J

and the time are all given in terms of the parameter

It may be noticed that the equationd8| are the
Euler-Lagrange equations for the Lagrangidn, =
Lg(gs,dg;/dr, 7) defined by

1 d’l}i n

(13) _ 1 [dg)?
Lp= ; (2Mz [dT} v; +Efz> . (0

whereF is treated as a constant. Clearly, with a Lagrangian

that is the sum of. one-dimensional Lagrangians, one gets
(14)  n independent equations of motion. Furthermore, the con-
stants of motiorC; are just the Jacobi integrals for the one-
dimensional Lagrangias contained 20). The Lagrangian
Ly is related to the original ond1) through

to T2
; L+E dt:/i dr, 21
bt g J@+e) pdr @)
qi t1 T1
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4 G.F. TORRES DEL CASTILLO

wherer; andr, are the values of corresponding to the val- By contrast with the simplicity of Eqs9j, the solution of
uest; andt, of ¢ (keep in mind that this relation depends on Eqgs. 26) and 27) involves elliptic functions. A detailed anal-
the path followed). ysis of this problem can be found in the excellent book [1]
In the following subsections, we give some additional ex-(Secs. 17.10-17.13).
amples of systems with a Lagrangian of the fof)(
3.2. Isotropic harmonic oscillator
3.1. Plane motion of a particle attracted by two fixed

centers As is well known, the problem of a particle in the central po-
tential
In the case of a particle restricted to move on a plane un-
der the gravitational attraction produced by two fixed centers V(r) = $mw’r?, (28)

contained in this plane, it is convenient to choose the origin in h . tant b dil ved in Cartesi d
such a way that the two centers are at the points with CarteY€réw 1S a constant, can be readily solved in Lartesian an

sian coordinatesy, 0) and(—c, 0), wherec is some positive in polar coordinates. This problem can also be solved by us-
constant. then the7potential h:’;\s :[he form ing the confocal coordinate28). In terms of the coordinates

(23), the standard Lagrangian takes the form

k k
=-2_2 (22) i2 "2
L T2 _mo 9 2 H
L=—(\—p) +
2 )\2 _ 02 CQ _ ’u2
where k; and k,; are two constants, andy; =

Ve —e)?2+y? ro = J/(x+c)?2+y3% Instead of the mw?

Cartesian coordinates we make use of the elliptic coordinates -

(more appropriately called confocal coordinates),u, de-
fined by [cf. Eq. 24)]. This Lagrangian is another special caseld)(

with ¢; = A, ¢ = i, and

W+ pu?=c?) (29)

A= 2(r+r), p=1(ri—ro) (23) m
. . . flz)\27 f2:_ﬂ27 M1:ﬁ7
(instead of the variablea and i, sometimes the confocal A —c
coordinates are defined as the coordinatgsy, such that m mw?, . oo
A = ccoshu, u = ccosv, seege.g, Ref. [5], Sec. 4.3), then, Mz = ma =y (A" =A%),
by means of straightforward computations, one finds that the )
i i mw

standard Lagrangian is vy = =% (it — 2p?).

m, o 9 A2 2 . .

L=—(\—p°) + From Egs./16) and (19) one obtains again Ec2%) and
2 N —¢2 22
m 1 )2 mw?
k1 + ko)A + (ke — k ——— (=) —EX+—\ -2\ =C
¢ Snthalit (b = b (24) 2N - (m) Ty e =t
A —
inh i i _ _ m 1 dp 2 mw?

which is of the form/L1), with ¢; = A, g2 = p, and e (dr) L Eu - : (u4 _ 02/12) —— 0

2 2 m a

Ji=X%, f2=—u7, My = 57—, . .
A —c Hence, this approach does not seem more convenient than
m those based on the Cartesian or the polar coordinates.

M2 = v, = —(kl + kg))\,

2 — p?’
3.3. Charged particle in the field of a point dipole

Vg = —(kg — kl),u.

In the case of a charged patrticle in the field produced by

Substituting these expressions into E4$) @nd (L9) one ob- a point dipole, restricting the discussion to the motion in a

tains plane containing the dipole, the Lagrangian in polar coordi-
dt = (A2 — p?)dr, (25)  natesis given by
and the first-order equations I — @(7;2 + r292) B kcos 6 (30)
2 r2 ’
2
T% (3)‘) — EXN — (ky + ko)A =C;, (26) wherek is a constant. This Lagrangian can be obtained from
2 A% = \dr Eq. (11), takingg, = r, g2 = 6,
where( is a constant and ) m
9 fi=r7, f2=0, M, = —, My =m,
m_ L (N B2 (b — k= —Cr. (27) '
22— 2 \dr +Ep” = (ke = kjp = =Ch. v =0, vy = k cos 6.
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THE USE OF FICTITIOUS TIME IN LAGRANGIAN MECHANICS 5

Thus, the equations of motion are given by This rather trivial example serves to illustrate what hap-
9 pens when there is an ignorable coordinate. Except for some
ﬂz (dT) —Er? = —(Cy, (31) spepial initial condit!ons, the fictitipus timg i.s proportional to
2r2 \dr the ignorable coordinate. In fact, &,9, ¢ is ignorable then

m [ do\2 p1 = OL/0¢ is a constant of motion and in the case of the

- (d¢> + kcos = Co, (32) LagrangianlLl), p; = fMi¢ = My(dq;/d7); hence,
while Eq. (L6) gives dg; = P

My
_ .2
dt = ridr. Furthermore, from Eq10), we see that

(It may be noticed that Eq3@) has the form of the energy 9
equation of a simple pendulum.) Cy = 219]:41 — Efi + vy,

3.4. Central forces which shows thap; can be expressed as a function of the

constants of motioriy andC; (note that ifg, is ignorable,

In the case of an arbitrary central potentialr), taking ad- N
y b 64tr) g éhean, f1 andv; must be trivial constants).

vantage of the fact that the orbit must lie on a plane containin
the center of force, in terms of the polar coordinates, the

natural Lagrangian can be written as 4. Concluding remarks
2 -2 2

L= % (Z + 92) _ V2(7’)7 (33)  As pointed out above, the introduction of the fictitious time
" " hides the coupling between the coordinates of the problem; a

which has the form1), with g; = r, ¢o = 0, natural and interesting question is if a similar procedure can
m be applied to other problems (not necessarily of classical me-

fi=r2 f2 =0, My =3, chanics), where we have to deal with systems of differential

equations.

_ _ .2 _
Mz =m, v =17V (r), vz = 0. It may be remarked that even though the Lagrandidh (

may not have ignorable coordinates, one is able to identify

In this case, one obtains !
n constants of motion and to reduce the problem to quadra-

m (dr\’ 9 9 tures. Of course, the key is, as in many other procedures, an
%2 (dr) —Ert 417V (r) = -Gy, (34) appropriate choice of the coordinates.
9 The examples presented here correspond to systems with
m <d€) - Cy (35) just two degrees of freedom, even though the results of Sec. 3
2 \d ’ are applicable for an arbitrary number of degrees of freedom;
dt = 2 dr. (36) it is not easy to find interesting examples of Lagrangians of

the form fL1) with n > 3. On the other hand, the use of a
These last equations show tl@atis essentially the square fictitious time in the Hamiltonian formalism turns out to be
of the angular momentum about the origin and thaf4f¢  much more flexible and, there, one can give examples with
0, 7 can be taken as a (constant) multipledof Then, one three degrees of freedom (see Ref. [5], Sec. 4.3).
recognizes Eq.34) as the standard expression for the or- At first sight, the form of the Lagrangiail) may seem
bit (which is usually written in terms of Binet's variable somewhat mysterious; however, as we have shown here, its
u = 1/r) [see,e.qg, Ref. [5], Eq. (2.15), or Ref. [6], Eq. form is completely natural when we see its connection with

(3-35)]. the sum of one-dimensional Lagrangia@6)(
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