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The use of fictitious time in Lagrangian mechanics
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1. Introduction

One of the advantages of the use of the Lagrangian formu-
lation in classical mechanics is the ease with which one can
make use of any coordinate system (which does not mean
that one cannot make use of any coordinate system directly in
combination with Newton’s second law; the main difference
is that in the Lagrangian formalism one can readily switch
between different coordinate systems). The equations of mo-
tion obtained via the Lagrange equations are equivalent to
those obtained from Newton’s second law, with the differ-
ence that, in the case of systems with holonomic constraints,
in the Lagrangian formulation, we do not have to worry about
the constraint forces.

Another advantage of using the Lagrangian formalism is
that, in some cases, it is possible to identify constants of mo-
tion (e.g., when the Lagrangian does not depend on some
coordinate or on time), which reduces the order of the dif-
ferential equations to be solved. Despite all this, even with
a convenient choice of coordinates, the equations of motion
obtained with the aid of the Lagrange equations may be quite
complicated. The aim of this paper is to point out that, in
some cases, the substitution of the time by some other pa-
rameter may lead to simpler equations than those obtained in
the standard manner, where the time is the independent vari-
able. The examples considered here belong to the so-called
Liouville systems (see,e.g., Refs. [1–3], though in Refs. [1,3]
the analysis is based on the Hamilton–Jacobi formalism). A
Liouville system has a time-independent Lagrangian which
may not have ignorable coordinates, but one can given con-
stants of motion (wheren is the number of degrees of free-
dom), and the equations of motion can be reduced to quadra-
tures. We show that these integrability properties can be read-
ily explained by the introduction of a fictitious time. The
idea of a fictitious (or local) time is also useful in the path
integral formulation of quantum mechanics (see Ref. [4] and
the references cited therein).

In Sec. 2, we begin by considering the Kepler problem
in some detail, using parabolic coordinates and a fictitious

time. In Sec. 3, we show that this special case belongs to
the class of problems known as Liouville systems (see,e.g.,
Refs. [1–3]), and we present several additional examples. It is
assumed that the reader is acquainted with the basic elements
of the Lagrangian formalism of classical mechanics.

2. The Kepler problem

In the Kepler problem, one considers a particle in a central
field of force with potentialV (r) = −k/r, wherek is a con-
stant andr is the distance from the particle to the center of
force (considered fixed with respect to some inertial frame).
As is well known, the orbit must lie in a plane containing the
center of force and, therefore, one can restrict the attention
to the motion of the particle in a plane. The standard choice
for the coordinates is the polar coordinates, which have the
virtue of leading to an ignorable coordinate (the angleθ)
and therefore to a conserved quantity (the angular momen-
tum about the origin). In this case, a convenient alternative
are the parabolic coordinates,u, v, which can be defined by

x = 1
2 (u2 − v2), y = uv. (1)

Then, a straightforward computation shows that the natural
Lagrangian,L = T − V , is given by

L =
m

2
(u2 + v2)(u̇2 + v̇2) +

2k

u2 + v2
. (2)

SinceL does not depend explicitly on the time, the Jacobi
integral,u̇ ∂L/∂u̇ + v̇ ∂L/∂v̇ − L, is a constant of motion,
which coincides with the total energy, and we shall denote it
by E:

E =
m

2
(u2 + v2)(u̇2 + v̇2)− 2k

u2 + v2
. (3)
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One of the Lagrange equations given by the Lagrangian (2)
is

0 =
d
dt

∂L

∂u̇
− ∂L

∂u

=
d
dt

(
m[u2 + v2]u̇

)−m(u̇2 + v̇2)u +
4ku

(u2 + v2)2

=
d
dt

(
m[u2 + v2]u̇

)− 2u

u2 + v2

×
(

m

2
[u2 + v2][u̇2 + v̇2]− 2k

u2 + v2

)

=
1

u2+v2

(
m[u2+v2]

d
dt

[
(u2+v2)

du

dt

]
−2Eu

)
, (4)

where we have used Eq. (3). This last expression suggests the
introduction of an auxiliary parameter (a “fictitious time”),τ ,
defined by

dτ ≡ dt

u2 + v2
(5)

so that Eq. (4) amounts to

m
d2u

dτ2
= 2Eu, (6)

which is a linear, homogeneous equation, with constant coef-
ficients. This is to be compared with the last Eq. (4), whereu
andv are explicitly coupled.

Similarly one finds thatv obeys the equation

m
d2v

dτ2
= 2Ev. (7)

Equations (6) and (7), in turn, are equivalent to the first-order
ordinary differential equations

m

2

(
du

dτ

)2

− Eu2 = C1,
m

2

(
dv

dτ

)2

− Ev2 = C2, (8)

respectively, whereC1 and C2 are constants. Substituting
Eqs. (8) into Eq. (3), one finds thatC1 + C2 = 2k; hence,
Eqs. (8) can be written in the form

m

2

(
du

dτ

)2

−Eu2 = k −D,

m

2

(
dv

dτ

)2

− Ev2 = k + D, (9)

whereD is a constant. (Eqs. (7) show that the Kepler prob-
lem with E < 0 is related to the two-dimensional isotropic
harmonic oscillator.)

The relation (5) does not represent an ordinary change of
variable: the right-hand side of (5) is not the differential of
a function of(u, v, t); the fictitious timeτ elapsed between
two points of the orbit depends on the details of the orbit (it
is path-dependent, something similar to the heat transferred
in a thermodynamic process).

The meaning of the constantD can be readily obtained.
From Eqs. (9), (5) and (1) we have

D =
m

2
(u2 + v2)

(
u2v̇2 − v2u̇2

)− k(u2 − v2)
u2 + v2

= mr

(
u2

[−vẋ + uẏ

2r

]2

− v2

[
uẋ + vẏ

2r

]2
)
− k

x

r

= mẏ(xẏ − yẋ)− k
x

r
,

which can be recognized as thex-component of the Laplace–
Runge–Lenz vectorp× L−mkr/r divided bym (see,e.g.,
Refs. [5,6]).

If E = 0 (which requiresk > 0), from Eqs. (9) we see
that the parabolic coordinates of the particle must be linear
functions ofτ , which means that, in theuv-plane, the orbit
is a straight line. By means of a rotation of the axes, if nec-
essary, we can assume that this straight line is parallel to the
v-axis, that is,u = u0 (a constant). Then, from the first equa-
tion in (9), we see thatD = k, and from the second of these
equations we havev = 2

√
k/mτ (choosingτ = 0 at the

closest point of the orbit to the origin). Then, from Eqs. (1),
we obtain

x =
1
2

(
u0

2 − 4k

m
τ2

)
, y = 2u0

√
k

m
τ,

which are parametric equations of a parabola (in thexy-
plane) with its focus at the origin. Making use of Eq. (5),
we see that the time is related toτ through

t = u0
2τ +

4k

3m
τ3.

The most important case is that withE < 0, the or-
bit in the uv-plane is the composition of two simple har-
monic motions with the same “frequency” [see Eqs. (9)]
and, therefore, it is an ellipse centered at the origin.
By means of a rotation of the axes, if necessary, we
have u =

√
(k −D)/|E| cos(

√
2|E|/mτ) and v =√

(k + D)/|E| sin
(√

2|E|/mτ
)
. Then, from Eq. (1), we

have

x = − D

2|E| +
k

2|E| cos

(
2

√
2|E|
m

τ

)
,

y =
√

k2 −D2

2|E| sin

(
2

√
2|E|
m

τ

)
,

which are parametric equations of an ellipse, in thexy-plane,
with one of its foci at the origin, semiaxesa = k/2|E|,
b =

√
k2 −D2/2|E|, and eccentricitye = D/k. Thus, the

fictitious time elapsed in each revolution isπ
√

m/2|E|.
According to Eq. (5) and the expressions obtained above,

the timet is related to the fictitious time by means of

t = 2aτ − ea

√
m

2|E| sin

(
2

√
2|E|
m

τ

)
,
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which allows us to identify the period of the motion:T =
2a

(
π
√

m/2|E|) (that is,T 2 = (4π2m/k)a3), and making
use of the so-called eccentric anomaly,ψ ≡ 2

√
2|E|/mτ ,

we find
2π

T
t = ψ − e sin ψ. (10)

Equation (10) is known as Kepler’s equation (see,e.g., Ref.
[1], Sec. 5.5; Ref. [6], Eq. (3-76); Ref. [7], p. 16).

3. Liouville systems

The example considered in the previous section is a special
case of the Lagrangian

L =
1
2
f

n∑

i=1

Miq̇i
2 − 1

f

n∑

i=1

vi, (11)

where

f ≡
n∑

i=1

fi (12)

and the functionsMi, vi, fi depend only on the coordinateqi

(e.g., M1, v1 andf1 depend onq1 only). Any Lagrangian of
the form (11) is said to define a Liouville system (see,e.g.,
Ref. [1], Sec. 18.1, and Refs. [2,3]). One can readily see that
the Lagrangian (2) has the form (11), with q1 = u, q2 = v,
f1 = u2, f2 = v2, M1 = M2 = m, andv1 = v2 = −k.

The Lagrange equations applied to the Lagrangian (11)
give, for i = 1, 2, . . . , n (note that in the following equations
there is no implicit summation over repeated indices),

0 =
d
dt

(
fMiq̇i

)− 1
2

dfi

dqi

n∑

j=1

Mj q̇j
2 − 1

2
f

dMi

dqi
q̇i

2

− 1
f2

dfi

dqi

n∑

j=1

vj +
1
f

dvi

dqi

=
d
dt

(
fMiq̇i

)− 1
f

dfi

dqi


1

2
f

n∑

j=1

Mj q̇j
2 +

1
f

n∑

j=1

vj




− 1
2
f

dMi

dqi
q̇i

2 +
1
f

dvi

dqi

= Mi
d
dt

(
f q̇i

)− E

f

dfi

dqi
+

1
2
f

dMi

dqi
q̇i

2 +
1
f

dvi

dqi
, (13)

where we have identified the expression between braces in
the second line with the Jacobi integral

E ≡ 1
2
f

n∑

j=1

Mj q̇j
2 +

1
f

n∑

j=1

vj , (14)

which is conserved as a consequence of the fact thatL does
not depend on the time explicitly. Multiplying Eq. (13) by f ,
we obtain

0 = fMi
d
dt

(
f q̇i

)− E
dfi

dqi
+

1
2
f2 dMi

dqi
q̇i

2 +
dvi

dqi
. (15)

Introducing now the auxiliary parameterτ by means of

dt = f dτ, (16)

we have

fq̇i =
dqi

dτ
, (17)

and Eq. (15) amounts to

0 = Mi
d2qi

dτ2
− E

dfi

dqi
+

1
2

dMi

dqi

(
dqi

dτ

)2

+
dvi

dqi
, (18)

which only involves thei-th coordinate as a function ofτ .
Multiplying the last equation bydqi/dτ , we obtain

0 = Mi
dqi

dτ

d2qi

dτ2
− E

dfi

dqi

dqi

dτ
+

1
2

dMi

dqi

dqi

dτ

(
dqi

dτ

)2

+
dvi

dqi

dqi

dτ
= Mi

dqi

dτ

d2qi

dτ2
− E

dfi

dτ
+

1
2

dMi

dτ

(
dqi

dτ

)2

+
dvi

dτ
=

d
dτ

(
1
2
Mi

[
dqi

dτ

]2

−Efi + vi

)
,

hence,

1
2
Mi

(
dqi

dτ

)2

− Efi + vi = Ci, (19)

where theCi are constants. Then constantsCi are not in-
dependent. Using Eqs. (14), (17), and (19), one finds that∑n

i=1 Ci = 0. Thus,e.g., E, C1, C2, . . . , Cn−1 aren arbi-
trary constants, and the remainingn constants required for
the general solution of the equations of motion are the addi-
tive constants arising from Eqs. (19).

In this manner, the equations of motion are reduced ton
trivial first-order ordinary differential equations for theqi as
functions ofτ . If we have explicit expressions for theqi in
terms ofτ , then Eq. (16) givest as a function ofτ . One may
say that the definition ofτ hides the coupling between the
coordinates, but another point of view is that the coordinates
and the time are all given in terms of the parameterτ .

It may be noticed that the equations (18) are the
Euler–Lagrange equations for the LagrangiañLE =
L̃E

(
qi,dqi/dτ, τ

)
defined by

L̃E ≡
n∑

i=1

(
1
2
Mi

[
dqi

dτ

]2

− vi + Efi

)
, (20)

whereE is treated as a constant. Clearly, with a Lagrangian
that is the sum ofn one-dimensional Lagrangians, one gets
n independent equations of motion. Furthermore, the con-
stants of motionCi are just the Jacobi integrals for the one-
dimensional Lagrangias contained in (20). The Lagrangian
L̃E is related to the original one (11) through

t2∫

t1

(L + E) dt =

τ2∫

τ1

L̃E dτ, (21)
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whereτ1 andτ2 are the values ofτ corresponding to the val-
uest1 andt2 of t (keep in mind that this relation depends on
the path followed).

In the following subsections, we give some additional ex-
amples of systems with a Lagrangian of the form (11).

3.1. Plane motion of a particle attracted by two fixed
centers

In the case of a particle restricted to move on a plane un-
der the gravitational attraction produced by two fixed centers
contained in this plane, it is convenient to choose the origin in
such a way that the two centers are at the points with Carte-
sian coordinates,(c, 0) and(−c, 0), wherec is some positive
constant, then the potential has the form

V = −k1

r1
− k2

r2
, (22)

where k1 and k2 are two constants, andr1 =√
(x− c)2 + y2, r2 =

√
(x + c)2 + y2. Instead of the

Cartesian coordinates we make use of the elliptic coordinates
(more appropriately called confocal coordinates),λ, µ, de-
fined by

λ = 1
2 (r1 + r2), µ = 1

2 (r1 − r2) (23)

(instead of the variablesλ and µ, sometimes the confocal
coordinates are defined as the coordinates,u, v, such that
λ = c cosh u, µ = c cos v, see,e.g., Ref. [5], Sec. 4.3), then,
by means of straightforward computations, one finds that the
standard Lagrangian is

L =
m

2
(λ2 − µ2)

(
λ̇2

λ2 − c2
+

µ̇2

c2 − µ2

)

+
(k1 + k2)λ + (k2 − k1)µ

λ2 − µ2
, (24)

which is of the form (11), with q1 = λ, q2 = µ, and

f1 = λ2, f2 = −µ2, M1 =
m

λ2 − c2
,

M2 =
m

c2 − µ2
, v1 = −(k1 + k2)λ,

v2 = −(k2 − k1)µ.

Substituting these expressions into Eqs. (16) and (19) one ob-
tains

dt = (λ2 − µ2)dτ, (25)

and the first-order equations

m

2
1

λ2 − c2

(
dλ

dτ

)2

− Eλ2 − (k1 + k2)λ = C1, (26)

whereC1 is a constant and

m

2
1

c2 − µ2

(
dµ

dτ

)2

+ Eµ2 − (k2 − k1)µ = −C1. (27)

By contrast with the simplicity of Eqs. (9), the solution of
Eqs. (26) and (27) involves elliptic functions. A detailed anal-
ysis of this problem can be found in the excellent book [1]
(Secs. 17.10–17.13).

3.2. Isotropic harmonic oscillator

As is well known, the problem of a particle in the central po-
tential

V (r) = 1
2mω2r2, (28)

whereω is a constant, can be readily solved in Cartesian and
in polar coordinates. This problem can also be solved by us-
ing the confocal coordinates (23). In terms of the coordinates
(23), the standard Lagrangian takes the form

L =
m

2
(λ2 − µ2)

(
λ̇2

λ2 − c2
+

µ̇2

c2 − µ2

)

− mω2

2
(λ2 + µ2 − c2) (29)

[cf. Eq. (24)]. This Lagrangian is another special case of (11),
with q1 = λ, q2 = µ, and

f1 = λ2, f2 = −µ2, M1 =
m

λ2 − c2
,

M2 =
m

c2 − µ2
, v1 =

mω2

2
(λ4 − c2λ2),

v2 = −mω2

2
(µ4 − c2µ2).

From Eqs. (16) and (19) one obtains again Eq. (25) and

m

2
1

λ2 − c2

(
dλ

dτ

)2

− Eλ2 +
mω2

2
(λ4 − c2λ2) =C1,

m

2
1

c2 − µ2

(
dµ

dτ

)2

+ Eµ2 − mω2

2
(µ4 − c2µ2) =− C1.

Hence, this approach does not seem more convenient than
those based on the Cartesian or the polar coordinates.

3.3. Charged particle in the field of a point dipole

In the case of a charged particle in the field produced by
a point dipole, restricting the discussion to the motion in a
plane containing the dipole, the Lagrangian in polar coordi-
nates is given by

L =
m

2
(
ṙ2 + r2θ̇2

)− k cos θ

r2
, (30)

wherek is a constant. This Lagrangian can be obtained from
Eq. (11), takingq1 = r, q2 = θ,

f1 = r2, f2 = 0, M1 =
m

r2
, M2 = m,

v1 = 0, v2 = k cos θ.

Rev. Mex. F́ıs. E18, 020201



THE USE OF FICTITIOUS TIME IN LAGRANGIAN MECHANICS 5

Thus, the equations of motion are given by

m

2r2

(
dr

dτ

)2

−Er2 = −C2, (31)

m

2

(
dθ

dτ

)2

+ k cos θ = C2, (32)

while Eq. (16) gives

dt = r2dτ.

(It may be noticed that Eq. (32) has the form of the energy
equation of a simple pendulum.)

3.4. Central forces

In the case of an arbitrary central potentialV (r), taking ad-
vantage of the fact that the orbit must lie on a plane containing
the center of force, in terms of the polar coordinates,r, θ, the
natural Lagrangian can be written as

L =
mr2

2

(
ṙ2

r2
+ θ̇2

)
− r2V (r)

r2
, (33)

which has the form (11), with q1 = r, q2 = θ,

f1 = r2, f2 = 0, M1 =
m

r2
,

M2 = m, v1 = r2V (r), v2 = 0.

In this case, one obtains

m

2r2

(
dr

dτ

)2

− Er2 + r2V (r) = −C2, (34)

m

2

(
dθ

dτ

)2

= C2, (35)

dt = r2 dτ. (36)

These last equations show thatC2 is essentially the square
of the angular momentum about the origin and that, ifC2 6=
0, τ can be taken as a (constant) multiple ofθ. Then, one
recognizes Eq. (34) as the standard expression for the or-
bit (which is usually written in terms of Binet’s variable
u = 1/r) [see,e.g., Ref. [5], Eq. (2.15), or Ref. [6], Eq.
(3-35)].

This rather trivial example serves to illustrate what hap-
pens when there is an ignorable coordinate. Except for some
special initial conditions, the fictitious time is proportional to
the ignorable coordinate. In fact, if,e.g., q1 is ignorable then
p1 = ∂L/∂q̇1 is a constant of motion and in the case of the
Lagrangian (11), p1 = fM1q̇1 = M1(dq1/dτ); hence,

dq1 =
p1

M1
dτ.

Furthermore, from Eq. (19), we see that

C1 =
p1

2

2M1
− Ef1 + v1,

which shows thatp1 can be expressed as a function of the
constants of motionE andC1 (note that ifq1 is ignorable,
thenM1, f1 andv1 must be trivial constants).

4. Concluding remarks

As pointed out above, the introduction of the fictitious time
hides the coupling between the coordinates of the problem; a
natural and interesting question is if a similar procedure can
be applied to other problems (not necessarily of classical me-
chanics), where we have to deal with systems of differential
equations.

It may be remarked that even though the Lagrangian (11)
may not have ignorable coordinates, one is able to identify
n constants of motion and to reduce the problem to quadra-
tures. Of course, the key is, as in many other procedures, an
appropriate choice of the coordinates.

The examples presented here correspond to systems with
just two degrees of freedom, even though the results of Sec. 3
are applicable for an arbitrary number of degrees of freedom;
it is not easy to find interesting examples of Lagrangians of
the form (11) with n > 3. On the other hand, the use of a
fictitious time in the Hamiltonian formalism turns out to be
much more flexible and, there, one can give examples with
three degrees of freedom (see Ref. [5], Sec. 4.3).

At first sight, the form of the Lagrangian (11) may seem
somewhat mysterious; however, as we have shown here, its
form is completely natural when we see its connection with
the sum of one-dimensional Lagrangians (20).
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